

Supplementary Material

Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo Canyon-Channel

Martin Hasenhündl^{1,2}, Peter J. Talling^{3,4}, Ed L. Pope⁴, Megan L. Baker⁴, Maarten S. Heijnen⁵, Sean C. Ruffell³, Ricardo da Silva Jacinto⁶, Arnaud Gaillot⁶, Sophie Hage⁶, Stephen Simmons⁷, Catharina J. Heerema^{3,8}, Claire McGhee⁹, Michael A. Clare⁵, Matthieu J.B. Cartigny⁴

¹Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Vienna, Austria

²Institute for Hydraulic Engineering and Hydrometry, Federal Agency for Water Management, Vienna, Austria

³Department of Earth Science, Durham University, Durham, UK

⁴Department of Geography, Durham University, Durham, UK

⁵National Oceanography Centre Southampton, Southampton, UK

⁶Geo-Ocean, UMR6538, Univ Brest, Ifremer, CNRS, Plouzané, France

⁷Energy and Environment Institute, University of Hull, Hull, UK

⁸Expert Analytics, Oslo, Norway

⁹School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK

* Correspondence:

Martin Hasenhündl m.hasenhuendl@gmx.net

1 Possible older landslides

Supplementary Figure S1. Possible older landslides (dotted arrows in Figure 5), (A) possible older damming landslides at 10 km as indicated by the morphometric fingerprint in Figure 5B,C. (B) possible older damming landslides at 190 km as indicated by the morphometric fingerprint in Figure 5B,C.

2 Parameters of the linear regression shown in Figure 9

Supplementary Table S1: Parameters of the linear regression shown in Figure 9 (difference of levee crest elevations $((z_R - z_L)/H_B)$, levee/wall slopes (α_L, α_R) and offset between thalweg and centerline (n_T/B) against width-to-curvature ratio (B/R) at apices and 1 km downstream of apices for different reaches). In the form of $y = \beta_0 + \beta_1 x$ where β_0 is the y-intercept, β_1 is the slope (or regression coefficient). The goodness of fit is given by R^2 , the coefficient of determination.

		Lower reach (900-1117.5 km)						Middle reach (290-900 km)						Upper reach (0-290 km)					
		1 km downstream			at apices			1 km downstream			at apices			1 km downstream			at apices		
Width-to-curvature ratio (<i>B/R</i>) against	Data	eta_0	β_{I}	<i>R</i> ²	eta_0	β_I	<i>R</i> ²	eta_0	β_l	R^2	eta_0	β_{I}	R^2	eta_0	β_{I}	R^2	eta_0	β_{I}	R^2
Difference of levee crest elevations $((z_R - z_L)/H_B)$ (Figure 9A-F)	1994/98	0.10	0.03	0.00	0.06	0.15	0.10	-0.01	0.08	0.07	0.01	0.19	0.40	-0.27	0.12	0.07	-0.30	0.33	0.39
	2019	0.06	-0.01	0.00	0.03	0.10	0.04	0.02	0.10	0.49	0.01	0.11	0.53	-0.07	0.03	0.01	0.02	0.27	0.43
Left levee/wall slope (α _L) (Figure 9G-L)	1994/98	7.49	-0.34	0.02	7.45	-0.99	0.12	14.65	-1.28	0.24	14.88	-2.06	0.44	15.99	-0.53	0.02	16.71	-3.49	0.58
	2019	17.00	-2.94	0.10	15.59	-2.40	0.08	20.45	-3.94	0.68	20.86	-2.17	0.32	23.57	-0.41	0.01	22.82	-3.19	0.47
Right levee/wall slope (<i>a_R</i>) (Figure 9G-L)	1994/98	6.87	1.00	0.15	6.86	1.26	0.30	14.22	1.16	0.20	14.52	1.86	0.42	13.99	0.38	0.01	14.51	2.62	0.37
	2019	12.03	4.30	0.34	10.81	2.74	0.29	19.46	4.18	0.67	18.58	2.10	0.33	22.39	0.29	0.01	22.61	2.16	0.22
offset between thalweg and centerline (n_T/B) (Figure 9M-R)	1994/98	0.06	-0.05	0.35	0.04	-0.02	0.05	-0.01	-0.01	0.04	0.01	0.01	0.05	-0.04	0.02	0.07	-0.05	0.02	0.05
	2019	0.06	-0.13	0.47	0.06	-0.04	0.06	0.03	-0.07	0.56	0.04	-0.01	0.02	0.01	-0.02	0.02	0.02	0.01	0.01