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Abstract: There is increasing concern regarding pollutants disrupting the vertebrate thyroid hormone (TH) system, which is
crucial for development. Thus, identification of TH system–disrupting chemicals (THSDCs) is an important requirement in the
Organisation for Economic Co‐operation and Development (OECD) testing framework. The current OECD approach uses
different model organisms for different endocrine modalities, leading to a high number of animal tests. Alternative models
compatible with the 3Rs (replacement, reduction, refinement) principle are required. Zebrafish embryos, not protected by
current European Union animal welfare legislation, represent a promising model. Studies show that zebrafish swim bladder
inflation and eye development are affected by THSDCs, and the respective adverse outcome pathways (AOPs) have been
established. The present study compared effects of four THSDCs with distinct molecular modes of action: Propylthiouracil (PTU),
potassium perchlorate, iopanoic acid, and the TH triiodothyronine (T3) were tested with a protocol based on the OECD fish
embryo toxicity test (FET). Effects were analyzed according to the AOP concept from molecular over morphological to be-
havioral levels: Analysis of thyroid‐ and eye‐related gene expression revealed significant effects after PTU and T3 exposure. All
substances caused changes in thyroid follicle morphology of a transgenic zebrafish line expressing fluorescence in thyrocytes.
Impaired eye development and swimming activity were observed in all treatments, supporting the hypothesis that THSDCs
cause adverse population‐relevant changes. Findings thus confirm that the FET can be amended by TH system–related end-
points into an integrated protocol comprising molecular, morphological, and behavioral endpoints for environmental risk
assessment of potential endocrine disruptors, which is compatible with the 3Rs principle. Environ Toxicol Chem 2024;00:1–18.
© 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Endocrine‐disrupting chemicals (EDCs) have become a major

focus of ecotoxicological research and regulation in European
chemical legislation (Slama & Demeneix, 2019). Numerous

research projects, including the EURION cluster (https://eurion-
cluster.eu/), are actively working on enhancing the identification
of EDCs for their potential impact on both the environment and
human health. As part of the EURION cluster, the research
project Endocrine Guideline Optimization (ERGO; Holbech et al.,
2020) is dedicated to assessing chemicals that disrupt the thyroid
hormone (TH) system (THSDCs) and aims to improve endocrine
testing strategies by extrapolating data between different ver-
tebrate classes and by building a cross‐species adverse outcome
pathway (AOP) network for THSDCs (Haigis et al., 2023).

In chemical testing, Organisation for Economic Co‐operation
and Development (OECD) test guidelines are key for the
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standardization of testing methodologies to evaluate the safety
of chemicals for the environment and human health. In the
context of endocrine‐disrupting effects, for example, those re-
lated to estrogen, androgen, thyroid, and steroidogenesis (col-
lectively referred to as “EATS” modalities), several test
guidelines have been developed to cover the effects of EDCs on
organisms like fish and amphibians (European Chemicals
Agency [ECHA] et al., 2018). However, currently existing test
guidelines only address specific aspects of EDC effects in certain
species, life stages, and mechanisms of action.

Although fish are the established vertebrate model for aquatic
ecosystems and are, therefore, anchored in multiple national
and international test guidelines, there are currently no estab-
lished test guidelines for evaluating the impact of EDCs on the
thyroid modality in fish (Dang et al., 2021). So far, in an envi-
ronmental context, research into the potential disruption of the
TH system is conducted in amphibians because they show the
most conspicuous metamorphosis of tadpoles into adult am-
phibians. Consequently, in a regulatory context, it is common to
conduct multiple tests to assess the potential impact of envi-
ronmental EDCs reliably: Amphibians are used to detect
THSDCs, while fish are used to detect disruption of the steroid
hormone system.

The integration of TH system–related endpoints into ex-
isting fish test guidelines would thus significantly reduce extra
amphibian testing, except for cases where it is explicitly re-
quired to protect wild amphibians. In this context, the use of
nonprotected early embryonic life stages of fish (European
Commission, 2010; Strähle et al., 2012; Tindall et al., 2023)
seems especially relevant because the reduction in the use of
protected juvenile or adult life stages, which has already been
initiated for other pathways, for example, estrogen‐related
pathways (Christophe et al., 2019), also improves the compat-
ibility of endocrine testing with the 3Rs (replacement, reduc-
tion, refinement) principles of Russell & Burch (1959), which has
been gaining increasing importance in regulatory and scientific
research (Maestri, 2021; Schiffelers et al., 2014).

To date, three OECD test guidelines (231, 241, and 248) have
been established for thyroid modality testing in amphibians;
however, in contrast to corresponding mammalian tests, none of
these include risk assessment and extrapolation to humans
(ECHA et al., 2018). In contrast, per the European Union (EU)
regulation on industrial chemicals known as Registration, Evalu-
ation, Authorization, and Restrictions of Chemicals (REACH;
European Commission, 2006), fish are commonly used as the
primary vertebrate group for the assessment of aquatic toxicity.
In fish, most recent investigations focusing on the TH system and
its potential disruption have employed zebrafish (Danio rerio) as a
nonmammalian model (Couderq et al., 2020): Among 117 non-
mammalian ecotoxicity studies conducted over the last 5 years,
81 used fish (77% zebrafish), 30 used amphibians, and six used
birds (online literature search on Pubmed, Sciencedirect/Scopus,
Web of Science, and ResearchGate, publications until September
2023). Zebrafish is widely used as a model species in scientific
research (Laale, 1977; MacRae & Peterson, 2015; Spitsbergen &
Kent, 2003) and one of the most popular model organisms in
(eco)toxicology for its ease of maintenance, cost‐effectiveness,

rapid sexual maturation within months, and continuous pro-
duction of numerous offspring (Westerfield et al., 1997).

Thus, it seems not only cost‐, labor‐, and resource‐efficient
but also logical to incorporate TH system–related endpoints
into existing fish test guidelines, especially during devel-
opmental periods when THs play a critical role (Power
et al., 2001). Several established fish OECD test guidelines
appear suitable for the integration of TH system–sensitive
endpoints: For example, test guideline 210, the Fish, Early‐Life
Stage Test (OECD, 2013a); test guideline 240, the Medaka One
Generation Reproduction Test (OECD, 2023); or test guideline
236, the Fish Embryo Toxicity (FET) test (OECD, 2013b) could
be adapted to include such endpoints. Recently, a two‐
generation test combining test guidelines 229 and 234 that
includes TH system–related endpoints has been developed
(Gölz et al., 2023; Pannetier, Poulsen, et al., 2023).

The present study explored the suitability of a modified
FET protocol with zebrafish embryos for integration of TH
system–relevant endpoints at different biological levels. Given
that zebrafish embryos develop within a fully transparent cho-
rion, which does not represent a major obstacle to the uptake
and bioaccumulation of chemicals except for very large mole-
cules >4000 Da (Henn & Braunbeck, 2011; Kais et al., 2013;
Pelka et al., 2017), allowing continuous observation of tissues
and organs also before hatching (Kimmel et al., 1995), ex-
posure can be initiated immediately after fertilization. As holds
for all vertebrates, early development of zebrafish is at least
partially regulated by THs (Power et al., 2001), making it an
interesting model for assessing effects by THSDCs. During
early stages of zebrafish development, THs are maternally
supplied and stored in the yolk sac until embryonic TH syn-
thesis becomes active at 72 h of development (Porazzi
et al., 2009). Thyroid hormones are critical in regulating fish
development from fertilization throughout the embryonic,
larval, and juvenile stages to adulthood (Parichy et al., 2009;
Power et al., 2001). They are regulators central to multiple
morphological and physiological changes during embryonic
and larval development (Campinho, 2019; Evans & Fer-
nald, 1990); in particular, THs are key players in the develop-
ment of the central nervous system (Gothié et al., 2020) and
sensory organs (Besson et al., 2020).

Previous research has identified multiple relevant endpoints
sensitive to the effects of THSDCs in fish (Dang et al., 2021),
including the expression of specific genes (Baumann et al.,
2019; Reinwald et al., 2021), TH levels (Pannetier, Poulsen,
et al., 2023), thyroid follicle morphology in embryos (Fetter
et al., 2015; Jaka et al., 2023; Kraft et al., 2023) and older life
stages (Gölz et al., 2023; Schmidt & Braunbeck, 2011),
eye development (Baumann et al., 2016; Gölz et al., 2022;
Pannetier, Poulsen, et al., 2023), swim bladder inflation
(Stinckens et al., 2018), as well as changes in behavior (re-
viewed by Spaan et al., 2019). All of these endpoints have been
demonstrated to be responsive to various modes of action of
THSDCs and principally hold promise for use in the regulatory
assessment of potential THSDCs. Consequently, AOPs (Ankley
et al., 2010) linking disruption of the TH system to swim
bladder inflation and eye development in zebrafish have been
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established, which can support and improve our understanding
of the impact of THSDCs on crucial biological processes (see
AOPs 155–159 and 363–365 in the AOPWiki: https://aopwiki.
org/).

Molecular endpoints such as changes in gene expression
and TH levels provide information about the endocrine activity
of potential THSDCs. However, to assess the impact of
THSDCs at the population level, there is a need for endpoints
that inform about endocrine adversity (ECHA et al., 2018).
Swim bladder inflation, eye development, and swimming be-
havior are such population‐relevant endpoints that might play
an important role in decision‐making within a regulatory
context.

The present study proposes an experimental protocol in-
corporating various parameters specific to endocrine activity
and adversity in embryo‐larval stages of zebrafish, following the
AOP concept. Four well‐characterized THSDCs representing
different modes of action were used as model substances:
Propylthiouracil (PTU), a pharmaceutical, acts as an inhibitor of
thyroperoxidase (TPO), thereby reducing TH levels. Potassium
perchlorate (PCL), an environmental pollutant, inhibits iodine
uptake into thyrocytes, resulting in decreased TH levels
through a different mechanism. Iopanoic acid (IOP), a com-
monly used radiocontrast medium, hinders the conversion of
thryroxine (T4) to triiodothyronine (T3) by deiodinases, thus
lowering their activity. The active TH form, T3, activates TH
receptors and associated processes.

To assess the impact of the selected THSDCs at the mo-
lecular level, gene expression analyses (quantitative real‐time
polymerase chain reaction [qPCR]) of thyroid‐ and eye‐related
genes were performed. In addition, changes in the morphology
of thyroid follicles were monitored by use of the transgenic
zebrafish line Tg(tg:MA‐mCherry)ulb1 (Opitz et al., 2012), which
expresses a thyroglobulin‐bound fluorescent protein in thyro-
cytes, a method compatible with conventional histopatho-
logical analyses typically performed in older life stages
(Schmidt & Braunbeck, 2011). Moreover, eye histopathology
was employed as an adverse endpoint to investigate the effects
of THSDCs on eye development (Gölz et al., 2022). Finally,
behavior analyses were performed to evaluate the effects of
THSDC exposure on the overall fitness of the embryos, par-
ticularly their swimming activity, and as a proxy of potential
developmental neurotoxicity caused by disruption of the TH
system.

The present study thus introduces a novel strategy for the
assessment of EDCs in fish representing the first Level 4 test
guideline covering endocrine adversity, which, however, is re-
garded as an alternative method (“in vitro”) and, thereby,
contributes substantially to the 3Rs principle.

MATERIALS AND METHODS
Chemicals

The chemicals used in this proof‐of‐concept study were se-
lected as model compounds with well‐investigated effects on
the TH system of different organisms at sublethal concen-
trations. Exposure concentrations do not necessarily represent

environmentally relevant concentrations. Unless stated other-
wise, all chemicals were purchased at the highest purity avail-
able (>98%) from Sigma‐Aldrich (Deisenhofen, Germany).
Stock solutions of PTU (Chemical Abstracts Service [CAS] no.
51‐52‐5), PCL (CAS no. 7778‐74‐7), IOP (CAS no. 96‐83‐3), and
T3 (CAS no. 6893‐02‐3) were prepared 24 h before usage.
Because of the low water solubility of T3 and IOP, dimethyl
sulfoxide (DMSO) was used as a solvent. The two components
were stirred in DMSO for at least 10min at room temperature.
To obtain the final concentrations, the IOP and T3 stock sol-
utions were diluted with artificial water according to OECD test
guideline 236 for each experiment with a final concentration of
0.02% DMSO.

Zebrafish husbandry and breeding
Zebrafish rearing, breeding, and exposure were conducted

following the specifications outlined in OECD test guideline
236 (FET test) with slight modifications: The exposure duration
was extended to 5 days postfertilization (dpf) to include eye
development as an endpoint and to analyze more complex
behavior. Zebrafish eggs used in the exposure experiments
were obtained from different parental zebrafish lines, de-
pending on the specific endpoints assessed. The reasons be-
hind using different zebrafish lines are of a practical nature,
depending on the availability of lines in different laboratories
and some of the experiments being part of different projects.
For gene expression analysis, wildtype zebrafish (D. rerio,
Westaquarium strain) were utilized, while the transgenic line Tg
(tg:MA‐mCherry)ulb1 (Zebrafish Information Network [ZFIN]
code: https://zfin.org/ZDB-ALT-130213-1; Opitz et al., 2012)
was used for the analysis of thyroid follicle morphology and eye
histopathology. Both zebrafish lines were maintained under
standard rearing conditions (Lammer et al., 2009) at the facili-
ties of the Aquatic Ecology and Toxicology Group, Center of
Organismal Studies, University of Heidelberg (licensed by local
authorities: 35‐9185.64/BH Braunbeck). Behavioral analyses
were performed at the MARBEC Palavas Experimental Marine
Platform (licensed under D34121926) using the cyp19a1b:GFP
zebrafish line (ZFIN code: http://zfin.org/ZDB-ALT-110126-5).

Exposure experiments
Freshly fertilized zebrafish eggs were collected in the

morning after the onset of light and carefully assessed for
quality: Only eggs of the highest quality, characterized by
uniform cell division, transparent yolk, and a uniformly shaped
chorion between the 4‐ and 64‐cell stages, were used for ex-
periments. Exposure concentrations for PTU, PCL, IOP, and T3
were determined based on range‐finding tests, which helped
to establish the threshold to unspecific toxicity (Table 1).
Final exposure levels were set at concentrations below 10%
effect concentration values to avoid any interference with
malformations or even mortality (cf. Wheeler et al., 2013).

For all analyses except behavior, 24‐well plates were pre-
exposed (saturated) for 24 h with 2ml of the respective test
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solutions or control medium. For exposure, each well was used
to hold a single egg. Plates were incubated with a 14:10‐h day:
night cycle at a temperature of 26.0± 1.0 °C. For behavioral
analyses, batches of 25 fish embryos per treatment were ex-
posed at 27.0± 1.0 °C in glass crystallizers containing 25ml
of prewarmed exposure solution. Exposure solutions were
renewed daily, and embryos were closely monitored for any
symptom of malformation or toxicity.

All experiments were carried out in triplicate on 5‐dpf em-
bryos. For each endpoint, details on specific exposure con-
centrations and the number of embryos used per replicate can
be found in Table 1.

qPCR of thyroid‐ and eye‐related genes
in zebrafish embryos

The qPCR analysis was conducted on every THSDC
treatment at the highest concentration except for PTU, where
the second‐highest concentration was selected because PTU
had already shown strong effects in eye‐related endpoints.
Wild‐type embryos (5 dpf) were anesthetized using an ice‐cold
solution of 400mg/L buffered tricaine mesylate (MS‐222).
Pooled groups of 12 embryos were transferred into 2‐ml Ep-
pendorf tubes, and the exposure solutions were removed.
Subsequently, the reaction tubes were rapidly frozen in liquid
nitrogen and then stored at −80 °C until further analysis. For
RNA isolation, TRI Reagent® RNA Isolation Reagent (Sigma
Aldrich; product no. T9424) was used, following the manu-
facturer's protocol. Concentration and purity of the isolated
RNA were assessed using a Nanodrop NanoVue 4282 spec-
trophotometer (GE Healthcare, Chicago, IL). The isolated RNA

was processed further to synthesize complementary DNA
(cDNA) using ReadyScript cDNA synthesis mix (Sigma‐Aldrich;
product no. RDRT). The qPCR was performed on an AB
Applied Biosystems 7500 Fast Real‐Time PCR System (Life
Technologies, Darmstadt, Germany), utilizing the StepOne®

real‐time PCR system (ThermoFisher Life Technologies, Darm-
stadt, Germany). The qPCRs were conducted using Luna Uni-
versal qPCR Master Mix (New England BioLabs, Ipswich, MA)
following the manufacturer's protocol, with the respective
primers (for details see Supporting Information, Table S1) and
the cDNA. The relative gene expression was calculated using
the 2–ΔΔCT method, as described by Schmittgen and Livak
(2008). The 18 S ribosomal RNA gene was employed as a ref-
erence gene because its expression remained stable across
treatments, as determined by log22

–CT. The normalized ex-
pression of the target genes, 2–ΔΔCT, was then compared across
the different treatments.

Anatomy and morphology of thyroid follicles
For morphological analyses, 5‐dpf embryos of the thyroid

transgenic zebrafish Tg(tg:MA‐mCherry)ulb1 line were used as
previously described by Kraft et al. (2023). Embryos were se-
dated using a 0.016% MS‐222 solution and placed on glass
microscopy slides covered with 3% methylcellulose for in vivo
imaging of the thyroid follicles on an inverted epifluorescence
microscope equipped with a camera (Nikon Eclipse Ti‐S and
DS‐Fi3; Nikon, Düsseldorf, Germany) using a ×20 magnification
lens and the software NIS‐Elements (Ver. 4.60). The head
region of each embryo was first put in focus in brightfield
for orientation, and thyroid follicles were imaged using the

TABLE 1: Test substances with median lethal concentration values (based on toxicity testing according to Organisation for Economic Co‐operation
and Development Test Guideline 236) and final test concentrations used in the modified protocol for investigating the different endpoints in 5 days
postfertilization zebrafish (Danio rerio) embryos

Substance CAS no. LC50 Exposure concentrations No. of embryos per replicate

Propylthiouracil 51‐52‐5 635.8 mg/L 0, 100, 150, 200, 250mg/L ▪ Histopathology: 12–30 individuals; 60–150
follicles

▪ qPCR: three replicates of 24 pooled
individuals each

▪ Behavior: 24 individuals
Potassium perchlorate 77778‐74‐7 >1000mg/L 0, 0.1, 0.5, 1.0, 1.5 mg/L ▪ Histopathology: 12–30 individuals; 60–150

follicles
▪ qPCR: three replicates of 24 pooled

individuals each
▪ Behavior: 24 individuals

Iopanoic acid 96‐83‐3 3.5mg/L 0, 0.5, 1.0, 1.5, 2.0mg/L (in
0.02% DMSO)

▪ Histopathology: 12–30 individuals; 60–150
follicles

▪ qPCR: three replicates of 24 pooled
individuals each

▪ Behavior: 24 individuals
Triiodothyronine 6893‐02‐3 5.6mg/L 0, 0.65, 6.5, 65 µg/L (in 0.01% DMSO) ▪ Histopathology: 12–30 individuals; 60–150

follicles
▪ qPCR: three replicates of 24 pooled

individuals each
▪ Behavior: 24 individuals

CAS=Chemical Abstracts Service; LC50=median lethal concentration; qPCR= quantitative real‐time polymerase chain reaction; DMSO= dimethyl sulfoxide.
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tetramethylrhodamine‐isothiocyanate‐epifluorescence filters.
Two Z‐stacks consisting of nine images with 2.5‐µm spacing
were captured: one using brightfield, one using the epifluor-
escence filters.

In total, 15 embryos per treatment were analyzed. Analysis
of the Z‐stacks was automated using a custom‐made macro
using the software FIJI (Schindelin et al., 2012; for macro code,
see Supporting Information, Macro S2). During the analysis,
images were converted to gray scale, and the overall fluo-
rescence (the product of follicle area by their mean gray value)
of the thyroid follicles was calculated (for details, see Sup-
porting Information, Figure S1). Following imaging, embryos
were returned to artificial water to remove remnants of meth-
ylcellulose and euthanized by an overdose of ice‐cold MS‐222.

Eye histopathology and morphometry of retinal
layers

After live imaging of the thyroid follicles, 5‐dpf zebrafish
embryos (Tg(tg:MA‐mCherry)ulb1 line) were euthanized and
fixed overnight for histological procedures in cold modified
Davidson's fixative (Braunbeck et al., 2010). Prior to standard
processing for histopathological analyses, groups of 12 em-
bryos were embedded in agarose blocks following the method
described by Sabaliauskas et al. (2006) and modified by Kraft
et al. (2023). The agarose blocks underwent standard dehy-
dration and paraffin embedding for 48 h using an automated
tissue processor (TP1020; Leica, Nussloch, Germany). The
paraffin‐embedded blocks were sectioned at 4 to 5 µm using a
rotary microtome (Microm HM 355 S; ThermoFisher, Wies-
baden, Germany). The sections were mounted on adhesion
slides (SuperFrost® Plus; Menzel, Thermo‐Fischer) and stained
with hematoxylin and eosin G using an automated stainer
(Cellstain®15; Tharmac, Wiesbaden, Germany).

Histopathological analyses of the eyes were conducted fol-
lowing Kraft et al. (2023) as well as Pannetier, Poulsen, et al.

(2023): Coronal sections at the level of the optic nerve
(Figure 1) were used to record histopathological alterations in
the eye and to measure the diameter of the eye and the
thickness of the retinal pigment epithelium (RPE), the photo-
receptor layer (PRL), and the inner plexiform layer (IPL) by
means of Fiji software at eight different locations per layer
(Figure 1). Especially in embryos exposed to the highest con-
centrations of IOP, the IPL displayed conspicuous deformations
such as gaps and “dents” (Supporting Information, Figure S7).
To characterize such malformations, the severity of deforma-
tions and dents was graded on a scale ranging from 1 (control)
to 5 (severe change); the mean severity grade of a treatment
was calculated across the three replicates.

In addition, a semiquantitative analysis was performed to
evaluate the pigmentation intensity and detachment of the RPE
on a scale from 1 to 4, with 1 representing almost no detach-
ment and normal pigmentation, while 4 indicated significant
detachment and conspicuously low pigmentation.

Analysis of behavior in zebrafish exposed
to THSDCs

The swimming activity of 5‐dpf zebrafish (cyp19a1b:GFP
line) embryos was evaluated in the photomotor response
assay using the DanioVision™ system (Noldus, Wageningen,
The Netherlands) between 1:00 and 5:00 p.m. (MacPhail et al.,
2009). At least 2 h before testing, zebrafish embryos were
carefully transferred from the glass crystallizers into 24‐well
plates (TPP, Trasadingen, Switzerland; one larva per well) and
kept for acclimation in an illuminated incubator at 28 °C.

For analysis of swimming behavior, the well plates with the
embryos were transferred to the DanioVision system and ac-
climated to darkness for 10min. Then, swimming activity was
recorded during a first 5‐min period of light (LON1), then
during 5min of darkness (LOFF) and again during another
period of light (LON2). The swimming tracks of the embryos

FIGURE 1: Histological sections of the eye of a 5–days postfertilization control zebrafish (Danio rerio) embryo stained with hematoxylin and eosin
reveal a clear stratification of the retina (A). For morphometric analyses, five out of eight measurements of the RPE evenly distributed over the retina
were used (B, yellow arrows). RPE= retinal pigment epithelium; PRL= photoreceptor layer; OPL= outer plexiform layer; ON= optic nerve;
ONL= outer nuclear layer; IPL= inner plexiform layer.
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were automatically recorded and analyzed using the Noldus
Ethovision™ computer software. The locomotion data of in-
terest (distance traveled [centimeters], meandering of path
[degrees per centimeter], and time spent in the well center
[seconds]) were automatically extracted and used for statistical
analyses. At the end of the experiment, larvae were euthanized
in a saturated solution of benzocaine (CAS no. 94‐09‐7; Merck).

Statistical analyses
Statistical data analysis was conducted using Prism 9

(Ver. 9.1.2 (226), 2021; GraphPad Software; Statcon, Witzen-
hausen, Germany) for qPCR, eye histology, and thyroid follicle
data. Behavioral data were analyzed using R (Ver. 4.2.2; R Core
Team, 2021).

For the analysis of qPCR data, data normal distribution was
ensured, and an unpaired t test was performed to compare
exposed embryos to the corresponding controls.

For the analysis of eye histopathology, data from the three
independent replicates were pooled if there were no statistically
significant differences between the negative controls. Before the
individual experiments for IOP and T3 were pooled, the negative
and solvent controls were compared with a t test. If no statisti-
cally significant differences were found, these groups were
pooled, resulting in a single control per substance. Data
distribution was checked using the D'Agostino‐Pearson test.
Potential statistical outliers were identified and removed using
the ROUT method (robust regression and outlier removal; Mo-
tulsky & Brown, 2006) with Q= 1%. When comparing control and
exposure groups, a one‐way analysis of variance (ANOVA) fol-
lowed by Dunnett's multiple comparisons test was used. If a data
set contained data which did not follow a Gaussian distribution, a
Kruskal‐Wallis test followed by Dunn's multiple comparisons test
was used instead.

During the analysis of the thyroid follicles, data for the flu-
orescence of the thyroid follicle analysis were found to follow a
log‐normal distribution and were, therefore, log‐transformed
(Base 2) before further analyses were performed. Statistical
outliers were identified, followed by a normalization against
the respective control group for each substance, resulting in
relative fluorescence values. One‐way ANOVA followed by
Dunnett's multiple comparisons test or a Kruskal‐Wallis test
followed by Dunn's multiple comparisons test was used de-
pending on the normality of data distribution.

Data from behavior analyses were analyzed using Kruskal‐
Wallis tests followed by Dunn's multiple comparisons for each
of the three light periods (LON1, LOFF, LON2).

To avoid giving biased weight to one variable compared to
another one, data summarized in Table 2 were used as “+1” for
an increase of one variable compared to its respective control,
“–1” for a decrease, and “−” otherwise. Then Euclidean dis-
tances and tree topology were obtained using the joining
clustering method with complete linkage (Statistica Ver. 13,
2015; Tibco, Palo Alto, CA).

For all experiments, results were deemed statistically
significant for (adjusted) p< 0.05.

RESULTS
Molecular changes in genes associated with eye
and thyroid functions in zebrafish embryos

Expression patterns of genes associated with eye and
thyroid functions were altered after treatment with all THSDCs
in wild‐type zebrafish embryos. Particularly strong (and stat-
istically significant) effects were observed following exposure to
PTU and T3 (Figure 2).

Exposure to 200mg/L PTU lowered the relative expression
of eye‐related genes after 5 d of exposure. Most prominently,
PTU exposure reduced phosphodiesterase (pde6h) and retinal
pigment epithelium (rpe65a) gene expression levels to ~25%
(Figure 2). Expression of thyroid receptors alpha and beta (trα,
trβ) and deiodinase type 3 (dio3) was significantly reduced,
while expression of dio2 increased on exposure to PTU.

Embryos treated with T3 showed a trend for up‐regulation
of nearly all eye‐ and thyroid‐related gene transcripts. Statisti-
cally significant changes were observed for the thyroid‐related
genes dio2 and thyroid‐stimulating hormone (tsh) and the eye‐
related gene pde6a.

In contrast, exposure of zebrafish embryos to 1.5mg/L PCL
or 1.5mg/L IOP for 5 days did not produce any statistically
significant changes in the expression of thyroid‐ or eye‐related
genes. However, a slight trend of overexpression was detect-
able for the dio2 (p = 0.2) and dio3 (p = 0.3) genes following
PCL exposure.

Thyroid follicle analysis
Following exposure to PTU, analysis of fluorescent images

of the thyroid follicles in 5‐dpf zebrafish embryos (Tg(tg:
MA‐mCherry)ulb1 line) revealed a consistent increase in both
their quantity and size, indicating substantial developmental
changes along the dorsoventral and anteroposterior axes
(Figure 3). This effect could be quantified as a relative change in
fluorescence, which demonstrated a statistically significant in-
crease across all tested PTU concentrations (Figure 4).

Exposure to increasing concentrations of PCL induced a
trend toward an increase in thyroid follicle fluorescence with a
statistically significant increase at the highest concentration of
1.5mg/L PCL. In contrast, IOP exposure produced only minor
changes except for a transient yet significant decrease at the
lowest exposure concentration (Figure 4).

The hormone T3 significantly decreased thyroid follicle
fluorescence at 6.5 μg/L, whereas the slight decrease observed
at 65 μg/L was statistically not significant.

Histopathological analysis of retinal layers
After 5‐day exposure of (Tg(tg:MA‐mCherry)ulb1 line) ze-

brafish embryos, PTU caused multiple effects in the archi-
tecture of the retina (Figure 5; for summary, see Table 2). The
most prominent alterations were observed in the RPE: Fol-
lowing exposure to 200 and 250mg/L PTU, the thickness of the
RPE declined from 3.6 μm to 2.8 and 2.3 μm, respectively

6 Environmental Toxicology and Chemistry, 2024;00:1–18—Gölz et al.
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(Supporting Information, Figure S2). Likewise, a significant loss
of pigmentation was evident after exposure to ≥200mg/L PTU,
which was accompanied by a strong trend toward detachment
of the RPE at 250mg/L. In contrast, histopathological analysis
did not reveal any significant decrease in the thickness of either
the PRL or the IPL.

Exposure to ≥0.1mg/L PCL induced significant effects in all
of the retinal layers investigated (for summary, see Table 2):

The thickness of the RPE was reduced in embryos exposed to
concentrations from 0.1 to 1.5mg/L PCL, whereas the thickness
of the PRL and the IPL was increased at 1.5 mg/L and 1.0 as
well as 1.5mg/L PCL, respectively (Supporting Information,
Figure S3). No change was seen for pigmentation.

Exposure to IOP at concentrations of 0.5, 1.0, 1.5, and
2.0mg/L had an impact on various retinal layers (Table 2; Sup-
porting Information, Figure S4): The height of both the RPE and
the IPL was significantly reduced in embryos exposed to con-
centrations ranging from 0.5 to 2.0mg/L and 2mg/L IOP, re-
spectively. Because the thickness of the PRL showed particularly
high variance, the inner segment of this layer was measured to
calculate the ratio to the PRL: In fact, even though there was no
decrease in the overall PRL thickness, the relative size of the
inner segment of the photoreceptors decreased significantly
(Supporting Information, Figure S4). The semiquantitative se-
verity grading of the malformations revealed structural defects of
the IPL (Figure 6): After exposure to 1.5 and 2.0mg/L IOP, se-
vere malformations such as dents and gaps could be seen,
leading to a mean severity index of >1.5 (Figure 6). Again, no
effect on relative pigmentation was observed.

Finally, exposure to T3 induced a significant decrease of
RPE and PRL thickness in 5‐dpf zebrafish embryos (Supporting
Information, Figure S5). In contrast, no effects were seen in
the IPL. Exposure to T3 did not induce any effect on relative
pigmentation.

Behavioral analysis
At 100 and 200mg/L, PTU induced a significant decrease in

distance traveled by the embryos (cyp19a1b:gfp line) during
LON2 and LON1/LON2, respectively (Figure 7); the same trend
could be revealed for LOFF for these two concentrations and

TABLE 2: Summary of effects observed in the modified fish embryo toxicity tests (Organisation for Economic Co‐operation and Development Test
Guideline 236) for zebrafish (Danio rerio) embryos exposed to propylthiouracil, potassium perchlorate, iopanoic acid, and triiodothyronine at
concentrations below the 10% lethal concentration

qPCR of genes
related to

Thyroid follicles
Histological analysis of retinal layers Behavioral analysis

Thyroid Eye Integrated density RPE PRL IPL Distance Meander Thigmotaxis

PTU ↓ ↓ ↑ ↓ − − ↓ ↓ ↓↑
PCL − − ↑ ↓ ↑ ↑ − − ↓
IOP − − ↓ ↓ ↓ ↑ ↓ ↓ ↑
T3 ↑ ↑ ↓ ↓ ↓ − ↓ ↑ ↓

The test design followed the adverse outcome pathway concept from molecular events to adverse outcomes at higher levels and covered the following modes of action:
thyroperoxidase inhibition (PTU), competitive inhibition of iodine uptake (PCL), inhibition of deiodinases (IOP), and supplementation of thyroid hormone (T3). Arrows
indicate a significant increase or decrease of the analyzed endpoint in any exposure concentration relative to controls;–indicates no effect. Hierarchical clustering (right
end of table) by joining clustering method integrates effects and gathers PTU and PCL into one group and IOP and T3 into another one.
qPCR= quantitative real‐time polymerase chain reaction; RPE= retinal pigment epithelium; PRL= photoreceptor layer; IPL= inner plexiform layer; PTU=
propylthiouracil; PCL= potassium perchlorate; IOP= iopanoic acid; T3= triiodothyronine.

FIGURE 2: Heat map of log2‐transformed fold‐changes of gene ex-
pression in 5–days postfertilization zebrafish (Danio rerio) embryos
exposed to 200mg/L propylthiouracil, 2.0 mg/L perchlorate, 2.0mg/L
iopanoic acid (0.02% dimethyl sulfoxide [DMSO]) or 65 µg/L triiodo-
thyronine (0.01% DMSO). Data are given for n= 3 replicates of 24
embryos each (N= 72). Statistically significant differences from con-
trols: *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001 (unpaired t test). Thyroid‐
related genes: dio1–3 = deiodinase types 1–3; trα/trβ = thyroid re-
ceptors alpha/beta; tsh = thyroid‐stimulating hormone. Eye‐related
genes: opn1sw1/2 = opsin 1 short‐wave‐sensitive 1/2; opn1mw1 =
opsin 1 medium‐wave‐sensitive 1; opn1lw2 = opsin 1 long‐wave‐
sensitive 2; rho = rhodopsin; arr3a = arrestin 3a; rpe65a = retinal
pigment epithelium‐specific 65‐kDa; pde6a/6h = protein phospho-
diesterase 6a/6h; grk1b = G protein–coupled receptor kinase 1b.
PTU= propylthiouracil; PCL= perchlorate; IOP= iopanoic acid; T3=
triiodothyronine.

Zebrafish embryo‐based test system for endocrine disruption—Environmental Toxicology and Chemistry, 2024;00:1–18 7
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for 50mg/L during LON periods. Path sinuosity was affected
in a light‐ and concentration‐dependent manner: 200mg/L
PTU did not affect path meandering during LON, although it
induced a strong increase (+150%) in meandering during
LOFF (p= 0.086). In contrast, 50mg/L (p= 0.060–0.090) and
100mg/L PTU (p≤ 0.001) led to a decrease in path sinuosity
during both LON periods (Figure 7). Thigmotaxis showed a
significant increase after exposure to 100 (LON) and 200 (LON,
LOFF) mg/L PTU, whereas 50mg/L led to a significant decrease
during LOFF (Supporting Information, Figure S6).

Effects following exposure to 1 and 1.5mg/L PCL were re-
stricted to an increase in thigmotaxis during LOFF (Supporting
Information, Figure S6).

Exposure to IOP led to a pronounced decrease in distance
traveled during LON1 (1 and 1.5mg/L), LOFF (0.5 and 1.5mg/L),
and LON2 (1 and 1.5mg/L; Figure 7), which was accompanied
by a significant decrease in path sinuosity at 1 and 1.5mg/L IOP.
Thigmotactic behavior was significantly reduced following ex-
posure to 0.5mg/L (LON1, LOFF) and 1mg/L (LOFF; Supporting
Information, Figure S6).

Exposure of zebrafish embryos to 65 µg/L T3 produced a
significant decrease in distance traveled and an increase in
path sinuosity during LOFF (Figure 7), associated with an in-
crease in thigmotactic behavior restricted to light periods
(significant in LON1; Supporting Information, Figure S6). An
increase in path sinuosity was also observed after exposure to

FIGURE 3: Head region of 5–days postfertilization transgenic (Tg(tg:MA‐mCherry)ulb1) control zebrafish (Danio rerio) embryos (A, B) as well as
embryos exposed to 100mg/L (C, D) or 200mg/L propylthiouracil (PTU; E, F). Left column: Overlays of brightfield and tetramethylrhodamine‐
isothiocyanate (TRITC) channels identifying the position of thyroid follicles in the embryo head region. Right column: Red color representation of the
gray‐scale TRITC channel. Both size and intensity of the fluorescence signal clearly increased following PTU treatment, if compared to negative
controls.

8 Environmental Toxicology and Chemistry, 2024;00:1–18—Gölz et al.
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6.5 µg/L T3 during both LON and LOFF periods (Figure 7), and
a decrease in thigmotaxis was evident after exposure to
0.65 µg/L T3 during LOFF (Supporting Information, Figure S6).

DISCUSSION
The present study clearly documents the suitability of

zebrafish embryos for the assessment of various TH
system–relevant endpoints in a regulatory context by using a
modified FET protocol according to OECD test guideline 236.
For all of the four THSDCs selected for different modes of ac-
tion, effects relevant in an AOP context could be recorded from
the molecular, over the morphological, to the potentially
population‐relevant behavioral level (for summary, see Table 2).
In fact, all endpoints were significantly affected by at least one
of the THSDC treatments. The study thus indicates that the
approach to implement novel thyroid‐related endpoints into a
FET‐based exposure scenario, which is compatible with the 3Rs
approach, might be an interesting component of a future
OECD testing framework for THSD assessment in fish. Based
on an extended data set on effects for additional THSDCs in a
fingerprint‐like fashion, hierarchical clustering might help to
group THSDCs according to their modes of action by com-
paring with reference molecules. In the present study, hier-
archical clustering resulted in grouping of PTU and PCL into

one group and IOP and T3 in another one, meaning that they
show similar effects. In a regulatory context, this could be
useful to propose modes of action for unknown compounds.

Expression of eye‐ and thyroid‐related genes
Based on existing knowledge about the impact of PTU,

PCL, IOP, and T3 on the TH system (Jaka et al., 2023; Opitz
et al., 2009; Schmidt et al., 2017) and eye development
(Baumann et al., 2016, 2019; Bhumika et al., 2015; Gölz
et al., 2022; Havis et al., 2006), changes in the expression of
TH system–related genes as well as eye‐related genes were
selected as a potential source of molecular endpoints, which
might support the mechanistic interpretation of effects by the
different THSDCs. The results demonstrate that PTU lowered
the expression of at least three eye‐related genes after 5 days
of exposure and thus confirm conclusions from a previous
complete transcriptomic analysis, which described a >90%
downregulation of phototransduction‐ and eye‐related path-
ways (Baumann et al., 2019). The downregulation of pde6h
seems especially relevant because pde6h and pde6a are
known regulators of visual signal transduction (Cote, 2004).
The decreased expression of rpe65a, which is important for
cone and rod chromophore synthesis (Kiser, 2022), further
corresponds to the morphological observation of a reduced

FIGURE 4: Relative fluorescence (log‐fold‐change) of thyroid follicle fluorescence in 5–days postfertilization transgenic (Tg(tg:MA‐mCherry)ulb1)
zebrafish (Danio rerio) embryos following exposure to propylthiouracil (A), perchlorate (B), iopanoic acid (C), or triiodothyronine (D) compared to
control. Data are given for n= 3 replicates of 15 embryos each. Whiskers indicate minimum and maximum values. Statistically significant differences
from controls (0): **p≤ 0.01; ***p≤ 0.001; ****p≤ 0.0001 (one‐way analysis of variance, Dunn's multiple comparisons test). T3= triiodothyronine.

Zebrafish embryo‐based test system for endocrine disruption—Environmental Toxicology and Chemistry, 2024;00:1–18 9
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RPE cell height. The findings thus support the hypothesis
that—through TPO inhibition—TH system disruption leads to
a downregulation of various eye‐related pathways, as postu-
lated in the recently published AOP (Gölz et al., 2022).

In contrast to PTU, PCL and IOP failed to induce significant
changes in the expression of thyroid‐ or eye‐related genes in
zebrafish embryos. Only a minor trend toward an upregulation
of dio2 and dio3 after PCL exposure could be observed. This
lack of response could be due to the low number of samples
(n= 3), resulting in low statistical power of the test. In fact, this
observation would be consistent with the assumption that PCL
competitively inhibits iodide uptake by the sodium/iodide
symporter in the thyroid follicles, thereby lowering the syn-
thesis of THs (Schmidt et al., 2012). This could lead to a com-
pensatory upregulation of DIO enzyme expression. Compared
to PTU, IOP is a relatively weak TPO inhibitor, but it still inhibits
all three dio genes (Paul et al., 2014; Renko et al., 2012;
Stinckens et al., 2016). The most important consequence is
thought to be suppression of the conversion of T4 to T3 by
dio1 and dio2, which is consistent with the observation that IOP
exposure lowered T3 levels but did not affect T4 levels in
juvenile (32‐day) zebrafish exposed to 1mg/L IOP (Stinckens
et al., 2020). As holds true for PCL, there remains a funda-
mental knowledge gap on IOP‐related effects on eye‐related
genes.

Embryos treated with T3 showed a clear trend towards up-
regulation of almost all eye‐ and thyroid‐related gene tran-
scripts, which was statistically significant for the thyroid‐related
genes dio2 and tsh and the eye‐related gene pde6a. This

upregulation was likely a compensatory reaction to lowered T4
levels caused by T3 supplementation, as shown by Wang et al.
(2013). Given the high standard deviation of expression data,
however, some uncertainties remain; and more research is
needed to confirm the upregulation of thyroid‐ and eye‐related
genes. At least for pde6a, the present study confirms an impact
of T3 exposure on eye‐related genes.

Yet, although the genes selected did show some changes in
expression after treatment with the different THSDCs, we do not
recommend the inclusion of qPCR into a modified test guideline
236 protocol because a very high number of embryos (i.e., ani-
mals) is needed to arrive at a satisfactory statistical robustness.
Whereas thyroid follicles, eye histopathology, and behavior can
be assessed in the same individuals, qPCR analyses require ad-
ditional animals, which is not compatible with the 3Rs principle.
In fact, the set of genes selected represents only a snapshot of
the complex TH and eye systems, and we cannot exclude that
effects would be stronger for other genes. Given, however, that
at least one mechanistic (molecular) endpoint should be included
into the modified test guideline 236 protocol to confirm specif-
icity for the TH system, the measurement of TH levels appears
more promising, even though this also requires additional ani-
mals (Pannetier, Poulsen, et al., 2023). Previous results indicate
that liquid chromatography coupled with tandem mass spec-
trometry would be the preferred method to precisely analyze low
concentrations of THs in zebrafish embryos (Gölz et al., 2023;
Pannetier, Poulsen, et al., 2023).

Thyroid follicle analysis in transgenic zebrafish
embryos

There are different methods for the morphometric analysis
of thyroid follicles (Grim et al., 2009; Mohorea et al., 2023;
Opitz et al., 2006, 2009). Given that direct measurement on
histological sections is a very time‐consuming procedure, at-
tempts have been made to quantitatively analyze the fluo-
rescence intensity in whole mounts of transgenic zebrafish
expressing thyroid‐related signals (Kraft et al., 2023; Opitz
et al., 2012; Pannetier, Gölz, et al., 2023). For the present
study, different methods for analysis of the transgenic fluo-
rescence signal were compared, and an optimized macro
(Supporting Information, Macro S2) was developed on the
basis of the relative fluorescence values, which, if compared to
our previous method (Kraft et al., 2023), may be less sensitive
but is superior in terms of standardization and reproducibility.
Yet, for optimization of statistical robustness of future experi-
ments, a slight increase of the number of embryos is recom-
mended to facilitate the identification of even more subtle
effects on thyroid follicle morphology and activity.

In at least one exposure concentration, significant changes of
thyroid size and/or activity could be documented for all com-
pounds tested, confirming an impact on the TH system and
corroborating the conclusion by Grim et al. (2009) that direct
morphological analysis of the thyroid follicular epithelium is
probably the most reasonable and straightforward approach for
the detection of specific THSDC effects. A considerable number

FIGURE 5: Effects of 200mg/L propylthiouracil treatment on eye de-
velopment in a 5–days postfertilization zebrafish (Danio rerio) embryo.
Histopathological sections of 2.5 μm thickness stained with hematox-
ylin and eosin. Loss of pigmentation of the retinal pigment epithelium
(RPE) in combination with a reduction of the thickness of the RPE can
be seen in the right histological section as a typical effect of pro-
pylthiouracil on the retinal structure.

10 Environmental Toxicology and Chemistry, 2024;00:1–18—Gölz et al.
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of studies have documented histopathology of thyroid follicles to
be a sensitive method to reveal effects not only in different de-
velopmental stages of THSDC‐exposed fish (Gölz et al., 2023;
Pinto et al., 2013; Schmidt & Braunbeck, 2011; Sharma et al.,
2016; Sharma & Patiño, 2013; Van Der Ven et al., 2006) but also
in amphibians (Dang, 2019). The use of immunostaining or
transgenic lines (Jaka et al., 2023; Kraft et al., 2023; Raldúa &
Babin, 2009; Rehberger et al., 2018) also proved a highly effec-
tive method to profit from the advantages of such morphological
analyses.

Propylthiouracil inhibits the enzyme TPO and, consequently,
the iodination of thyroglobulin, resulting in impaired synthesis of
THs (Elsalini & Rohr, 2003). Thus, thyroid follicles proliferate to
compensate for lowered TH levels (present study; Gölz
et al., 2023; Jaka et al., 2023). Schmidt and Braunbeck (2011)
made similar findings after histological analyses of thyroid fol-
licles in juvenile zebrafish exposed to PTU. Similar effects could
be observed after PCL exposure, which significantly increased
size and fluorescent intensity of thyroid follicles (Jaka et al., 2023),
reflecting the expected compensatory reaction to sodium/iodide
symporter (NIS) inhibition.

Iopanoic acid interferes with deiodinases, which convert
inactive T4 to active T3 by deiodination in peripheral tissues
(primarily the liver). There is only one study on the effects of
IOP on zebrafish: Exposure of up to 32‐h‐old zebrafish embryos
to IOP in a fish early life–stage test (OECD test guideline 210)
resulted in decreased whole‐body T3, which is in line with
observations in the present study that IOP induces a decrease
of size and fluorescence intensity of the thyroid follicles. Like-
wise, fathead minnow (Pimephales promelas) embryos exposed
to IOP from Day 6 to Day 21 showed a decrease in whole‐body
T3 concentrations and an increase in whole‐body T4 concen-
trations (Cavallin et al., 2017).

Exposure to T3 resulted in the expected decrease in thyroid
follicle size and fluorescence intensity due to decreased TH
synthesis following excess exogenous TH administration
(feedback mechanism; Trubiroha et al., 2018). Thyroid atrophy
as the morphological counterpart of decreased TH synthesis
has also been reported in Xenopus tadpoles exposed to T4 in
the amphibian metamorphosis assay (AMA; Coady et al., 2010).

The present study thus underlines the suitability of
the transgenic zebrafish line Tg(tg:MA‐mCherry)ulb1 as a

FIGURE 6: Malformations of the inner plexiform layer after exposure of 5–days postfertilization zebrafish (Danio rerio) embryos to iopanoic acid
(IOP). A severity grading shows a significant increase in the number of malformations (gaps and dents) at concentrations of 1.5 and 2.0mg/L IOP.
Histopathological sections of 2.5 μm thickness stained with hematoxylin and eosin. Statistically significant deviation from negative controls:
*p< 0.05 (one‐way analysis of variance, Dunn's multiple comparisons test). IPL= inner plexiform layer; NC= negative control.

Zebrafish embryo‐based test system for endocrine disruption—Environmental Toxicology and Chemistry, 2024;00:1–18 11

wileyonlinelibrary.com/ETC © 2024 The Authors

 15528618, 0, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/etc.5878 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [28/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 7: Modification of distance traveled (left) and meandering (right) in 5–days postfertilization zebrafish (Danio rerio) embryos after exposure
to propylthiouracil, perchlorate, iopanoic acid, and triiodothyronine with lights on and lights off. Statistically significant differences from controls:
#p≤ 0.1; *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001 (Kruskal‐Wallis test, Dunn's multiple comparisons test). LON= lights on; LOFF= lights off.
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promising tool for the screening of THSDCs with various modes
of action (Jaka et al., 2023; Pannetier, Gölz, et al., 2023). Al-
terations in thyroid follicular morphology can, therefore, be
recommended as an endpoint for endocrine activity in pro-
spective AOPs for TH system disruption in fish based on OECD
test guideline 236. Again, measurement of TH levels is rec-
ommended as an important mechanistic complement to mor-
phological endpoints to strengthen the key event relationships
in the AOP‐based approach.

Eye histopathology in zebrafish embryos
Histopathological analyses range among the most reliable,

sensitive, and comprehensive endpoints for the qualitative and
quantitative determination of morphological changes and play
an important role in bridging subcellular (e.g., molecular) and
apical (i.e., population‐relevant) endpoints (Wolf et al., 2015). In
fact, all THSDCs tested produced changes in the organization of
the retina of zebrafish embryos, including cell size, shape, height
and structure, organization, and height of photoreceptors and
pigmentation (Allison et al., 2006; Baumann et al., 2016;
Gamborino et al., 2001; Houbrechts et al., 2016; Kraft et al.,
2023; Pannetier, Poulsen, et al., 2023; Vancamp et al., 2019;
Viets et al., 2016). The present study confirmed RPE cell height
to be the most sensitive and easy‐to‐assess endpoint for the
demonstration of disruption of eye development in zebrafish
embryos; however, given the continuous gradient from control
to pathological conditions, quantification of the structural
changes in retinal layers appears indispensable.

Propylthiouracil‐induced changes in RPE height and pig-
mentation intensity as well as the structure of IPL, PRL, and RPE
basically confirm observations in our previous studies (Baumann
et al., 2016; Pannetier, Poulsen, et al., 2023). Similar changes are
characteristic of IOP and PCL exposure, although the present
study is the first to report on PCL‐specific alterations of the RPE.
Despite different modes of action, both IOP and PCL thus have
adverse effects on retinal development, possibly via restricted
availability of T3. In addition to quantitative changes, IOP ex-
posure produced conspicuous, specific pathological alterations
of the IPL in the form of dents and gaps, which may suggest
deficits in signal transmission of visual signals.

In contrast, although external administration of T3 only af-
fected the structure of the PRL, not the development of IPL or
RPE, the observations unequivocally demonstrate that T3 ex-
posure has an impact on phototransduction pathways and eye
development. In fact, previous studies described comparable
effects of T3 and concluded that THs are regulators of cone
development in the retina (Fischer et al., 2012; Gamborino
et al., 2001).

In summary, the findings on eye development and structure
demonstrate that the retinal layers, namely RPE, PRL, and IPL,
provide an important source of valuable and sensitive end-
points for the detection of adverse THSDC‐induced effects
when assessed collectively and in combination with mecha-
nistic thyroid‐sensitive endpoints. The relationship of these
endpoints has recently been described in an AOP for TPO

inhibition (Gölz et al., 2023; https://aopwiki.org/aops/363).
Based on molecular and morphological observations, exposure
to all THSDCs tested clearly affected crucial components of the
visual system. Therefore, PTU, PCL, IOP, and T3 can be as-
sumed to have significant effects on vision in zebrafish, which
might well interfere with the overall performance of the fish
under environmental conditions. Eye histopathology thus most
likely represents a population‐relevant endpoint that can easily
be implemented into test protocols with nonprotected stages
of zebrafish, for example, in OECD test guideline 236.

Locomotor behavior
Monitoring of behavior has the advantage of improving the

functional relevance of risk assessment with endpoints known to
be relevant to individuals and populations (Clotfelter et al.,
2004; Saaristo et al., 2018). Besides, the automatic, noninvasive
tracking of organisms using designed high‐throughput platforms
combined with the use of early life stages leads to the gen-
eration of robust and reliable data sets (Ågerstrand et al., 2020).

Effects of several THSDCs on behavioral endpoints have
been identified previously (reviewed in Spaan et al., 2019), al-
though specific mechanisms remain unknown. Mechanistic
studies established a link between constitutive TH inhibition
(e.g., knockout of mct8 transporters, knockout of dio2) and
decreased swimming activity in zebrafish embryos (De Vrieze
et al., 2014; Houbrechts et al., 2016; Walter et al., 2019; Zada
et al., 2014). This effect could be rescued by the addition of a
T4 analogue, thus proving the direct influence of TH on activity
reduction (De Vrieze et al., 2014; Walter et al., 2019).

Whereas exposure to chemicals inducing a decrease in TH
levels seems to reduce swimming activity in a similar manner
(Chae et al., 2023; Walter et al., 2019), stimulation of the TH
system by THSDCs seems to produce a more complex picture
(Walter et al., 2019; Zhu et al., 2021). In particular, results from
exposures made in the present study show that simulation of
hyperthyroidism by T3 and induction of TH depletion by PTU,
PCL, or IOP overall lead to a decrease in swimming activity,
thereby making it impossible to distinguish behavioral effects
between hypo‐ and hyperthyroidism contexts. Notably, the
present study documents exogenous exposure to T3 leading to
decreased swimming activity, which is in line with previous
results obtained in 5‐dpf zebrafish (Walter et al., 2019), while
studies with earlier stages reported hyperactive embryos.
However, minor differences in terms of sensitivity between
studies may directly reflect differences in sensitivity of fish lines
and minor modifications of the experimental design (Fraser
et al., 2017).

As discussed above, TH signaling is highly important for the
development of the visual system and may directly translate into
altered performance in the photomotor response assay. None-
theless, THs are also involved in numerous neurodevelopmental
and neuromuscular processes and can thus result in behavioral
changes. For example, deficiency in mobility and decreased
psychomotor reaction to sensory stimuli are linked to muscle
hypotonia and are hallmarks of the Allan‐Herndon‐Dudley

Zebrafish embryo‐based test system for endocrine disruption—Environmental Toxicology and Chemistry, 2024;00:1–18 13

wileyonlinelibrary.com/ETC © 2024 The Authors

 15528618, 0, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/etc.5878 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [28/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://aopwiki.org/aops/363


syndrome associated with a dysregulation of the TH system (De
Vrieze et al., 2014; Zada et al., 2014). Moreover, swim bladder
inflation is known to be regulated by THs (Van Dingenen
et al., 2023). The present study revealed a notable lack of swim
bladder inflation (≥90%) on exposure to the highest concen-
tration of T3, which is logically linked to a strong decrease in
swimming activity. However, this observation alone cannot ex-
plain the effects observed for other tested THSDCs, which did
not have such an impact.

Besides such potential confounding factors, the present
study was successful in demonstrating that behavioral re-
sponses, that is, the combination of effects on distance trav-
eled, thigmotactic behavior, and path sinuosity, were highly
specific for the test compound and could not generally be
linked to TH system activation or inhibition. Behavior is an in-
tegrative indicator that increases the sensitivity of ecotoxico-
logical studies but can, however, not easily be linked to specific
mechanisms without assessment of additional specific end-
points such as eye malformation or lack of swim bladder in-
flation. Taken together, it is likely that the behavioral changes
observed are due to various TH‐dependent mechanisms and/or
other TH‐independent pathways that may concomitantly be
affected (Fraser et al., 2017; Spaan et al., 2019).

CONCLUSIONS
The present study confirms evidence that zebrafish embryos

are sensitive to THSDC treatment and represent a promising
model for the assessment of TH system–related effects at
different levels of biological organization. Previous work had
already indicated that zebrafish embryos are useful for assess-
ment of THSDC‐induced changes at the transcription (Baumann
et al., 2019) and the hormonal (Pannetier, Poulsen, et al., 2023)
levels. At the morphological level, eye development, an eco-
logically highly important developmental process regulated by
THs, was shown to be disrupted by different THSDCs (Baumann
et al., 2019; Kraft et al., 2023; Pannetier, Poulsen, et al., 2023). A
link to behavioral defects has also been highlighted (Baumann
et al., 2016; Spaan et al., 2019; Walter et al., 2019) but not for
different modes of THSDCs. The present study is the first to
connect these endpoints in an AOP‐based approach that di-
rectly links the different key events together in one testing
protocol. The differences in responsiveness to different modes
of action of TH system disruption underline the need for such a
comprehensive approach in which single endpoints are not in-
terpreted in an isolated manner and cannot be weighed as more
or less important. The causal link between endocrine activity and
adversity can only be made in an AOP‐based approach.

Moreover, the present study was able to close some re-
search gaps: While transcriptional analyses still suffer from
statistical robustness (number of animals), the present ap-
proach provides a testing protocol that successfully covers
both mechanistic and population‐relevant endpoints for the
assessment of TH system disruption in fish embryos, which is
particularly relevant because, by definition, for the assessment
of endocrine disruption the causal link between endocrine

activity and adversity must be demonstrated (ECHA et al.,
2018). In a regulatory context, this is of particular importance
because the use of zebrafish embryos has, so far, not been
established for the detection of endocrine adversity.

The test protocol of the present study not only covers dif-
ferent population‐relevant endpoints but also contributes to the
reduction and refinement of animal experimentation for testing
of endocrine disruption because zebrafish embryos are not re-
garded as protected. The current testing framework for THSDC
assessment in nontarget organisms only consists of Level 3 tests
with amphibians (Xenopus eleutheroembryonic thyroid assay,
AMA) for endocrine activity and one Level 4 test with amphibians
(larval amphibian growth and development assay) for endocrine
adversity (ECHA & EFSA, 2018). So far, assessment of endocrine
adversity based on fish tests is generally not established in any
Level 4 test. Within the EU Horizon 2020 project ERGO (Holbech
et al., 2020), TH system disruption endpoints are being im-
plemented into existing OECD test guidelines; based on the
data provided by the present study, the FET (OECD test
guideline 236) has a high potential to be used in future EDC
testing as a test procedure compatible with the 3Rs principle.
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able on the Wiley Online Library at https://doi.org/10.1002/
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