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Assessment of sustainable 
baits for passive fishing gears 
through automatic fish behavior 
recognition
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Dorothée Kopp 1 & Robin Faillettaz 1*

Low-impact fishing gear, such as fish pots, could help reduce human’s impact on coastal marine 
ecosystems in fisheries but catch rates remain low and the harvest of resources used for baiting 
increases their environmental cost. Using black seabreams (Spondyliosoma cantharus) as target 
species in the Bay of Biscay, we developed and assessed the efficiency of biodegradable biopolymer-
based baits (hereafter bio-baits) made of cockles (Cerastoderma edule) and different biopolymer 
concentrations. Through a suite of deep and machine learning models, we automatized both 
the tracking and behavior classification of seabreams based on quantitative metrics describing 
fish motion. The models were used to predict the interest behavior of seabream towards the bait 
over 127 h of video. All behavior predictions categorized as interested to the bait were validated, 
highlighting that bio-baits have a much weaker attractive power than natural bait yet with higher 
activity after 4 h once natural baits have been consumed. We also show that even with imperfect 
tracking models, fine behavioral information can be robustly extracted from video footage through 
classical machine learning methods, dramatically lifting the constraints related to monitoring fish 
behavior. This work therefore offers new perspectives both for the improvement of bio-baits and 
automatic fish behavior recognition.

In our currently changing world, pot fisheries should not be considered “a return to the past, or to a lower tech-
nological level but rather a step towards a more sustainable future”1. Fish pots consist of two integral components: 
a bait to attract the target species and a containment unit. We here focus on the bait component by elaborating 
novel biodegradable, biopolymer-based baits (hereafter bio-baits) and developing a methodology to evaluate 
fish interest towards a bait in situ. Novel bait types can act as alternative to be more selective of the catch, to 
reduce cost, and to minimize its impact in the  environment2. The landings of species harvested with pots, traps 
and crest, represent a small fraction of the total  landings3 but these gears’ impacts are significantly lower than of 
active gears, both on the  ecosystems4 and on the amount of greenhouse gas emissions throughout the harvest’s 
life  cycle5. Pot fisheries therefore gain more attention as alternatives to towed fishing  gears4 but innovative fish 
pots remain at their early stages and still require improvement to expand their usage in coastal fisheries.

Pots are highly diverse and different parts of a fish pot can be modified depending on the target species 
and local constraints (e.g., policy regulations, fishing practice, stock status)1,6. Floating pots with modified bait 
type help retain cod, Gadus morhua, while reducing bycatch of red king crab, Paralithodes camtschaticus7 while 
bottom-set pots target crustaceans while reducing bycatch of pelagic  fish8. Pots have a lower operating cost and 
environmental cost than towed  gears1,5,9 but designing efficient devices to target finfish is particularly challeng-
ing due to lower catch rates related to the quick consumption of baits compared to pots targeting crustaceans 
or  cephalopods6,10.

Various species are currently harvested to obtain baits in order to attract target species. This harvest has been 
estimated to generate up to 31% of the greenhouse gas emissions generated throughout the life cycle of these 
passive gears  fisheries11,12. In some extreme cases, the amount of fish harvest for baiting can even exceed the 
amount of target fish  landed13. Thus, while passive gears are considered to be generally more sustainable than 
active gears, manufacturing efficient, eco-friendly bio-baits would enable to take out the harvest of edible spe-
cies for baiting, further improving their sustainability. Long-lasting baits is among the most potent component 
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for improving the currently limiting catch  efficiency6. Biodegradable baits are still under development and have 
been previously elaborated with proteinaceous medium and water-soluble agents such as polyvinyl  alcohol14, or 
by mixing natural and synthetic agents for longlines, showing encouraging results but only during laboratory 
 trials2,15. Bio-baits based on biopolymers would enable to incorporate any amino-acid within the matrices, thus 
finding which pairs of matrices and amino-acid trigger attraction in target species would enable to obtain highly-
selective baits. Their efficiency at attracting fish in situ has never been tested, while a target species behavior 
around a gear—or bait—has to be accounted for in each stage of design of a highly selective device with limited 
impact on non-target  species16–18.

Even in controlled, laboratory set-ups, fish behavior can be difficult to  predict19. This is even more striking in 
fishing gears environment where most information has been historically inferred from catch comparisons rather 
than from target species’ fine-scale behavior towards the  device19, although recent studies now try to explicitly 
address species behavior (e.g. Ref.20). Behaviors are generally observed at a fine scale (< 10 m or < 10 min), 
focusing on how fish react to stimuli (attractive or repulsive) over a few seconds (e.g. Refs.21,22) to minutes of 
encounter (e.g. Refs.23,24) by scrutinizing swift changes in swimming direction, speed and even mouth or fin 
 movements6. Direct observations of behaviors in fishing gears are thus becoming mandatory over long periods 
of time but at high spatiotemporal  resolution25. These observations generate massive amount of data from which 
short behavioral sequences have to be extracted, which often dramatically reduces the amount of data actually 
analyzed for behavioral  studies26, or with considerable human effort for manual processing or through citizen 
science  projects27.

Computer vision coupled with deep learning models is now used for automatic object detection and track-
ing from underwater  optics28,29, with a growing interest for automatizing behavioral data through objective 
quantification and synthesizing huge amounts of information in aquaculture to detect abnormal behavior and 
improve  welfare30. Image quality and environmental factors (e.g., turbidity, luminosity, crowdedness) dictate 
the accuracy of such  models31,32 but, in most cases, metrics can be derived from continuous tracking to provide 
insights into various aspects of fish behavior.

We here pursue a double objective: (1) develop long-lasting, biopolymer-based biodegradable baits to target 
black seabream and (2) assess the bio-bait’s efficiency in situ through a framework of artificial intelligence and 
machine-learning methods to automatically extract species tracks over a hundred hours of videos and process 
them through trajectory data-mining and movement ecology techniques developed in remote sensing and telem-
etry for planar data  analysis33–36. This second aspect also aims at demonstrating how the automatization of fish 
behavior recognition will help in evaluating other types of baits than what we present here and species-specific 
fish-gear interactions.

Methods
Black seabream case study
In the Bay of Biscay, small-scale fisheries comprised 21% of the national production and black seabream 
accounted for 520 tons of landings in the area (2022; FOA Subarea VIII, Division A–D). Black seabream abun-
dance peaks in the coastal area during the summer months, when catch of other species are relatively low. Cur-
rently, most landing originate from trawling and this seasonal fishery therefore presents an opportunity for the 
development of pots specifically designed to target this  species18. Although there are past studies on the  diet37, 
feeding  locations38, and reproduction of black  seabreams39 to improve fisheries management, little is known 
on their interactions with passive gears. Seabream pot development trials showed that a pot with a rectangular 
shaped entrance, transparent net, and floated circular form is the most optimal configuration to target black 
 seabream18. The bait was chosen among 10 tested baits identified from the literature and interviews of recreational 
and professional fishers. Cockles, Cerastoderma edule, triggered the longest residence time of fish around the 
bait (about 2 h; 40). This bait was then used for the development of bio-baits.

Developing bio-bait with a longer temporal span
Bio‑baits composition and manufacturing
Three types of long-lasting bio-baits were developed and tested in situ: C17, C600, and Lactips. These bio-baits 
were produced from a mixture of water-soluble polymers biodegradable in a marine environment and powdered 
cockle (Cerastoderma edule) flesh (Supplementary Table S1). These materials were selected for their solubiliza-
tion and biodegradable properties in cold water. Preliminary tests have shown different solubilization kinetics 
in both freshwater and  seawater40. Lactips is a bio-sourced, natural polymer derived from animal proteins, 
soluble even in cold water and biodegradable in various environments, including the marine environment. The 
bio-baits C17 and C600 are synthetic polymers based on polyvinyl alcohol (PVOH). Preliminary biodegradation 
tests conducted in this study on these polymers have revealed that the C17 polymer biodegrades 10% slower 
than the C600 in a sand-seawater environment, after a 1-year incubation. The three types of biopolymers were 
chosen from off-the-shelf biodegradable plastic materials tested for their water-soluble properties. They showed 
a progressive release of particles suitable for in situ testing.

These polymers were combined with an attractant made of cockle flesh, which was chosen because it is 
easily accessible and used by local fishers while part of the seabream  diet37,41. Cockles were dried in a vacuum 
oven, ground, and sieved to 300 µm. The cockle powder was then mixed with the water-soluble polymers in the 
molten state to facilitate the dispersion of the attractants in the plastic matrix, in an internal mixer  (Brabender® 
internal mixer; Supplementary Fig. S2a). The samples obtained were then granulated and thermo-compressed 
 (Labtech® LP-S-50 STD Press) to obtain 8 × 8 cm rectangular plates with a thickness of 3 mm (Supplementary 
Fig. S2b). The proportions of powder incorporated (30% cockle powder or dry weight of 100 g) were identical 
for the three bio-bait samples.
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Bio‑bait in situ attraction assessment
The study was conducted in the Bay of Quiberon (northern Bay of Biscay, France) over a 900  m2 rectangular 
experimental area (Fig. 1a) consisting of sand, mud, coarse sediments, and algae, with depths from 7 to 12 m 
depending on tides. In situ deployments took place between July 20th and 24th, 2020 when black seabream 
migrates to coastal areas during the summer. Each bio-bait was mounted in its own observation setup and 
deployed at the extremities of the study area, with placement times adjusted according to tidal conditions. The 
observation devices consisted of one GoPro® Hero (4 or 7 Black) camera mounted on a metallic frame weighted 
with ballasts (Fig. 1b), to maintain a fixed 2 m distance between the camera and the bait. The raw baits were 
attached to a nylon thread and tied to the metallic rod while the bio-bait plates were placed inside a mesh bag. 
Recordings were made with a 1920 × 1080 p resolution at a frame rate of 25 fps on a 128 Gb micro-SD. Each cam-
era was connected to a 15,600 mAh battery, inside a waterproof housing, to allow for continuous 9-h recordings 
(constrained by the micro-SD capacity). Four observation devices were immersed each day, with one control to 
validate the presence of fish in the study area using raw cockle flesh and three with different types of bio-baits. To 
enable comparison of the bio-bait attractiveness, the four devices were deployed simultaneously before midday, 
for video footage to be recorded in daylight (see Fig. 1c for an example). Four trials were carried out per bait, 
over four days, generating a total of 127 h of raw footage, used to analyze fish behavior around the bait (Fig. 1d).

Automatic fish behavior detection and quantification
Video processing
The dataset consists of 16 videos, lasting circa 9 h each. Only 15 videos are used for analysis due to a faulty camera 
on the control bait on day 1. Videos were subsampled at 5 fps (ffmpeg  library42), a tradeoff between processing 
cost while retaining enough frames to capture swift fish  movements43. All video processing (annotation, model 
training, testing, and validation) were performed with the image analytics platform  VIAME44. Fish and bait 
classes were manually annotated frame-by-frame with bounding boxes with the standard COCO format (Com-
mon Objects in Context; x1y1 , x2 , y2 ). The trained detector used a Cascade Faster R-CNN as the framework for 
object  detection45 coupled with Siamese  network46 as the neural network architecture for object tracking. These 
architectures have shown robust performances in tracking fishes from underwater images as they can address 
 occlusions36,47,48.

Groundtruth dataset for fish detector and tracker (DetTracker)
The groundtruth dataset used to train and test the DetTracker consisted of 54,425 annotations across 13,771 
frames, comprising six classes focused on fish-bait interactions (“bio-bait”, “unknown fish”, “Labridae”, “plant”, 
“raw bait” and “Spondyliosoma cantharus”; Supplementary Fig. S3). There are a total of 46,923 annotations of 
fish (all species combined) and 6142 annotations of bait (bio-bait and raw bait combined). Classes were unbal-
anced but sufficient for robust bait detection given their homogeneity throughout the videos. For model train-
ing, annotations were gathered from cockle bait videos collected in 2019 with the same devices and  protocol18, 
and which had already been partially annotated for seabream. This allowed us to train and evaluate a model on 
videos from a previous data collection and assess its performance at handling new data (the videos collected in 
the current study). For evaluating the DetTracker performance on the bio-bait videos from 2020, annotations 
were also gathered from random 300-frame sequences from the different bio-baits videos with various light and 
turbidity conditions to encompass most “fish events”, such as fish swimming in groups, individually, and behind 

Figure 1.  (a) Maps of the study site, generated in R v4.3.3 with sf v1.0.16. (b) Schematic of the underwater 
observation set-up, (c) Field of view of the camera with black seabreams swimming around from a pre-
processed video frame, (d) Behavioral metrics quantification from a fish trajectory relative to stimuli where 
B = Bait point, P = Proximity-to-bait zone, A = annotation area, d1 = distance per fish move, d2 = distance to 
bait, dx = change in x direction, dy = change in y direction, f = frequency in proximity area, R2n = squared net 
displacement, α = absolute angle, β = relative angle to stimuli, x1 y1 = top left pixel coordinate of A, x2 y2 = bottom 
right pixel coordinate of A.
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the bait, for a total of 40 min of video validated. The model training and predictions were run on a GPU GeForce 
RTX3070i with 24 Gb of RAM.

DetTracker evaluation
To evaluate the detection accuracy, Average Precision (AP) and mean Average Precision (mAP) metrics were 
 computed49. To evaluate tracking accuracy (i.e., ID-switch, cut tracks, etc.), the High-Order Tracking Accuracy 
metric (HOTA) was computed with  TrackEval50. These model evaluations were used to evaluate which aspects 
of the localization, detection, and tracking are best handled and account for these performances when assess-
ing model outputs. The trained model was then used to generate fish tracks in all 15 videos (i.e., over 2,624,000 
frames). The tracker attributes the highest classification probability of an object among all instances throughout 
its track (e.g., when a fish swam alone while well visible, the probability of being a fish tends to be higher than dur-
ing occlusions). Assuming that a single robust detection throughout a track is sufficient to attribute the predicted 
classification to the entire track, false positive fish tracks were removed by setting a 0.89 threshold on the maxi-
mum detection confidence, discarding most non-fish entities, such as floating plant debris. To ensure reliability, 
detections above 0.89 threshold underwent manual verification, confirming their identification as fish species.

Quantifying and classifying fish behavior (BeClassifier)
Fish behavior quantification and classification from annotated fish tracks (Supplementary Fig. S3) was achieved 
through a suite of quantitative metrics extraction and selection, clustering and Random Forest  Classifier51 (Sup-
plementary Fig. S4). To quantify and classify fish behavior, behavioral metrics were first calculated from the fish 
groundtruth to capture various aspects of fish movement and interaction with the bait, encompassing attributes 
such as proximity-to-bait, swimming, changes in direction, size, and orientation relative to the bait (Fig. 1d). 
A comprehensive pool of 104 behavioral metrics was considered (full list available in Supplementary Table S5) 
which was reduced through a step-wise process (Supplementary Fig. S4). Metrics that were highly correlated 
(Pearson’s r > 0.90) were compared to exclude redundant metrics since they tend to decrease the performance of 
Random Forest  classifiers51 that were used for behavior classification. This resulted in a selection of 72 metrics.

To determine the number of behavior partitions, Gap statistic, Elbow and Silhouette  method52 were applied 
on the 72 metrics, and identified that the optimal number of clusters to group the dataset is two (Supplementary 
Fig. S6). Two dichotomic fish behaviors were thus initially considered (Interested versus Uninterested, referred 
to as principal behavior) for the manual behavior annotation of the groundtruth dataset. A total of 301 fish were 
classified as either Interested or Uninterested and annotated separately by three trained annotators, who were 
then confronted to reach a consensus on all sequences.

Once the principal behavior dataset had been generated, the number of metrics required to classify them were 
further reduced to 12 metrics through a recursive elimination  approach53. The selected variables were chosen 
from Random Forest runs with the lowest Out-of-bag (OOB) error rate and with the smallest set of features to 
account for processing cost. This was achieved through 1000 Random Forest iterations (default hyperparameters) 
averaged among all iterations, then plotted against model accuracy.

The dataset of groundtruth fish principal behavior along with the 12 most relevant metrics were then used to 
train and test the behavior classifier (hereafter BeClassifier). Annotations were pooled from manually annotated 
fish tracks from 2019 and 2020 datasets used for the DetTracker training. For each dataset, a stratified 50–50% 
split was done to ensure a balanced representation of fish tracks from the two behavior classes. This involves 
separately applying the split ratio to each behavior class within every dataset. The proportions were then aggre-
gated to form the final dataset pool. However, we deliberately excluded interested fish from the bio-bait videos 
to test the BeClassifier ability to classify these fish without prior exposure. A total of 204 seabreams were used 
for training and 97 were used for testing. The split used for the different model training and testing are provided 
in (Supplementary Table S7).

The 12 metrics selected were then inputted to train a Random Forest model to classify fish behavior with 
fine-tuned hyperparameters (mtry = 1, ntree = 100, maximum nodes = 50, node size = 2, sample size = 50, class 
weighting with the inverse of class frequencies, and Gini as the split criterion) obtained by doing hyperparameter 
optimization with grid  search54, as recommended for handling small datasets. The BeClassifier model was tested 
with a k-fold cross validation method to consider a diverse representation of Interested and Uninterested classes 
for each fold. Seabreams that were classified as Interested were all manually validated to evaluate the model’s 
performance at predicting interested fish, both on raw bait and bio-bait videos. Model evaluation was assessed 
using standard metrics (F1-score, accuracy, precision, and recall). The probability of a fish being interested was 
set to 0.52 based on the prevalence of incorrect classification below this threshold (i.e., when the probability of 
being Interested and Uninterested is near even).

Fine‑scale behaviors classification
Interested fish exhibited behavior of exploration and different feeding movements where they either feed during 
a sustained period or bite and nibble the bait then quickly retreat, while Uninterested fish were either passing by 
or actively retreating away from the bait. We thus tested if accounting for these fine-scale behaviors improved the 
model’s prediction of the principal behavior and evaluated the output as for the two-class behavior classifier, then 
assessed the temporal distribution of these fine-scale behaviors around the bio-baits. Eight fine-scale behaviors 
(detailed in Supplementary Information S8) could be characterized based on the fish behavioral catalog from 55, 
showing different trajectory patterns (Supplementary Fig. S9). The same procedure was applied to the BeClassifier 
for the fine-scale behaviors classification, resulting in 30 relevant metrics and fine-tuned (mtry = 5, ntree = 650, 
maximum nodes = 50, node size = 5, sample size = 150, class weighting with the inverse of class frequencies, and 
Gini as the split criterion).
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Data analysis
All data analysis was conducted in the R statistical  software56, with the packages tidyverse v2.0.0, dplyr v1.1.2 
and ggplot2 v3.4.2 for data management and graphics, randomForest v4.7–1.1, for the behavioral classifier, and 
adehabitatLT v0.3.27 for behavioral metric calculation.

Results and discussion
Automatizing fish behavior classification from a large video database
Fish tracking in uncontrolled environment
Most studies aiming at developing low-impact, sustainable fish-targeting gear have been confronted with their 
low catch rates compared to traditional  methods6,10. This case study is no exception as it is also confronted with 
a low number of observed fish. Still, the DetTracker identified a total of 202 fish tracks were detected above the 
species probability and behavior probability threshold throughout the 15 videos, with the model’s localization 
of fish instances presenting good performances at identifying seabream on the videos even with the overall 
low visibility (localization, Loc = 80.6%; detection,  APseabream = 56.3%; Supplementary Fig. S10), consistent with 
previous  studies57,58. Highly accurate trackers are developed on  land59,60, and our results (tracking evaluation, 
 HOTAseabream = 23.99%) highlight how underwater imaging remains challenging. Trackers that are trained to 
follow regular motion and distinct features (e.g., SORT, DeepSORT, Siamese-based trackers) can perform poorly 
when tracking organisms that look alike and move  erratically61. The fish present in the videos have almost 
uniform appearances, and their movements turn from being regular to erratic as they approach the bait. When 
tracking fish where movements are expected to be regular, such trackers can  suffice59,62,63 but not with non-linear 
 movements61; altogether, these factors explain the moderate model’s tracking accuracy, as is often the case in 
fish  crowds60,64.

Predicting fish behavior from imperfect fish tracks
To evaluate the bio-baits’ attraction power over long periods of time, the fish behavior around the bait needed to 
be identified among more than 2 million frames. The BeClassifier showed a high accuracy in classifying whether 
the fish is Interested or Uninterested from fish tracks (BeClassifier on principal behavior in the test set: Accu-
racy = 91.75%, F1 score = 90%, Precision = 90%, Recall = 90%; Supplementary Fig. S11). Validating the full video 
dataset further demonstrated a narrow linear relationship between the model’s predictions and true interest, 
even in dense scenes  (R2

adj = 0.98, p-value <  10−10; Fig. 2) and that the model was able to positively detect nearly 
all interested fish throughout the video (BeClassifier on principal behavior in the full dataset: Accuracy = 88.91%, 
F1 score = 94.13%, Precision = 90.72%, Recall = 97.80%). The inflated counts when three or less fish are present 
are results of split tracks of fish remaining for extended periods of time within the frame of the camera (Fig. 2; 
Predicted Interest). The moderate HOTA therefore did not propagate over the performance of automatic behavior 
predictions, and behavioral patterns were conserved even without exact start-to-end fish tracking.

In a static dataset, setting a high threshold to keep only the detections that are accurately predicted may 
suffice to highlight representative  trends65. In extensive in situ recordings however, trackers may inevitably 
capture noisy fish tracks due to uncontrollable environmental conditions and fish  movements66. Tracks can still 
show general trends when accumulated  together60, and our study supports that “imperfect predictions” of fish 

Figure 2.  Predicted versus the groundtruth counts of interested fish, using the BeClassifier for different fish 
densities throughout the 127 h of video. The density of data points is shown at the top for the groundtruth (true 
interest) and on the right for the predictions from the BeClassifier.
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movement still enable to draw accurate conclusions on spatial and temporal patterns in fish behavior, even with 
minimal human validation (40 min over 127 h of video, i.e. less than 0.04% of the final dataset) as long as error 
rate remains acceptable, or controlled for specific classes.

Coarse versus fine‑scale behavior prediction
We here applied a cluster-then-classify approach, which highlighted two main behavioral groups from the fish 
trajectories (Supplementary Fig. S6 of gap statistics, silhouette and elbow results). Yet, categorizing fish behavior 
into two main, antagonist behavior remains a simplistic approach as its behavioral pattern changes over time, 
and variability if often more interesting than  uniformity67,68. A fish can indeed show a strong interest toward 
the bait for short periods and then stay in the field of view for a longer duration without approaching the bait. 
Techniques for splitting animal movement paths have been developed to pinpoint the fundamental segments 
of motion within a  trajectory33, and highlighted that animal interactions with the presence of stimuli are asso-
ciated with a higher frequency of changes in movement. Nevertheless, the BeClassifier performed poorly at 
predicting the eight fine-scale behaviors (per behavior prediction statistics available in Supplementary Fig. S12 
and Supplementary Table S13, and accounting for the fine-scale behaviors to predict parent behaviors (i.e., 
Interested for Feeding, Biting, Nibble and Exploring; Uninterested for Passing, Startle, Burst swimming and 
Fleeing; Accuracy = 84.48%, F1 score = 82.43%, Precision = 79.31%, Recall = 85.19%) did not enhance the model’s 
ability to discern the overarching patterns (Fig. 3). We thus argue that changes in movement over time can still 
be depicted by a one-behavior-per-track approach as long as the quantified behavior is related to fixed stimuli. 
To further improve accuracy, seabreams tracks may need to be segmented into fixed intervals to depict subtle 
changes in behavior, in particular over long  tracks69. However, the objective of the study is to assess the overall 
interest of seabreams toward the bait where fewer behavior classes suffice.

The importance of objectives metrics and clusters definition for robust fish behavior recognition
The tracker’s shortcomings being superseded for behavioral quantification may also result from the objective 
cluster-then-classify approach used along with the behavioral metrics selection from a large (> 100) set of metrics 
(Supplementary Table S5). Defining behavior classes can be  subjective70,71, and having a polarity or binary clas-
sification of positive and negative response to stimuli can serve as the principal behaviors to initially look  for72. 
Here, the fish tracks were then described by objective metrics used to cluster behaviors, which were, in turn, 
associated with an explicit behavior (i.e., the cluster-then-classify approach). Behavioral metrics with the highest 
ranking from the variable importance feature of Random Forest were all locomotion-based and stimuli-relative 
quantification of the fish’s swimming trajectory. Distance to bait and frequency in close proximity to stimuli are 
the strongest descriptors to classify behaviors around a cue as it is measured relative to the stimuli. Metrics like 
the number of fish present or the bounding box area as fish size proxy were uninformative. The cluster-then-
classify approach thus enabled to handle the potential confusion of the trained behavior classifier when the 
fish’s interest manifested in different ways that could be attributed to opposite patterns (for instance, seabreams 
approaching the bio-bait through exploratory movements or quick approach and retreat; Fig. 3). As highlighted 
by the behavioral metric selection, locomotive-based metrics provide a more accurate way to identify behavior 
than relying solely on responses to stimuli and personality  traits73,74.

Figure 3.  Fish tracks grouped into their corresponding true fine-scale behaviors colored by their predicted 
parent behavior (green tracks: correctly classified, red tracks: misclassified).
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Bio-bait efficiency in situ assessment
The presence and behavior of seabreams were then detected throughout the database to determine the efficiency 
of the bio-baits, following the assumption that fish interest would increase over time for bio-baits and decrease 
for raw bait. The count of fish activity is based on model predictions (Fig. 4a,b), while the fish interest is based 
on actual observations (Fig. 4c,d) since all model predictions for interest behavior have been manually validated. 
Seabreams were observed every day in the experimental area, and raw cockle bait attracted more fish than bio-
baits (Kruskal–Wallis: chi2 = 12.021, p = 0.00731; Dunn test on raw bait vs bio-baits: all p < 0.05; Fig. 4a,b). Yet, 
peak activity around raw bait was limited to the first hour of immersion and interest afterwards were solely 
directed towards the nylon, which hold the raw bait until consumed, or the rod. Some fish detected on the raw 
bait videos during the second half of the deployment, with the bait already consumed, were mostly curious 
towards the apparatus and camera. Seabream interest toward the bio-baits was detected during the 4th and 5th 
deployment hours (Fig. 4c,d) where they showed feeding, nibbling and biting behaviors towards the bio-baits. 
Other species such as the European seabass (Dicentrarchus labrax) also approached and circled around the bio-
baits during the 5th hour. Raw bait therefore outperforms bio-baits in terms of overall activity, but bio-baits 
show potential in terms of longevity as they continued to lure fish several hours post deployment and were also 
consumed by the target species.

Bio-bait and its future implications
The duration of baited fish pot deployment is limited by the bait’s efficiency to still lure fish over an extended 
period of time, which are costly to regularly replace and re-deploy75. Our results do highlight some potential for 
bio-baits to trigger fish interest several hours after raw bait has been consumed and attracted finfish only with no 
crustaceans spotted wangling around bio-baits as opposed to raw cockle baits. All bio-baits exhibited an activity 
peak in between the 4th and 6th hour after deployment while raw baits’ peak interest occurred within the first 
hour only (Fig. 4). Raw bait still had a much stronger attractiveness during this period since it is more potent 
and has a wider spread of odor diffusion from natural prey cues the species may be used  to76. The results also 
show that only the bio-bait continued to attract fish several hours after being deployed. In a fisheries perspective, 
combining the raw and bio-baits would maintain the strong initial attractiveness while increasing odor diffusion 
over time. A natural bait, having a faster odor diffusion, would initiate the chemical cue, followed by the artificial 
bait that would gradually release odors after a few hours of immersion, but this would require obtaining natural 
baits from other sources and may, in turn, reduce the overall sustainability of the fisheries. Economic constraints 
should also be considered given that, as of now, the manufacturing cost of an artificial bait is higher than that of 
a natural bait. This may be compensated by reduced cost for professional’s maintenance and sourcing of natural 
 baits12. Several initiatives aim to value fisheries discards such as fish head, viscera and tail for  baiting2 extracting 
their amino-acids and incorporating them into bio-bait matrices could be a solution but, again, only if discards 
are unavoidable.

This study remains exploratory, and several points of improvement remain to be addressed, in particular 
on the bait’s attractiveness. Even if preliminary experiments had been carried out, formulation optimization 

Figure 4.  Seabream presence on the footage and interest toward the baits along the 9-h deployments. (a) Count 
of fish activity in bio-baits based on model predictions, (b) Full-scale showing all counts in raw bait, (c) True 
interest of fish in bio-baits based on actual observations, (d) Full-scale showing all interest in raw bait.
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would be necessary to improve control bait release and attractiveness, for example by modifying the percentage 
of attractant in the mixture. While prior studies highlighted the significance of amino acids in water-soluble 
extracts in activating feeding behavior in fish, other factors like visual cues and the palatability of the bait itself 
play significant roles in fish  responses2,19,77,78. However, synthetic amino acid mixtures may be enticing but sel-
dom match the effectiveness of natural food  extracts76. Previous research has identified black seabreams as an 
omnivorous and opportunistic species, consuming a diverse diet including mysidacea, crustaceans, polychaetes, 
and  algae41,79. Improving long-lasting baits based on biopolymers may therefore not only consider potency but 
its composition in terms of amino acids. While here only cockles’ amino acids were tested, others could have 
triggered a stronger response but are yet to be identified. The appearance of the bio-baits can also be improved 
by having prey-shaped forms with subtly colored  appearance78. One of the advantages of plastic materials is 
their ease of processing. Specific gynoid-type structures, for example, which can be envisaged using 3D print-
ing technology, could improve the release of attractants, while working on the bait’s shape to optimize visual 
appeal. The composition of the bio-bait could thus still be largely improved to diffuse more potent odors along 
with providing a more desirable texture.

Other amino acids and bio-bait shapes should still be assessed to increase its attractiveness. Bio-bait has the 
potential to be more sustainable than raw bait as the amount of organic material incorporated in the mixture 
can be controlled, and thus reduced. Still, it is important to consider how the decrease in organic material affects 
the mixture process, as well as whether this reduction weakens the distinctive cockle scent, potentially making 
the baits less appealing to fish. Using cockles from food waste could valorize leftovers that would otherwise end 
up in landfills. Various types of synthetic artificial baits have been developed that have explored various bait 
mixtures. Bait with a protein-rich gel interior and an insoluble skin-like exterior, incorporating fish waste to emit 
natural odors, have been introduced decades  ago14. Innovations followed that utilized water-soluble polymers and 
plasticizers mixed with fish extracts, such as the biopolymer used in this study, to allow for controlled dispersion. 
Synthetic bait for crustacean capture that releases attractants at a controlled rate, showed effectiveness with vari-
ous crab species and American lobsters in field  trials80. These developments in bait technology aim to minimize 
the use of natural forage fish. When evaluating the viability and acceptance of these bio-baits by fishers, it is thus 
crucial to think about the source and quantity of cockles used and their impact on the environment. Here, the 
preliminary study on the biodegradation of the bio-baits used in this study found that after 180 days, the degra-
dation rate reached 50–60%. However, the rate slowed considerably thereafter, stabilizing between 80 and 90% 
after 600 days in a controlled marine environment. This suggests a significant but gradual breakdown of the baits 
over time, which would, over longer time scale, strongly reduce the number of natural resources used for baiting.

Furthermore, for an exploratory study like this one, site selection was conducted randomly. In future trials, 
deploying the baits should also be done by varying locations while maximizing the distance among the  sites81. 
This would enable to minimize bias from the same fish exploring the bait at different sites, or over repeated days. 
The fish activity may also be refined by monitoring the behavior of fish outside the field of view of the camera 
pointing at the bait, to estimate the optimal time needed to consider a fish entering the field of view as a new—
versus a repeated—observation of fish (e.g., Refs.82,83).

This study presents new polymer-based and cockle powder bio-baits to attract black seabream over a longer 
period than classical baits. While the bio-baits efficiency remained low, it showed potential for bio-baits to attract 
fish after the natural bait has been consumed. To analyze the data, we developed a semi-automatic method to 
detect, track, and classify seabream behaviors from videos. We have shown that reliable behavior quantification 
can be achieved when applied to large volumes of data such as continuous video recordings and marginal valida-
tion, even with noisy patterns varying conditions on the in situ recording. We emphasize the ability of trackers, 
that may be deemed to have poor performance, to still have a significant importance in track-based behavior 
classification. Our approach, therefore, goes further than previous studies in terms of automatic fish behavior 
classification from tracks over long periods in situ (e.g., Ref.66), and widens our range of observational capabili-
ties in assessing fish—or other aquatic organisms—behavior, interactions or response to stimuli in uncontrolled 
environment. From a fishing technology perspective, the fine knowledge of species behavior would enable con-
ceiving highly selective, effective and sustainable, fishing gears and practices.

Data availability
The data and codes are available upon request addressed to the corresponding author, R.F., robin.faillettaz@
ifremer.fr, or A.S.A., abanganalexa@gmail.com.
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