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Protected areas play a crucial role in current global policies to mitigate the erosion of biodiversity 
and systematic reserve site selection models are increasingly involved in their design. These 
models address the optimisation problem that seeks to cover spaces hosting biodiversity features 
with nature reserves at a minimum cost for human activities. To increase the likelihood of a 
successful implementation, reserves need to be spatially consistent. Widely used decision support 
tools such as Marxan and PrioritizR commonly enforce compactness indirectly by penalising the 
reserve perimeter in the objective function. Few other optimisation models explicitly consider 
spatial properties such as limited fragmentation, connectivity of selected sites, and buffer zones 
around them, etc. So far, no reserve site selection model can guarantee the production of a 
connected, compact, and gap-free reserve all at once. The impossibility of designing reserve 
solutions with desirable spatial properties using existing models makes it difficult to implement 
such solutions in the real world. Therefore, we propose a mixed-integer linear program to 
build a reserve that is connected, compact, and gap-free. To enforce these spatial attributes 
within a reserve site selection model, we used a multicommodity flow approach. We tested the 
computational feasibility of our model on generated instances and the real instance of Fernando 
de Noronha. The results indicate that a single model can be used to enforce compactness, 
connectivity, and the absence of gaps. Using this optimisation model, conservation practitioners 
can design reserve solutions with desirable spatial properties, thereby increasing the likelihood 
of a successful implementation.

1. Introduction

Biodiversity and habitats are threatened worldwide [1]. Building comprehensive networks of protected areas has become a 
popular conservation solution [2–4] and was shown to bring conservation benefits [5–7]. At sea, for instance, current political 
objectives are to cover 30% of the marine spaces under jurisdiction by 2030 with marine protected areas [8–10]. Similar concerns 
also exist on land [11,12]. Within this context, there is a strong demand in these spaces to find the best compromises between 
the protection of biodiversity and the sustainability of human uses. To address such problems, optimisation methods are commonly 
implemented [13–16]. The objective of these optimisation models is to identify the most cost-effective configuration of planning units 
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that collectively encompass a sufficient representation of each conservation feature. Once this representation is deemed sufficient, 
the conservation features are considered protected within the reserve. Since optimisation models can be customised at will by setting 
the appropriate constraints in the model, it is possible to produce a reserve that exhibits a set of desirable properties. Reserve design 
efforts focused on finding these appropriate constraints and explicitly address many conservation aspects (species representation, 
abundance/diversity trade-off, compactness, buffer zones, corridors, uncertain representation, sequential acquisition planning units, 
robustness to catastrophic events, etc.). Such methods are often embedded within a software, e.g. Marxan or PrioritizR [17–19]. They 
are designed to systematically select reserve sites and are used as decision support tools in real-world instances1 [20,21].

Nevertheless, solving these optimisation problems often results in the selection of scattered reserve sites. Yet, designing reserves 
that are compact, connected, and gap-free is usually needed for ecological, management and enforcement reasons [14,22–24]. A 
reserve is connected if one can move anywhere inside without having to leave it. A gap within a reserve is a zone outside the 
reserve one cannot leave without crossing the reserve. Compactness is not a binary concept, since a reserve is said more or less 
compact. It often indicates to what extent reserve sites are more or less aggregated. Several measures of compactness exist such as 
the area-to-perimeter ratio, the maximum distance between two reserve sites, the number of shared edges between reserve sites, etc. 
An illustration of these spatial attributes can be found in Fig. 1. Currently, the spatial attributes of reserves are poorly considered 
in decision support tools used for reserve selection. In the widely used decision support tools for reserve selection (e.g. Marxan, 
PrioritizR), the only spatial attribute explicitly addressed is the global compactness of a solution [17–19,25]. The compactness 
of a solution is enforced by directly penalising the overall perimeter of the reserve in the objective function of the optimisation 
problem addressed. Several issues arise with this approach. The linearisation of the perimeter expression involves the addition of 
many decision variables and constraints [26,27] which can be computationally expensive in an integer programming context. Also, 
this approach transforms the problem into a multi-objective problem where the cost of a solution and its perimeter are implicitly 
competing. In practice, the compactness multiplier is determined by trial and error until a solution meets the spatial requirements 
deemed satisfactory. This weakens the systematic nature of the reserve design approach, although a more systematic setting of 
the compactness multiplier is proposed in [28]. Improvements using both the reserve perimeter and area in the objective were 
proposed in [28] to enforce the compactness of the reserve. In the same line, a weighted combination of both compactness and 
connectivity measures are included in the objective and solved using metaheuristics in [29]. In any case, the connectivity of the 
reserve and the absence of gaps within it are not ensured, but rather, possibly emerging with the enforcement of the reserve 
compactness.

In an operation research context, several optimisation models were proposed to explicitly account for specific spatial properties 
[26,30–33]. For instance, optimisation models aim to design a reserve composed of a core area surrounded by a buffer zone [34–36]. 
It means every planning unit of the designated core area is always surrounded by other core planning units or buffer planning units. In 
particular, [36] proposed a model accounting for both the buffer zone and the connectivity of the core area. But these models do not 
necessarily ensure the resulting reserve is gap-free although such reserve can eventually emerge from them. A large family of models 
takes advantage of the modelling possibilities offered by the use of pairwise distances between candidate sites. Minimizing the sum 
of pairwise distances or the maximum distance between all reserve sites [37] favours compact reserves, but does not guarantee that 
the reserve is connected and gap-free. The same applies to models that constrain two distinct sites containing the same conservation 
feature to be closer than a predefined threshold distance [38]. Another large family of optimisation models takes advantage of 
graph theory [32,39–43], in particular to explicitly ensure the reserve connectivity. However, the site selection may still result in 
the inclusion of gaps within the reserve solution, which we define as a set of isolated sites not assigned to the reserve and entirely 
disconnected from the outside (i.e. surrounded by the reserve). A reserve perforated by gaps cannot be used in a large-scale reserve 
design. If gaps appear in a solution proposed by a decision support tool, they will either be arbitrarily incorporated into the reserve, 
artificially connected to the outside (in either case, this will often lead to the use of suboptimal solutions), or the provided solution 
will be ignored. Using models imposing connectivity and promoting compactness is likely to favour gap-free reserves, but this is not 
guaranteed. For instance, it may be necessary to design nature reserves around areas that cannot be included in the reserve, such as a 
harbour or a trade route. These areas cannot be enclosed by the reserve and must remain accessible from the outside. State-of-the-art 
models often provide a reserve solution with gaps in these cases. Consideration of gaps within reserves is rarely addressed in the 
literature. The absence of gaps in the reserve can be a posteriori achieved by iteratively searching a gap-free reserve among slightly 
suboptimal solutions [32]. This model does not a priori prevent gaps from being included within the reserve, but rather hopes such a 
solution exists even if the objective value is degraded. Such a procedure is interesting but does not guarantee to have the connected, 
compact and gap-free reserve with the best objective value. A model selecting “cellularly” convex reserve solutions (also in regular 
grids) that are thus connected and gap-free is given in [44]. This model could be used to avoid reserves with gaps, but the convexity 
requirement may neglect some admissible connected and gap-free solutions that are not cellularly convex.

In this work, we propose a model that guarantees by construction to provide the best connected, compact and gap-free reserve. 
Our optimisation model enforces the connectivity of both the reserve and the non-reserve areas, resulting in a connected and gap-free 
reserve. The overall compactness of the reserve is shaped by specifying a maximum radius or a maximum perimeter of the reserve. 
We show the reserve solutions provided by our approach on the real-world instance of Fernando de Noronha. We numerically assess 
the generality of the proposed approaches on several generated instances made of 300 or 500 planning units and 3 conservation 
features. This work improves the current models towards reserve site selection models that explicitly design reserves with desirable 
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1 More case study examples can be found at https://marxansolutions .org /community/ and https://prioritizr .net /articles /publication _record .html.
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Fig. 1. Illustration of the spatial characteristics of a reserve sites selection: compactness, connectivity and gap-free. A reserve is compact if its planning units 
are aggregated. A reserve is connected if one can move anywhere inside without having to leave it. A gap within a reserve is a zone outside the reserve you cannot 
leave without crossing the reserve.

spatial properties: compact, connected and gap-free. Therefore, the model we propose increases the chances of conservation science 
being successfully implemented by conservation practitioners.

2. Models

Here we present the integer linear program for reserve site selection that ensures the reserve is connected, compact and gap-free. 
Before all, we recall the general formulation of the reserve site selection problem. Then, the multicommodity flow approach using 
graph theory is presented for both the reserve and non-reserve areas. An illustration example of a reserve selection optimisation 
modelled using graph theory can be found in Fig. 2. Finally, a reduction of the problem is proposed, as well as an approach limiting 
the maximum radius of the graph of the reserve. The graph of the reserve is the graph induced by the planning units selected in the 
reserve solution.

2.1. General formulation of the reserve site selection problem

In a reserve site selection problem, the study area is discretised into a set of 𝐽 planning units within which a set of 𝐼 conservation 
features are distributed. The amount of conservation feature 𝑖 in the planning unit 𝑗 is a real positive number denoted 𝑎𝑖𝑗 . Each 
planning unit has a cost 𝑐𝑗 usually understood as the socio-economic cost associated with the closure of this unit. The decision is 
about whether to include the planning unit in the reserve. Consequently, we associate the decision variables 𝑥𝑗 with each planning 
unit 𝑗: 𝑥𝑗 = 1 if a planning unit 𝑗 belongs to the reserve and 𝑥𝑗 = 0 otherwise. One then seeks to find the least cost collection of 
planning units covering a sufficient amount for each conservation feature. The covering of a conservation feature 𝑖 is considered 
sufficient if it exceeds a user-defined level noted 𝑡𝑖.∑

𝑗∈𝐽
𝑎𝑖𝑗𝑥𝑗 ≥ 𝑡𝑖,∀𝑖 ∈ 𝐼 (1)
309

Mathematically speaking, the general problem of reserve site selection is expressed as the following integer linear program 𝑃𝑁 :
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Fig. 2. Example of the graph of a connected and gap-free reserve solution. Red arrows show the spanning tree of the reserve. The centre of the reserve tree is 
node 7. The radius of the graph of the reserve is 3 (reached by the path 7 → 6 → 5 → 9). Yellow arrows show the spanning tree of the non-reserve. The centre of the 
non-reserve tree is node 𝛼 = 0 representing the outside area.

𝑃𝑁 ∶
⎧⎪⎨⎪⎩
min
𝑥

∑
𝑗∈𝐽

𝑐𝑗𝑥𝑗

s.t. (1)
𝑥𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽

In state-of-the-art models, the reserve perimeter is included in the objective function, to favour aggregated reserve solutions since a 
small perimeter involves a compact reserve. The perimeter is computed as the total length of the boundaries between reserved and 
non-reserved planning units. To model this, the length of the shared boundary between planning units 𝑗1 and 𝑗2 is denoted 𝑏𝑗1𝑗2 . A 
parameter 𝛽 is used to set the importance of compactness relative to the total cost of site selection. The quadratic expression of the 
perimeter can be linearised [45,27] by replacing the product 𝑥𝑗1𝑥𝑗2 with the new binary decision variable 𝑧𝑗1𝑗2 and add the following 
set of constraints:

⎧⎪⎨⎪⎩
𝑧𝑗1𝑗2

− 𝑥𝑗1 ≤ 0 ∀𝑗1 ∈ 𝐽
𝑧𝑗1𝑗2

− 𝑥𝑗2 ≤ 0 ∀𝑗2 ∈ 𝐽
𝑧𝑗1𝑗2

− 𝑥𝑗1 − 𝑥𝑗2 ≥ −1 ∀𝑗1 ∈ 𝐽,∀𝑗2 ∈ 𝐽
(2)

Finally, the general formulation of the reserve site selection problem results in the following integer linear program 𝑃𝑁+𝐶𝑂𝑀𝑃 :

𝑃𝑁+𝐶𝑂𝑀𝑃 ∶
⎧⎪⎨⎪⎩
min
𝑥,𝑧

∑
𝑗∈𝐽

𝑐𝑗𝑥𝑗 + 𝛽
∑
𝑗1∈𝐽

∑
𝑗2∈𝐽

𝑏𝑗1𝑗2
(𝑥𝑗1 − 𝑧𝑗1𝑗2 )

s.t. (1), (2)
𝑥𝑗 , 𝑧𝑗1𝑗2

∈ {0,1} ∀𝑗, 𝑗1, 𝑗2 ∈ 𝐽

This combinatorial optimisation problem is a minimum set cover problem known to be NP-hard [46]. It is a non-convex problem due 
to the binary nature of the decision variables. Yet, it can be expressed as an integer linear program and known solvers (like Gurobi 
or CbC) can solve it for realistic instances in a reasonable time.

2.2. Connectivity of the reserve

The grid, resulting from the discretisation of the study area into planning units, is seen as a graph, where each planning unit 𝑗 ∈ 𝐽
represents a node in the graph. The set of nodes is 𝐽 . Planning units sharing an edge in the grid are considered neighbours and thus 
involve an edge 𝑒 = (𝑒1, 𝑒2) in the graph between the nodes 𝑒1, 𝑒2 ∈ 𝐽 . The set of edges is noted 𝐸. The corresponding directed edges 
(𝑒1 → 𝑒2) and (𝑒2 → 𝑒1) are called arcs. The set of arcs is noted 𝐴. We then use a multicommodity flow model developed in [47]. The 
idea is to constrain every node selected in the reserve to have a flow going from the source to the sink. The source is the commodity 
𝑘 ∈𝐾 , i.e. a selected node, and the sink is the root node of the spanning tree. Therefore, we build a path connecting every selected 
nodes 𝑘 ∈ 𝐾 and the root node which is constrained to belong to the reserve. The reserve is thus ensured to be connected. In this 
model, the set of commodities is 𝐾 = 𝐽 . The selection of the root node 𝑗 ∈ 𝐽 of the spanning tree associated with the reserve is 
represented by the binary decision variable 𝑟𝑗 ∈ {0, 1}. The selection of an arc 𝑎 ∈𝐴 in the spanning tree associated with the reserve 
is represented by the binary decision variable 𝑢𝑎 ∈ {0, 1}. The activation of the flow of commodity 𝑘 ∈𝐾 between the source node 𝑘
and the sink node (i.e. root of the spanning tree) along the arc 𝑎 ∈ 𝐴 is represented by the binary decision variable 𝑓𝑘

𝑎
∈ {0, 1}. Let 
310

𝑉 (𝑛) be the set of neighbours nodes of node 𝑛 ∈ 𝐽 .
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The selected arcs of the spanning tree must be between two nodes selected in the reserve:

{
𝑢𝑎 ≤ 𝑥𝑎1

∀𝑎 = (𝑎1, 𝑎2) ∈𝐴
𝑢𝑎 ≤ 𝑥𝑎2

∀𝑎 = (𝑎1, 𝑎2) ∈𝐴
(3)

A maximum of one arc is activated by edge:

𝑢(𝑒1→𝑒2) + 𝑢(𝑒2→𝑒1) ≤ 1 ∀𝑒 = (𝑒1, 𝑒2) ∈𝐸 (4)

The number of arcs in the tree is equal to the number of nodes minus 1 (prevent cycle formation):

∑
𝑎∈𝐴

𝑢𝑎 =
∑
𝑗∈𝐽

𝑥𝑗 − 1 (5)

The root of the tree must be in the reserve:

𝑟𝑗 ≤ 𝑥𝑗 ∀𝑗 ∈ 𝐽 (6)

There is only one root node for the spanning tree of the reserve:

∑
𝑗∈𝐽

𝑟𝑗 ≤ 1 (7)

If the arc is not selected, all associated flow variables are set to 0:

𝑓𝑘
𝑎
≤ 𝑢𝑎 ∀𝑎 ∈𝐴,∀𝑘 ∈𝐾 (8)

If the node is not selected, all the associated flow variables are set to 0:

𝑓𝑘
𝑎
≤ 𝑥𝑘 ∀𝑎 ∈𝐴,∀𝑘 ∈𝐾 (9)

For commodity 𝑘 ∈𝐾 , the flow at the source node is 1, the flow at the sink node is 0, elsewhere for selected nodes, the flow entering 
is the same as the flow leaving the node.

⎧⎪⎪⎨⎪⎪⎩

∑
𝑗∈𝑉 (𝑛)

𝑓𝑘(𝑗→𝑛) −
∑

𝑗∈𝑉 (𝑛)
𝑓𝑘(𝑛→𝑗) ≤ 𝑟𝑛 ∀𝑘 ∈𝐾,∀𝑛 ∈ 𝐽 ⧵ {𝑘}∑

𝑗∈𝑉 (𝑛)
𝑓𝑘(𝑗→𝑛) −

∑
𝑗∈𝑉 (𝑛)

𝑓𝑘(𝑛→𝑗) ≥ 0 ∀𝑘 ∈𝐾,∀𝑛 ∈ 𝐽 ⧵ {𝑘}∑
𝑗∈𝑉 (𝑘)

𝑓𝑘(𝑘→𝑗) −
∑

𝑗∈𝑉 (𝑘)
𝑓𝑘(𝑗→𝑘) = 𝑥𝑘 − 𝑟𝑘 ∀𝑘 ∈𝐾

(10)

Finally, the multicommodity flow model 𝑃𝐶𝑂𝑁 for the reserve is:

𝑃𝐶𝑂𝑁 ∶
⎧⎪⎨⎪⎩

min
𝑥,𝑧,𝑢,𝑟,𝑓

∑
𝑗∈𝐽

𝑐𝑗𝑥𝑗 + 𝛽
∑
𝑗1∈𝐽

∑
𝑗2∈𝐽

𝑏𝑗1𝑗2
(𝑥𝑗1 − 𝑧𝑗1𝑗2 )

s.t. (1)− (10)
𝑥𝑗 , 𝑧𝑗1𝑗2

, 𝑢𝑎, 𝑟𝑗 , 𝑓
𝑘
𝑎
∈ {0,1} ∀𝑗, 𝑗1, 𝑗2 ∈ 𝐽,∀𝑎 ∈𝐴,∀𝑘 ∈𝐾

2.3. Gap-free reserve

We apply the same multicommodity flow model to the non-reserve to have a connected non-reserve. A connected non-reserve 
implies that the reserve would not have gaps within it. Thus, the term 1 − 𝑥𝑗 plays the role of the term 𝑥𝑗 . We add a fictive node 
𝛼 in the graph representing the area outside the studied zone. Indeed, the non-reserve must be connected to the exterior area. Note 
that we fix the node 𝛼 to be the root of the spanning tree of the non-reserve. The selection of an arc 𝑎 ∈ 𝐴 in the spanning tree 
associated with the non-reserve is represented by the binary decision variable 𝑣𝑎 ∈ {0, 1}. The activation of the flow of commodity 
𝑘 ∈𝐾 between the source node 𝑘 and the sink node 𝛼 along the arc 𝑎 ∈𝐴 is represented by the binary decision variable 𝑔𝑘

𝑎
∈ {0, 1}. 

The set of edges and arcs associated with the fictive node 𝛼 are respectively noted 𝐸𝑓 and 𝐴𝑓 . Let 𝐸+ =𝐸 ∪𝐸𝑓 , 𝐴+ =𝐴 ∪𝐴𝑓 , and 
311

𝐽+ = 𝐽 ∪ {𝛼}.
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The added set of constraints for the non-reserve is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥𝛼 = 0
𝑣𝑎 ≤ 1 − 𝑥𝑎1 ∀𝑎 = (𝑎1 → 𝑎2) ∈𝐴+

𝑣𝑎 ≤ 1 − 𝑥𝑎2 ∀𝑎 = (𝑎1 → 𝑎2) ∈𝐴+

𝑣(𝑒1→𝑒2) + 𝑣(𝑒2→𝑒1) ≤ 1 ∀𝑒 = (𝑒1, 𝑒2) ∈𝐸+∑
𝑎∈𝐴+

𝑣𝑎 =
∑
𝑗∈𝐽+

(1 − 𝑥𝑗 ) − 1

𝑔𝑘
𝑎
≤ 𝑣𝑎 ∀𝑎 ∈𝐴,∀𝑘 ∈𝐾

𝑔𝑘
𝑎
≤ 1 − 𝑥𝑘 ∀𝑎 ∈𝐴,∀𝑘 ∈𝐾∑

𝑗∈𝑉 (𝛼)
𝑔𝑘(𝛼→𝑗) −

∑
𝑗∈𝑉 (𝛼)

𝑔𝑘(𝑗→𝛼) ≤ 1 ∀𝑘 ∈𝐾∑
𝑗∈𝑉 (𝑛)

𝑔𝑘(𝑗→𝑛) −
∑

𝑗∈𝑉 (𝑛)
𝑔𝑘(𝑛→𝑗) = 0 ∀𝑘 ∈𝐾,∀𝑛 ∈ 𝐽 ⧵ {𝑘}∑

𝑗∈𝑉 (𝑘)
𝑔𝑘(𝑗→𝑘) −

∑
𝑗∈𝑉 (𝑘)

𝑔𝑘(𝑘→𝑗) = 1 − 𝑥𝑘 ∀𝑘 ∈𝐾

𝑣𝑎, 𝑔
𝑘
𝑎
∈ {0,1} ∀𝑎 ∈𝐴+,∀𝑘 ∈𝐾

(11)

By adding (11) to 𝑃𝐶𝑂𝑁 , we get the integer linear program 𝑃𝐶𝑂𝑁+𝐺𝐹 that ensure connected reserve solutions to be gap-free.

2.4. Compactness of the reserve

2.4.1. Maximum radius in the graph of the reserve

We want to avoid producing connected reserve solutions that spread across the entire study area. We thus impose the radius of 
the graph of the reserve to remain below a predefined threshold, denoted 𝑅𝑚𝑎𝑥 in the following. We define the radius of the reserve 
as the longest path starting from the source node and only composed of reserve nodes (illustration in Fig. 2). We have a double 
expectation with this additional constraint. First, we will produce more compact reserves and avoid cobweb shapes for the reserves 
by limiting the radius of the reserve. Secondly, by removing the nodes further than 𝑅𝑚𝑎𝑥 from consideration, we decrease the number 
of possible paths that satisfy the multicommodity flow constraints. This feature may counterbalance the addition of the maximum 
radius constraints and may even increase the solving speed.

Once the graph of an incumbent reserve solution is connected, we can define the centre and the radius of the graph of the reserve. 
The centre is the selected node whose maximal distance from other selected nodes is the smallest. The radius is the maximum distance 
in the graph between the centre and other selected nodes. Let 𝑑(𝑗1, 𝑗2) define the distance in the graph of the reserve between the 
node 𝑗1 ∈ 𝐽 and 𝑗2 ∈ 𝐽 . This distance corresponds to the shortest path in the reserve graph from node 𝑗1 to node 𝑗2. Note that the 
global matrix of distances between all nodes of the grid was computed outside the solving procedure. All the selected nodes of the 
incumbent connected reserve that are at a distance greater than 𝑅𝑚𝑎𝑥 from the centre are added to the set of commodities 𝐾 . Then, 
the following constraint is applied:∑

𝑗∈𝐽
𝑑(𝑗,𝑘)≤𝑅𝑚𝑎𝑥

∑
𝑛∈𝑉 (𝑗)

𝑓𝑘
𝑗→𝑛

≤𝑅𝑚𝑎𝑥 ∀𝑘 ∈𝐾 (12)

Finally, we impose the non-selection of nodes at a distance greater than 𝑅𝑚𝑎𝑥 from the root of the tree of the reserve:

𝑥𝑗1
≤ 1 − 𝑟𝑗2 ∀𝑗1 ∈ 𝐽, 𝑗2 ∈ 𝐽,𝑑(𝑗1, 𝑗2) >𝑅𝑚𝑎𝑥 (13)

By adding (12) and (13) to 𝑃𝐶𝑂𝑁+𝐺𝐹 , we get the integer linear program that ensures connected and gap-free solutions to have a 
radius smaller than 𝑅𝑚𝑎𝑥.

2.4.2. Maximum perimeter of the reserve

As explained in Section 2.1, the compactness of a reserve in state-of-the-art models is enforced using a multi-objective approach 
by penalising the reserve perimeter in the objective. Rather than that, we can keep a single objective formulation and specify a 
maximum perimeter 𝑃𝑚𝑎𝑥 the reserve should not exceed. The associated constraint is:∑

𝑗1∈𝐽

∑
𝑗2∈𝐽

𝑏𝑗1𝑗2
(𝑥𝑗1 − 𝑧𝑗1𝑗2 ) ≤ 𝑃𝑚𝑎𝑥 (14)

By adding (12) and (13) and/or (14) to 𝑃𝐶𝑂𝑁+𝐺𝐹 , we get the integer linear program that ensures connected and gap-free solutions to 
have a perimeter smaller than 𝑃𝑚𝑎𝑥. The models that in addition include constraints used to enforce the compactness of the reserve 
will be named 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 . The simple mention of compactness parameters, i.e. 𝛽, 𝑅𝑚𝑎𝑥, 𝑃𝑚𝑎𝑥, will remove any ambiguity 
regarding our choice of constraints to enforce the compactness of the reserve in 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 . If 𝛽 is mentioned, it means we 
include the penalty of the reserve perimeter in the objective and add the associated linearisation constraints (2) to the model. If 
𝑅𝑚𝑎𝑥 is mentioned, the constraints (12) and (13) are added to the model. If 𝑃𝑚𝑎𝑥 is mentioned, the constraint (14) is added to the 
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Fig. 3. Chessboard overlay applied to the graph of the grid. Nodes are separated into two sets: black and white nodes. The multicommodity flow model is then 
only applied to the black nodes to decrease the size of the problem.

2.5. Improvements of the model

2.5.1. Chessboard reduction

In a rectangular grid, if we want a connected and gap-free reserve, a node in a given binary state, i.e. selected or unselected, cannot 
be entirely surrounded by neighbouring nodes in the complementary state. The rectangular grid is thus assimilated to a chessboard, 
and the nodes are separated into two sets: black and white nodes (Fig. 3). This way, the 4 neighbouring nodes of a black node are 
white and vice versa. Let 𝐵 be the set of black nodes and 𝑊 the set of white nodes. We have 𝐽 =𝑊 ∪ 𝐵. In terms of constraints, 
we prevent white (respectively black) nodes of the grid in a given state from being surrounded by four black (respectively white) 
neighbours in the same state:

⎧⎪⎨⎪⎩
𝑥𝑗 ≤

∑
𝑖∈𝑉 (𝑗)

𝑥𝑖 ∀𝑗 ∈ 𝐽

1 − 𝑥𝑗 ≤
∑

𝑖∈𝑉 (𝑗)
(1 − 𝑥𝑖) ∀𝑗 ∈ 𝐽 (15)

Then, we apply the multicommodity flow model only to black nodes: the flow is now constrained to find a path from a black source 
node to the black nodes only. It means that the set of commodities is 𝐾 = 𝐵 instead of 𝐾 = 𝐽 in model 𝑃𝐶𝑂𝑁 or 𝑃𝐶𝑂𝑁+𝐺𝐹 . This 
is the main motivation behind this chessboard reduction: we significantly reduce the number of expensive multicommodity flow 
constraints by only adding two constraints by node. This way, each node is either associated with a commodity or satisfies constraint 
(15) and has its neighbours associated with a commodity. In the following, the chessboard reduction is systematically applied.

2.5.2. Lazy constraints

Enforcing flow constraints for every node can be computationally challenging in multicommodity flow models. Lazy constraints 
are included in the model only if the incumbent solution does not satisfy them. Since the flow constraints (10) in the multicommodity 
flow model can be separated by commodities, these constraints are implemented as lazy ones. The motivation behind this choice 
is that a non-connected reserve is not a frequent case. We expect the iterative activation of the lazy constraints to be faster than 
considering the exhaustive set of flow constraints. In the following, the concerned constraints are systematically applied as lazy 
constraints.

A graph is connected if there is a path from any point to any other point in the graph. If a graph is not connected, the graph is 
made of two or more isolated connected subgraphs. We define the connected components of the graph as the maximum connected 
subgraphs, i.e. the connected subgraph composed of the maximum number of nodes. In our case, if the number of connected compo-
nents of a reserve solution is strictly greater than 1, the reserve is not connected and we activate the flow constraints associated with 
a given commodity noted 𝑘1 ∈𝐾 . We define the return of a node as the ratio between the conservation feature’s total amounts within 
a planning unit and its cost. The commodity 𝑘1 is chosen as the node with the highest return among the nodes of each connected 
component of the incumbent reserve solution.

We do the same for the multicommodity flow model of the non-reserve. If the number of connected components of the non-reserve 
graph is greater than 1, the incumbent reserve solution has a gap within it, and we activate the flow constraints associated with a 
given commodity noted 𝑘2 ∈𝐾 . The commodity 𝑘2 is chosen as the node with the lowest return among each connected component 
of the non-reserve. As above, a gap within the reserve is expected to be a rare case, so the lazy constraints allow a faster solving than 
including the exhaustive set of flow constraints (11).

The constraints (12) are also implemented as lazy constraints, and thus activated only if the incumbent reserve solution is 
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Fig. 4. Real-world data used for the reserve site selection numerical experiment. (A) Fishery-based cost layer in a continuous orange colour gradient. (B) Fish 
biomass conservation feature surrogate in a discrete purple colour gradient. (C) Continental shelf and (D) Shelf break habitat conservation feature surrogates in light 
and deep blue respectively. Opaque grey pixels are the planning units a priori excluded from the solution.

3. Numerical experiments

We performed numerical experiments to validate, illustrate and then assess the numerical feasibility of the models described 
in Section 2. Our tests were performed on generated instances (3 conservation features, 300 or 500 planning units) and a real-
world instance (3 conservation features, 756 planning units). The instances can be found at https://github .com /AdrienBrunel /data _
generation. The experiments were realised on a personal computer (Intel Core i7-8850H CPU @ 2.60 GHz). The code used for 
the analyses of this work is open, free and available at https://github .com /AdrienBrunel /rssp -compact -connected -gapfree. We used 
Gurobi solver under a free academic license using the JuMP optimisation library [48] of Julia [49,50].

3.1. Illustration on a real-world instance

Fernando de Noronha is a small oceanic archipelago in the western tropical Atlantic, made up of 21 islands, islets and rocks with 
a total land area of 26 𝑘𝑚2. It constitutes a genuine Brazilian natural and cultural heritage and a conservation showcase in Brazil. But 
it also faces many interests (e.g. tourism intensification, fisheries), which makes it an open laboratory for marine spatial planning. 
We summarise the main characteristics of the dataset below (see [51] for further details).

The geographical area was discretised according to a rectangular grid made of N=36×21=756 planning units with longitude 
and latitude respectively in [32.65° W, 32.30° W] and [3.95°S, 3.75°S] ranges. Planning units covering Fernando de Noronha land and 
harbour were a priori excluded from potential reserve site candidates. The considered conservation features are the fish biomass, 
the continental shelf and shelf break habitats. The cost layer was made of the fishing pressure intensity. Fig. 4 shows the input data 
involved in the case study.

For the first conservation feature, the fish biomass was estimated from in situ acoustic data [52,53]. Interpolating between sample 
data allowed producing a continuous distribution within the sampling area. Outside the surveyed area, values were set to 0, although 
the actual distribution was unknown. Then, ocean depth intervals were used as a surrogate for the two other conservation features: 
the continental shelf and shelf break habitats. Ocean bathymetry was obtained from GEBCO online platform.2 Finally, a segmentation 
model was applied to fishers’ trajectories to derive the behavioural state for every GPS measure: fishing or travelling. This was then 
used to derive a quantitative proxy for the fishing pressure. The fishing activity proxy represents the cost vector in the objective 
function of the optimisation problem.
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2 GEneral Bathymetric Chart of the Ocean. https://download .gebco .net/

https://github.com/AdrienBrunel/data_generation
https://github.com/AdrienBrunel/data_generation
https://github.com/AdrienBrunel/rssp-compact-connected-gapfree
https://download.gebco.net/
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Table 1

Results of the numerical experiments for 𝟑𝟔 × 𝟐𝟏 planning units and 3 conservation features for the real-world instance 
of Fernando de Noronha. A summary of the characteristics of the reserve solutions is provided: computation time in seconds, 
reserve perimeter, total cost, radius of the reserve graph, number of connected components, number of gaps. Targets are the same 
for the three conservation features (50% or 70%). N=nominal, COMP=compactness, CON=connectivity, GF=gap-free.

Targets Model Parameters Time Perimeter Cost Radius Components Gaps

50% N 𝛽 = 0 0.2 150 90.6 - 14 4
50% N+COMP 𝛽 = 1 0.2 96 101.7 - 2 0
50% CON+COMP 𝛽 = 1 19.5 92 106.0 16 1 0
50% CON+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 14 920.5 90 112.4 14 1 1
50% CON+COMP+GF 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 14 179.6 90 112.8 14 1 0
50% CON+COMP+GF 𝑃𝑚𝑎𝑥 = 80, 𝑅𝑚𝑎𝑥 = 14 366.1 80 125.6 14 1 0

70% N 𝛽 = 0 0.0 156 200.2 - 7 7
70% N+COMP 𝛽 = 1 0.1 108 216.8 - 2 2
70% CON+COMP 𝛽 = 1 69.4 100 227.6 16 1 2
70% CON+COMP+GF 𝛽 = 1 42.6 98 232.8 18 1 0
70% CON+COMP+GF 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 17 295.1 96 235.0 17 1 0
70% CON+COMP+GF 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 16 367.6 94 237.6 16 1 0
70% CON+COMP+GF 𝑃𝑚𝑎𝑥 = 90, 𝑅𝑚𝑎𝑥 = 16 164.2 90 243.6 16 1 0

Table 1 provides the characteristics of the reserve solutions computed using the models described in Section 2 on the real-world 
instance of Fernando de Noronha. The first observation is that the spatial coherence of a reserve is not guaranteed by state-of-the-
art models. Fig. 5a and Fig. 6a show that the reserve site selection is significantly scattered for 𝛽 = 0. Setting 𝛽 = 1 in these models 
improved the global compactness of the reserve selection as illustrated in Fig. 5b and Fig. 6b but did not guarantee the connectivity of 
the reserve nor the absence of gaps within it (cf. Table 1). The state-of-the-art model with 𝛽 = 1 (Fig. 6b) illustrates the problem with 
high covering demands and locked-out planning units: it naturally creates gaps by surrounding the locked-out planning units. When 
targets were set to 50%, obtaining a connected and gap-free reserve (cf. Fig. 5c) took 19.5 seconds. It required solving the model 
𝑃𝐶𝑂𝑁+𝐶𝑂𝑀𝑃 with 𝛽 = 1 since the reserve solution did not have any internal gap. However, when we increased the compactness 
demand (𝛽 = 1 and 𝑅𝑚𝑎𝑥 = 14), a gap appeared within the solution. We removed this by solving the model 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 . We 
also observed that the solving of 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 took less time than 𝑃𝐶𝑂𝑁+𝐶𝑂𝑀𝑃 (179.6 against 920.5 seconds). To obtain an even 
more compact reserve, we directly constrained the reserve perimeter to remain below 80 instead of the 90 of the reserve solution 
with 𝛽 = 1 and 𝑅𝑚𝑎𝑥 = 14. The connected, compact and gap-free solution (cf. Fig. 5d) was obtained in 366.1 seconds. When targets 
were set to 70%, solving the model 𝑃𝐶𝑂𝑁+𝐶𝑂𝑀𝑃 with 𝛽 = 1 did not prevent the occurrence of gaps within the reserve (cf. Table 1). 
The compact, connected and gap-free reserve solution obtained by solving 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 with 𝛽 = 1 is shown in Fig. 6c. Also, 
the selection of isolated planning units is tolerated as soon as the perimeter involved contributed less to the objective than the 
selection cost. Unlike the state-of-the-art models’ solutions, our connected and gap-free reserve solutions left a path from the harbour 
of Fernando de Noronha to the outside area. It took only 42.6 seconds in this example. Then we increased our compactness demands 
by setting 𝑃𝑚𝑎𝑥 = 90 and 𝑅𝑚𝑎𝑥 = 16. The corresponding solution is shown in Fig. 6d. This reserve which looks more compact than 
Fig. 6c and is still connected and gap-free.

3.2. Feasibility assessment on generated instances

In this section, we tested our models for several generated instances to have a more accurate idea of the computation time needed 
and the extra cost involved to obtain connected and gap-free reserve solutions. We used a systematic way of building instances for our 
reserve site selection optimisation problems. The main principle was to build realistic spatial distributions for conservation features. 
To do so, the amount of a conservation feature within a planning unit was randomly drawn in a Gaussian distribution whose mean 
value decreases with the distance to the closest randomly drawn epicentres. If no epicentre was provided, the mean value depended 
on the distance to the locked-out planning units supposed to represent a shoreline. The standard deviation of the Gaussian distribution 
was set to 20% of the maximum value for every planning unit and conservation feature. The cost was uniformly drawn. More details 
can be found in Appendix C in [54]. The generation of instances is different from what is done in [32]. We wanted more realistic 
instances, closer to a real dataset, and where solutions were more likely to have gaps when targets were high. Detailed numerical 
results are exhaustively provided in Table 2 and Table 3 in Appendix A.1.

In any case, the nominal problems 𝑃𝑁 and 𝑃𝑁+𝐶𝑂𝑀𝑃 are solved very fast, mostly under 1 second and 3.4 seconds at worst. 
However, the reserve solutions with 𝛽 = 0 are very scattered, with many gaps, for all instances: 23.6 connected components and 11.0 
gaps on average for 300 planning units; 41.5 connected components and 21.2 gaps on average for 500 planning units. The reserve 
solutions with 𝛽 = 1 are less scattered, but still have several connected components and gaps in general: 2.7 connected components 
and 2.2 gaps on average for 300 planning units; 5.2 connected components and 3.4 gaps on average for 500 planning units.

The reserve solutions using our complete model 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 with 𝛽 = 1 provide by construction connected and gap-free 
reserves. For instances of 300 planning units, the mean computation time is 80.0 seconds with a standard deviation of 61.4 seconds, 
a minimum and maximum time of 15.8 and 229.6 seconds respectively. Obtaining a connected and gap-free reserve solution involves 
a mean relative extra cost of 2.7% (standard deviation of 1.8%, maximum of 5.7%) with respect to the state-of-the-art model with 
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Fig. 5. Reserve solutions of the real-world instance of Fernando de Noronha for several models. Conservation features targets are all set to 50%. Green planning 
units represent the reserve selection. Grey planning units are a priori excluded. N=nominal, COMP=compactness, CON=connectivity, GF=gap-free. Barplots at the 
top left of each panel show the coverage of each conservation feature (FB=fish biomass, CS=continental shelf, SB=shelf break) by the reserve solution. The target 
is represented by the red line.

state-of-the-art reserve solution, the mean relative extra cost drops to 0.7% (standard deviation of 0.4%, maximum of 1.3%). The 
mean computation time for this model is 150.6 seconds. Once the reserve was compact, connected and gap-free, we evaluated the 
impact of an increase in compactness using the 𝑅𝑚𝑎𝑥 constraints. To do so, we set 𝑅𝑚𝑎𝑥 to the reserve radius obtained by solving 
𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 with 𝛽 = 1 minus 1, so the constraints were activated. For instances of 300 planning units, the mean computation 
time is 182.3 seconds with a standard deviation of 280.4 seconds, a minimum and maximum time of 21.1 and 928.7 seconds. The 
inclusion of 𝑅𝑚𝑎𝑥 constraints was sometimes associated with a decrease in computation time, sometimes with an increase, depending 
on the instances considered.

For instances of 500 planning units, the proof of optimality was not provided every time with a time limit set to 1000 seconds. 
However, the incumbent solution returned was still compact, connected and gap-free. For instances reaching the time limit, we con-
sidered a solving time of 1000 seconds and the characteristics of the incumbent suboptimal reserve solution. The mean computation 
time of the reserve solutions using our complete model 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 with 𝛽 = 1 was 480.0 seconds with a standard deviation of 
382.8 seconds, a minimum and maximum time of 50.8 and 1000 seconds respectively. Obtaining a connected and gap-free reserve 
solution involved a mean relative extra cost of 3.4% (standard deviation of 1.7%, maximum of 6.9%) with respect to the state-of-the-
art model with the same value of 𝛽. When we matched the compactness demand, i.e. we constrained the perimeter to remain below 
the perimeter of the state-of-the-art reserve solution, the mean relative extra cost dropped to 0.9% (standard deviation of 0.4%, 
maximum of 1.6%). For instances of 500 planning units, when a maximum radius was imposed to the reserve, it led to increased 
computational difficulties. Unlike instances of 300 planning units, the addition of the 𝑅𝑚𝑎𝑥 constraints systematically involved a 
greater computation time or an incumbent solution further from optimality than without 𝑅𝑚𝑎𝑥. For three instances, no solutions 
were found within the time limit.

4. Discussion

In this work, we presented a global integer linear program that designs compact, connected and gap-free reserves. The example 
of Fernando de Noronha showed our model is operational in real-world instances. The reserve solutions of our model are by con-
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Applied Mathematical Modelling 134 (2024) 307–323A. Brunel, J. Omer, A. Gicquel et al.

Fig. 6. Reserve solutions of the real-world instance of Fernando de Noronha for several models. Conservation features targets are all set to 70%. Green planning 
units represent the reserve selection. Grey planning units are a priori excluded. N=nominal, COMP=compactness, CON=connectivity, GF=gap-free. Barplots at the 
top left of each panel show the coverage of each conservation feature (FB=fish biomass, CS=continental shelf, SB=shelf break) by the reserve solution. The target 
is represented by the red line.

our knowledge, current reserve design literature cannot guarantee gap-free spatial requirements. Our results showed that obtaining 
connected and gap-free reserves only occasioned extra costs of approximately 3% on average. Our model involved a larger compu-
tation time which remains completely acceptable in practice. Indeed, the numerical experiments performed on generated instances 
showed that our model remains mostly under the time limit of 1000 seconds for instances composed of 500 planning units and 3 
conservation features. As reserve selections often exhibit a “cobweb” pattern in models that aim to enforce connectivity [24,39], it 
was necessary to constrain the selection compactness. Compactness in our model is highly customizable since it can be explicitly con-
strained through a maximum perimeter or radius, or implicitly constrained through a compactness multiplier, as in state-of-the-art 
models. The results indicated that incorporating compactness constraints with the 𝛽 multiplier and associated constraints or the 𝑃𝑚𝑎𝑥
constraint can help to find a solution faster. Additionally, to maintain explicit reserve design and a single objective optimisation, it 
may be preferable to limit the maximum perimeter of the reserve instead of penalising it in the objective function. Finally, the code 
used for this work is free, open and available.

Instead of adopting an a posteriori approach that removes reserve solutions with gaps from the search space [32], we used an a 
priori approach introducing specific constraints within the model to build a connected non-reserve as advocated in the discussion of 
[32]. A multicommodity flow model and lazy constraints were used to enforce connectivity in the minimum set problem. Using a 
multicommodity flow in reserve site selection problems is not new and was already mentioned in [33] but is not a common approach 
[24,32,38,39]. However, applying a multicommodity flow model to both the reserve and non-reserve areas is new.

The primary limitation of our model is the restricted size of instances that can be solved within a reasonable timeframe. As 
expected, the optimisation problem we proposed remains computationally challenging. Models that consider spatial constraints are 
generally more demanding computationally, especially as the problem size increases [55]. The size of instances considered here is 
of the same order of magnitude as many examples found in the literature. More precisely, the number of planning units considered 
in this work is similar to other existing works: 100 planning units in [24], 131 in [37], 225 in [33], 324 planning units [38], 
391 planning units in [39], 400 in [32]). The number of conservation features considered in other works is however an order of 
magnitude beyond. It is however difficult to strictly compare instance sizes since the instances were not generated using the same 
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Our results showed that obtaining a reserve that is compact, connected and gap-free involved a small increase in the site selection 
cost with respect to state-of-the-art models used in decision support tools such as Marxan and PrioritizR. The only price to pay is a 
greater computation time. Therefore, obtaining spatially consistent reserves is a more computational challenge rather than a question 
of socio-economic resources. On the other hand, computational difficulties can potentially be mitigated by providing feasible solutions 
before reaching the optimality proof. This approach would result in faster provision of compact, connected, and gap-free reserves 
but with a slightly worse objective value. While some may argue that authorizing suboptimal solutions is no different from using a 
metaheuristics approach, it is important to note that our model allows for explicit control over the spatial properties of the reserve 
solution, which can be finely tuned. The search for a suboptimal reserve solution that meets predefined spatial requirements differs 
from relying on the serendipity of a metaheuristic search.

This work did not consider the potential differences in the nature of locked-out planning units. Some planning units should be 
allowed to be crossed, while others should not. For instance, in marine reserve design, a planning unit consisting of land is locked-out 
and cannot be crossed. Conversely, a locked-out planning unit located in the harbour can be crossed. This difference has an impact 
on modelling as a path that guarantees connectivity in flow models cannot cross every locked-out planning unit. This aspect is not 
currently included in our model and may occasion further development in the future.

In this work, we focused on producing compact, connected and gap-free reserves which are by construction single-component. 
However, single-component reserves lack robustness against spatially-correlated risks (e.g. fire, epidemic, oil spill, invasive species). 
Robustness against spatially-correlated risks may be achieved by implementing backup coverage of conservation features. For in-
stance, ensuring a sufficient representation of conservation features across multiple components of the reserve could fulfil this 
objective. Other optimisation models addressed this specific aspect [38,56–58], although these models were mainly based on pres-
ence/absence of features and should be adapted to non-binary data. Future research should build upon these different approaches to 
produce multiple-component reserves where each component is compact, connected and gap-free.
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Appendix A

A.1. Feasibility assessment on generated instances

In this section, we provide the detailed tables referred to in Section 3.2. Table 2 and Table 3 provide the characteristics of the 
reserve solutions computed using the models described in Section 2 for generated instances of respectively 300 and 500 planning 
units.

A.2. Assessment of the compactness models

In this section, we aim to assess the difference in computation time needed to obtain a compact solution whether using constraints 
associated with the use of 𝛽 or 𝑃𝑚𝑎𝑥. To do so, we first solved 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 with 𝛽 = 1. The perimeter of the reserve solution 
obtained was then used for 𝑃𝑚𝑎𝑥 when we solved 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 . As expected, we obtained the same solutions between the two 
models. For instances of 300 planning units, the mean computation time was 80.0 seconds for 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 with 𝛽 and 74.8 
seconds with 𝑃𝐶𝑂𝑁+𝐺𝐹+𝐶𝑂𝑀𝑃 with 𝑃𝑚𝑎𝑥. Then, Table 4 does not show a systematic trend between the two models since it sometimes 
took more time, sometimes less time, depending on the instance. However, for instances of 500 planning units, Table 5 shows a clear 
trend: models with constraints associated to the use of 𝛽 are solved faster than the models using the 𝑃𝑚𝑎𝑥 constraint for every 
instance. When the time limit was reached, the model using the constraints associated with 𝛽 provided a solution closer to optimality 
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Table 2

Results for 10 generated instances of 𝟐𝟎 × 𝟏𝟓 planning units and 3 conservation features. A summary of the characteris-
tics of the reserve solutions is provided: computation time in seconds, reserve perimeter, total cost, radius of the reserve graph, 
number of connected components, number of gaps. Conservation features targets are all set to 50%. N=nominal, COMP=com-
pactness, CON=connectivity, GF=gap-free.

Instance Model Parameters Time Perimeter Cost Radius Components Gaps

1 N 𝛽 = 0 0.1 272 460.1 - 21 10
1 N+COMP 𝛽 = 1 0.4 106 544.3 - 2 3
1 CON+GF+COMP 𝛽 = 1 15.8 76 575.5 12 1 0
1 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 106 245.6 106 550.2 13 1 0
1 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 11 24.9 82 571.4 11 1 0

2 N 𝛽 = 0 0.2 286 480.9 - 25 14
2 N+COMP 𝛽 = 1 0.4 96 580.2 - 1 3
2 CON+GF+COMP 𝛽 = 1 80.1 86 592.5 13 1 0
2 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 96 143.5 96 582.7 14 1 0
2 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 12 30.9 88 590.9 12 1 0

3 N 𝛽 = 0 0.1 296 466.4 - 26 9
3 N+COMP 𝛽 = 1 0.2 112 541.2 - 2 4
3 CON+GF+COMP 𝛽 = 1 124.0 102 554.9 12 1 0
3 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 112 229.9 112 546.3 12 1 0
3 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 11 21.1 86 572.3 11 1 0

7 N 𝛽 = 0 0.1 276 454.0 - 19 4
7 N+COMP 𝛽 = 1 0.1 142 527.9 - 4 1
7 CON+GF+COMP 𝛽 = 1 40.2 132 540.4 15 1 0
7 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 142 10.1 142 530.9 16 1 0
7 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 14 101.3 130 543.0 14 1 0

12 N 𝛽 = 0 0.1 284 491.9 - 23 14
12 N 𝛽 = 1 0.1 112 572.1 - 2 2
12 CON+GF+COMP 𝛽 = 1 19.8 110 575.7 17 1 0
12 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 112 44.3 112 574.4 17 1 0
12 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 16 345.5 106 580.0 16 1 0

13 N 𝛽 = 0 0.4 268 464.9 - 21 10
13 N+COMP 𝛽 = 1 0.5 106 555.0 - 1 2
13 CON+GF+COMP 𝛽 = 1 69.6 106 555.9 12 1 0
13 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 106 41.2 106 555.9 12 1 0
13 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 11 55.3 92 570.9 11 1 0

14 N 𝛽 = 0 0.1 286 452.7 - 30 15
14 N+COMP 𝛽 = 1 0.2 120 524.3 - 2 4
14 CON+GF+COMP 𝛽 = 1 65.9 102 548.2 12 1 0
14 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 120 307.2 120 531.2 12 1 0
14 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 11 104.8 112 539.8 11 1 0

15 N 𝛽 = 0 0.2 302 490.4 - 25 14
15 N+COMP 𝛽 = 1 0.2 148 565.4 - 6 1
15 CON+GF+COMP 𝛽 = 1 76.5 136 582.4 18 1 0
15 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 148 78.2 148 571.1 19 1 0
15 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 17 928.7 138 582.1 16 1 0

16 N 𝛽 = 0 0.1 280 472.3 - 21 5
16 N+COMP 𝛽 = 1 0.7 124 567.6 - 4 0
16 CON+GF+COMP 𝛽 = 1 229.6 120 573.8 17 1 0
16 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 124 191.6 124 569.9 16 1 0
16 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 16 175.3 118 575.8 16 1 0

17 N 𝛽 = 0 0.0 274 418.2 - 25 15
17 N+COMP 𝛽 = 1 1.0 114 477.8 - 3 2
17 CON+GF+COMP 𝛽 = 1 78.7 94 499.4 12 1 0
17 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 114 214.0 114 483.3 14 1 0
17 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 11 35.3 84 515.6 11 1 0
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Table 3

Results for 10 instances of 𝟐𝟓 × 𝟐𝟎 planning units and 3 conservation features. A summary of the characteristics of the reserve 
solutions is provided: computation time in seconds, reserve perimeter, total cost, radius of the reserve graph, number of connected 
components, number of gaps. Conservation features targets are all set to 50%. N=nominal, COMP=compactness, CON=connectivity, 
GF=gap-free. If the time limit is reached (TL=1000 s), the optimality gap of the incumbent solution is given within brackets.

Instance Model Parameters Time Perimeter Cost Radius Components Gaps

4 N 𝛽 = 0 0.1 524 772.6 - 38 28
4 N+COMP 𝛽 = 1 0.4 248 925.0 - 3 7
4 CON+GF+COMP 𝛽 = 1 139.0 214 961.8 21 1 0
4 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 248 993.1 248 930.8 22 1 0
4 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 20 284.3 204 973.4 20 1 0

5 N 𝛽 = 0 0.2 474 663.6 - 39 17
5 N+COMP 𝛽 = 1 0.8 224 778.9 - 7 4
5 CON+GF+COMP 𝛽 = 1 TL[0.5%] 222 792.8 21 1 0
5 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 224 TL[0.7%] 224 791.6 21 1 0
5 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 20 TL[Infeasible] - - - - -

6 N 𝛽 = 0 0.6 494 742.1 - 43 16
6 N+COMP 𝛽 = 1 3.4 248 882.8 - 6 2
6 CON+GF+COMP 𝛽 = 1 577.4 224 910.8 23 1 0
6 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 248 969.8 248 889.1 23 1 0
6 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 22 TL[Infeasible] - - - 1 0

8 N 𝛽 = 0 0.1 476 749.8 - 43 20
8 N+COMP 𝛽 = 1 0.2 196 880.8 - 5 3
8 CON+GF+COMP 𝛽 = 1 50.8 164 915.9 21 1 0
8 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 196 105.1 196 886.4 21 1 0
8 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 20 179.7 166 914.1 20 1 0

9 N 𝛽 = 0 0.1 530 806.8 - 43 25
9 N+COMP 𝛽 = 1 1.4 228 957.5 - 3 4
9 CON+GF+COMP 𝛽 = 1 542.6 192 999.5 21 1 0
9 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 228 717.2 228 965.1 24 1 0
9 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 20 TL[Infeasible] - - - 1 0

10 N 𝛽 = 0 0.4 460 773.3 - 47 27
10 N+COMP 𝛽 = 1 2.6 194 912.6 - 3 3
10 CON+GF+COMP 𝛽 = 1 97.6 184 927.8 18 1 0
10 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 194 TL[0.1%] 194 919.1 20 1 0
10 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 17 263.2 174 938.4 17 1 0

18 N 𝛽 = 0 0.2 494 771.8 - 41 17
18 N+COMP 𝛽 = 1 0.6 230 913.4 - 8 5
18 CON+GF+COMP 𝛽 = 1 TL[0.4%] 178 976.6 23 1 0
18 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 230 TL[0.5%] 230 927.0 22 1 0
18 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 22 TL[4.1%] 222 976.8 21 1 0

19 N 𝛽 = 0 0.1 460 807.9 - 30 15
19 N+COMP 𝛽 = 1 0.5 210 940.9 - 6 2
19 CON+GF+COMP 𝛽 = 1 109.2 202 956.2 23 1 0
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20 CON+GF+COMP 𝛽 = 1, 𝑅𝑚𝑎𝑥 = 19 TL[0.7%] 174 984.2 19 1 0

21 N 𝛽 = 0 0.3 470 736.0 - 41 21
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Table 4

Assessment of the computation time needed to enforce compactness whether using 𝜷 or 𝑷𝒎𝒂𝒙 constraints for 10 
instances of 𝟐𝟎 × 𝟏𝟓 planning units and 3 conservation features. A summary of the characteristics of the reserve 
solutions is provided: computation time in seconds, reserve perimeter, total cost, radius of the reserve graph, number of 
connected components, number of gaps. Conservation features targets are all set to 50%.

Instance Model Parameters Time Perimeter Cost Radius Components Gaps

1 CON+GF+COMP 𝛽 = 1 15.8 76 575.5 12 1 0
1 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 76 12.0 76 575.5 12 1 0

2 CON+GF+COMP 𝛽 = 1 80.1 86 592.5 13 1 0
2 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 86 83.6 86 592.5 13 1 0

3 CON+GF+COMP 𝛽 = 1 124.0 102 554.9 12 1 0
3 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 102 47.4 102 554.9 12 1 0

7 CON+GF+COMP 𝛽 = 1 40.2 132 540.4 15 1 0
7 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 132 35.8 132 540.4 15 1 0

12 CON+GF+COMP 𝛽 = 1 19.8 110 575.7 17 1 0
12 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 110 118.0 110 575.7 17 1 0

13 CON+GF+COMP 𝛽 = 1 69.6 106 555.9 12 1 0
13 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 106 35.9 106 555.9 12 1 0

14 CON+GF+COMP 𝛽 = 1 65.9 102 548.2 12 1 0
14 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 102 108.6 102 548.2 12 1 0

15 CON+GF+COMP 𝛽 = 1 76.5 136 582.4 18 1 0
15 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 136 171.6 136 582.4 18 1 0

16 CON+GF+COMP 𝛽 = 1 229.6 120 573.8 17 1 0
16 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 120 98.5 120 573.8 17 1 0

17 CON+GF+COMP 𝛽 = 1 78.7 94 499.4 12 1 0
17 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 94 36.3 94 499.4 12 1 0

Table 5

Assessment of the computation time needed to enforce compactness whether using 𝜷 or 𝑷𝒎𝒂𝒙 constraints for 10 
instances of 𝟐𝟓 ×𝟐𝟎 planning units and 3 conservation features. A summary of the characteristics of the reserve solutions 
is provided: computation time in seconds, reserve perimeter, total cost, radius of the reserve graph, number of connected 
components, number of gaps. Conservation features targets are all set to 50%. If the time limit is reached (TL=1000 s), the 
optimality gap of the incumbent solution is given within brackets.

Instance Model Parameters Time Perimeter Cost Radius Components Gaps

4 CON+GF+COMP 𝛽 = 1 139.0 214 961.8 21 1 0
4 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 214 438.9 214 961.8 21 1 0

5 CON+GF+COMP 𝛽 = 1 TL[0.5%] 222 792.8 21 1 0
5 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 222 TL[1.0%] 222 794.1 21 1 0

6 CON+GF+COMP 𝛽 = 1 577.4 224 910.8 23 1 0
6 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 224 630.1 224 910.8 23 1 0

8 CON+GF+COMP 𝛽 = 1 50.8 164 915.9 21 1 0
8 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 164 109.3 164 915.9 21 1 0

9 CON+GF+COMP 𝛽 = 1 542.6 192 999.5 21 1 0
9 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 192 717.2 192 999.5 21 1 0

10 CON+GF+COMP 𝛽 = 1 97.6 184 927.8 18 1 0
10 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 184 305.8 184 927.8 18 1 0

18 CON+GF+COMP 𝛽 = 1 TL[0.4%] 178 976.6 23 1 0
18 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 178 TL[0.1%] 178 974.8 23 1 0

19 CON+GF+COMP 𝛽 = 1 109.2 202 956.2 23 1 0
19 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 202 130.7 202 956.2 23 1 0

20 CON+GF+COMP 𝛽 = 1 895.1 184 969.5 20 1 0
20 CON+GF+COMP 𝑃𝑚𝑎𝑥 = 184 930.6 184 969.5 20 1 0

21 CON+GF+COMP 𝛽 = 1 388.3 166 905.8 18 1 0
21 CON+GF+COMP 𝑃 = 166 727.4 166 905.8 18 1 0
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