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A B S T R A C T   

Microbialites are microbial sedimentary structures that constitute some of the oldest traces of life on Earth. By 
their deposition in a wide range of sedimentary environments and their presence throughout most of geological 
time, the sedimentological and geochemical signatures they preserve represent important paleoenvironmental 
archives for understanding Earth's biological and geochemical co-evolution. Here we present a large microbialite 
collection containing >1370 curated specimens, covering all continents except Antarctica and spanning >3.5 Ga 
of Earth history, that is accessible to the international scientific community for examination and sampling at the 
Muséum National d'Histoire Naturelle (MNHN) in Paris, France. After cataloguing and evaluating the samples for 
their lithology, biogenicity, and inferred depositional environments, we characterized the collection for selected 
geochemical parameters, notably carbonate stable carbon and oxygen isotope ratios, as well as major, trace, and 
rare earth element compositions. Finally, we explore the different geochemical proxies analyzed with regards to 
their utility for reconstructing evolving Earth surface environments and/or microbial metabolisms via compar
ison of geochemical data from the MNHN Microbialite Collection to a compilation of similar proxy data for 
carbonates worldwide. We demonstrate that certain temporal trends previously recognized in carbonates 
worldwide (e.g., with respect to variations in C and O stable isotope compositions and redox sensitive trace 
element enrichments) are well reflected in this collection. Our findings highlight the utility of the MNHN 
Microbialite Collection and microbialites more generally for reconstructing the conditions associated with 
habitable environments in deep time and for tracing the response of microbial communities to the geochemical 
evolution of Earth's surface.   

1. Introduction 

1.1. Microbialites: sediments demonstrating microbial influence 

Microbialites are organo-sedimentary deposits where the presence or 
activity of microbes leads to distinct sedimentary structures that can be 
recognized as microbial in origin (Kalkowsky, 1908; Awramik and 
Margulis, 1974; Semikhatov et al., 1979). They are found in a wide 
variety of aqueous environments, ranging from near-freezing (Last et al., 
2013) to the upper temperature limits of photosynthesis (Brock, 1978; 
Ward et al., 1998), at high altitudes (Farías et al., 2013; Wilmeth et al., 
2021) and under as much as tens of meters of water (Bartley et al., 2015; 
Pratt, 2000), from freshwater (Gischler et al., 2008; Pacton et al., 2016) 

to hypersaline waters (D'Amelio et al., 1989; Dupraz and Visscher, 2005; 
Petrash et al., 2012), from highly productive waters (Armienta et al., 
2008) to slow growing desert crusts and endolithic nutrient- or water- 
limited habitats (Bonilla-Rosso et al., 2012; Thomazo et al., 2020). 

While the microorganisms responsible for microbialite formation are 
rarely preserved in the sedimentary record (Riding, 2000; Shapiro, 
2007), they leave important mineralogical, chemical, and sedimentary 
traces of their presence and activity. Microbes may produce significant 
environmental shifts in redox and alkalinity conditions at a variety of 
scales: from the cell surface to the scale of mineral grains, or sediment 
porewaters, and even up to local water column and basinal scales 
(Dupraz et al., 2009; see also Dong et al., 2022 for a review). Their 
metabolic activity often drives the precipitation of a variety of minerals, 
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including phosphate and sulfide minerals, iron oxides, and most 
commonly, carbonates. The latter mainly result from photosynthetic 
uptake of CO2 and corresponding increased alkalinity in photic envi
ronments, or by sulfate reduction in anoxic pore-water sediments or 
water-columns (Visscher et al., 2000; Dupraz et al., 2009). Microbialites 
are often, but not always, based on photosynthetic primary producers, 
seeking light to perform photosynthesis, and thus generating microbial 
sedimentary structures that are often observed growing in the direction 
of sunlight (Awramik and Vanyo, 1986; Bosak et al., 2009; Ojakangas 
et al., 2023). Microbialites may also include small algae, fungi, protozoa, 
and viruses (White et al., 2018; White et al., 2021). Much of the organic 
matter produced by the uppermost photosynthetic communities is 
consumed in lower layers where anaerobic bacteria and archaea domi
nate (Golubic, 1976; Papineau et al., 2005; Foster and Green, 2011). 
Examples exist of microbial populations growing without important 
photosynthetic contributions; e.g., under dark conditions in caves or 
deep waters, often fueled by lithoautotrophic sulfur-oxidizing metabo
lisms (Reitner, 1993; Macalady et al., 2008). 

Microbialite formation testifies to ecological interactions but is not 
simply the result of microbial metabolic activity. Extra-polymeric sub
stances (EPS) produced by microbial mats may also mediate lithification 
by surface complexation reactions (Chafetz and Buczynski, 1992; Knoll, 
2003; Decho et al., 2005). Furthermore, the lack of correlation between 
carbon fixation rates and biogenic carbonate precipitation suggests that 
autotrophy may not have a major role (Wilmeth et al., 2018) and that 
precipitation may be primarily influenced by (pore)water chemistry 
changes independently of microbial activity (Dupraz et al., 2009; Hu 
et al., 2023). The physical process of trapping and binding of detrital 
sediment grains is also often important for microbialite morphogenesis 
(Logan, 1961; Riding and Awramik, 2000). In sum, different sedimen
tation modes, environmental conditions, evolving microbial community 
activity and composition, and early diagenetic reactions all interact to 
give rise to a large variety of structures that are all considered 

microbialites. They are generally convex upwards but can adopt a wide 
variety of macrostructures (Fig. 1). They are typically classified ac
cording to their mesostructural components (Fig. 1; Grey and Awramik, 
2020), leading to several broad sub-categories comprised of stromato
lites, dendrolites, thrombolites, leiolites, and MISS (i.e., microbially 
induced sedimentary structures in siliclastic sediments; Noffke, 2009). 
Some authors also consider, more broadly, the TSTs (i.e., tufa, sinter, 
travertine, and other probable microbially produced structures; de Wet 
and Davis, 2010) as universally microbial in origin, although this is the 
subject of ongoing research. 

Recognizing microbial influence on sedimentation and cementation 
is not always straightforward. For example, some sedimentary structures 
commonly considered as stromatolites may be composed largely of 
sparry carbonate crusts of primarily abiotic origin, whereas others may 
take a hybrid form with alternations between microbially-influenced 
fine-grained laminae and sparry inorganic precipitates, blurring the 
line between biogenic and abiogenic (Riding, 2011). Furthermore, both 
numerical models (Grotzinger and Knoll, 1999) and abiotic physical 
analogs (Mcloughlin et al., 2008) demonstrate that under some condi
tions, the formation of microbialite-like structures does not necessitate 
biological activity. While scientific discoveries continue to push back the 
boundaries of the living world, the distinction is often nuanced between 
microbial and non-microbial carbonates, and the complex issue of bio
genicity is ever-present in the study of microbialites on Earth and the 
search for them elsewhere (e.g., Awramik and Grey, 2005; Rizzo et al., 
2015; Gong et al., 2022). In practical terms, biogenicity consists in 
having an origin in the biosphere, i.e., having been alive or involved in 
the development of living organisms, and not only having been depos
ited at the same time and in the same place. Biogenicity studies attempt 
to determine the preservation processes of microbial mats as micro
bialites, which is particularly important in the search for early life in 
Precambrian rock successions. Whether for ancient structures preserved 
in deep-time geological formations, or for modern structures described 

Fig. 1. Classification of microbialites by macrostructure and mesostructure (internal architecture) compared to similar structures of non-microbial origin. Photo
graphs of microbialites come from the MNHN Microbialite Collection; “GgX-Y" is the museum inventory number. Photographs of mineral and rock structures of non- 
microbial origin also come from various MNHN collections. Scale bars are 2 cm. 
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in diverse environments where carbonate precipitation does not neces
sarily require metabolic activity, the biogenicity of microbialites is 
continually debated (García Ruiz et al., 2002; Schopf and Kudryavtsev, 
2012; Allwood et al., 2018). 

1.2. Microbialites through geological time: archives of the past 

In addition to this exceptionally broad environmental distribution, 
the geological record of microbialites spans >3.5 billion years (Ga) of 
life history. In contrast to other marine chemical sediments, such as 
banded iron formations (BIF) that were deposited in anoxic marine en
vironments almost exclusively prior to 1.8 Ga (Cloud, 1973), micro
bialites appear in all periods of geological time up to the present day. 
They often have a carbonate composition and are similar to non- 
microbial carbonates. They carry important mineralogical, geochem
ical, and isotopic information regarding Earth's chemical and biological 
evolution, especially in deep geological time (Riding et al., 2014; Sforna 
et al., 2014; Hohl and Viehmann, 2021; Wilmeth et al., 2022). Their 
abundance, form, and paleoenvironmental distribution have also 
evolved as the microbial biosphere itself responded to Earth system 
changes through time (Awramik et al., 1976; Knoll and Semikhatov, 
1998; Hofmann, 2000; Riding, 2000). Thus, microbialites constitute an 
important reservoir of environmental and biological information, 
especially at the height of their abundance during the Archean and 
Proterozoic. 

Theoretically, the Earth has been habitable since the first establish
ment of a hydrosphere by 4.3 Ga (Mojzsis et al., 2001; Wilde et al., 
2001). Molecular clock analyses suggest an origin of phototrophy before 
3.2 Ga and the divergence of the archaea as early as 4.11 Ga (Battistuzzi 
et al., 2004), implying even earlier ages for the last common ancestor of 
living organisms. One of the oldest purported pieces of evidence for life 
on Earth takes the form of putative stromatolites from the 3.7 Ga Isua 
Supracrustal Belt, Greenland (Nutman et al., 2016; Nutman et al., 2019; 
Nutman et al., 2021), however it remains to be seen as to whether these 
structures are truly of biological origin and not the product of structural 
deformation (Allwood et al., 2018; Zawaski et al., 2020). Two samples 
from this controversial locality are included in the collection and their 
data plotted alongside other Eoarchean-to-Paleoarchean microbialites in 
this study for comparative purposes only; we highlight that microbial 
influence during their deposition is highly uncertain at present. All other 
samples featured in this study have been rigorously screened to elimi
nate any for which a microbial origin may be dubious. The first sedi
ments that are widely accepted by the scientific community as biological 
in origin date from the early Paleoarchean, with stromatolites and mi
crobial mats preserved in the 3.48 Ga Dresser Formation (Pilbara craton, 
Australia; Van Kranendonk et al., 2008) and 3.47 Ga Hooggenoeg For
mation (Kaapvaal craton, South Africa; Walsh, 1992; Hickman-Lewis 
et al., 2018). By 3.43 Ga, a remarkable stromatolitic reef system is 
preserved in the Strelley Pool chert (Pilbara craton, Australia; Walter 
et al., 1980; Sugitani et al., 2010), where several morphotypes are 
preserved on an ancient peritidal carbonate platform as a complex 
ecosystem with clear paleoenvironmental associations (Allwood et al., 
2006). 

Based on the reconstruction of Peters et al. (2017) for North Amer
ican and Caribbean marine environments, the normalized occurrence of 
microbialites exhibits three major trends in their spatial and temporal 
distributions. First there is an increase from their first appearances in the 
Archean to the Early Paleoproterozoic (ca. 3800–2250 Ma). Then a 
period of dominance occurs from the Paleoproterozoic to the Meso- 
Neoproterozoic (ca. 2250–800 Ma) during which stromatolites are 
found in almost all marine carbonate units, and evolve from cm- to m- 
scale deposits to increasingly thick, multimetric platforms. New types of 
organisms contribute to the formation of microbialites in deeper envi
ronments, leading to a diversification of observed mesostructure, such as 
the generalized spread of thrombolites and the appearance and prolif
eration of dendrolites (Shapiro, 2007). The macrostructure of 

stromatolites also becomes more complex, sometimes showing multiple 
branching, and being able to form large columns or cones by vertical 
growth (Awramik and Sprinkle, 1999). Finally, from the end of the 
Neoproterozoic (ca. 700–541 Ma), a decline in records begins to lead to 
a very low average prevalence during the Phanerozoic (ca. 541–0 Ma), 
punctuated by a few resurgences, notably the one between the Cambrian 
and the Early Ordovician (ca. 482–511; Riding, 1992; Webby, 2002). 
Overall, structures are becoming more complex, but diminish in fre
quency, size, and diversity. Thus, from a biogeographic perspective, 
stromatolites are far more abundant in ancient environments, prior to 
the evolution and diversification of metazoans, which trigger predation, 
competition, and substrate modification (Monty, 1974; Awramik, 1992; 
Riding, 2006). Although in the modern ocean they are restricted to 
ecological niches where animal activity is limited, this is not necessarily 
the main reason for their decline. Stromatolite resurgences during the 
Phanerozoic do not entirely coincide with mass extinctions, and even 
today there are environments rich in diverse microbial and metazoan 
communities (e.g., Lake Tanganyika in Africa see Cohen et al., 1997; see 
also Rishworth et al., 2016 for a review) in which complex inter-growth 
tends to develop. 

While the Earth has experienced multiple environmental upheavals, 
whether from a climatic, redox, or biological point of view, or by large 
oxygenation events, microbialites have thrived through these distur
bances, and may record them (Hohl and Viehmann, 2021). Indeed, the 
ability of microbialites to thrive under extreme environmental condi
tions makes them unique archives for studying major environmental 
perturbations, often associated with mass extinctions, such as oxygen
ation/deoxygenation events. Archean shallow marine and freshwater 
carbonates support the hypothesis of oxygenic photosynthesis prior to 
the ca. 2.45 to 2.2 Ga “Great Oxidation Event” (GOE; see Lyons et al., 
2014 for a review) by their role in the establishment of Archean “oxygen 
oases” (Anbar et al., 2007). Indeed, oxidation of small water bodies and 
surface environments likely occurred prior to oxygenation of the at
mosphere or marine by the activity of benthic, mat-forming cyanobac
teria (Lalonde and Konhauser, 2015; Sumner et al., 2015). During the 
“Boring Billion”, i.e., from ca. 1.85 Ga to 0.85 Ga (Holland, 2006), 
stagnant atmospheric O2 levels and more oxidized surface ocean waters 
provide favorable conditions for microbialites. They thus remain a major 
feature of carbonate systems throughout much of the Proterozoic. Af
terwards, despite a significant decline, they re-appear in many Phaner
ozoic carbonate producing systems that are subject to important redox, 
salinity, and/or nutrient perturbations occurring during continent-scale 
marine transgressive-regressive cycles (Bertrand-Sarfati and Monty, 
2012; Peters et al., 2017). 

1.3. Microbialites and their paleoproxy potential 

Microbialites are often (but not universally) composed of chemical 
sediments; while these may include Fe- and Mn-oxides (e.g., Planavsky 
et al., 2009; Salama et al., 2013; Polgári and Gyollai, 2022), halite (e.g., 
Pope et al., 2000; Brigmon et al., 2008), gypsum (e.g., Petrash et al., 
2010; Allwood et al., 2013), and phosphate (e.g., Bertrand-Sarfati et al., 
1997; Morais et al., 2021), they are most often composed of different 
polymorphs of calcium carbonate minerals (i.e., aragonite, calcite) or 
Mg-rich carbonate minerals (e.g., magnesite, dolomite, ankerite) due to 
photosynthesis-driven alkalinization of their (micro-)environment and 
attendant increase in the saturation state of carbonate minerals (Aloisi, 
2008; Zeyen et al., 2021). Many of the chemical sediments composing 
microbialites have long been recognized for their paleoproxy potential 
as they may retain elemental and isotopic signatures of the aqueous 
environments in which they precipitated (for reviews see Calvert and 
Pedersen, 2007; Robbins et al., 2016; Lau and Hardisty, 2022). Below we 
introduce some of the paleoproxies that are particularly relevant for 
carbonate microbialites and that we have analyzed using the MNHN 
Microbialite Collection to better understand the paleoproxy potential of 
microbialites relative to their non-microbialitic carbonate counterparts. 
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1.3.1. Carbon and oxygen stable isotope ratios in carbonate microbialites 
Variations in the 13C/12C ratio as well as 18O/16O ratio due to iso

topic fractionation are recorded during the precipitation of sedimentary 
carbonates and have proven to be important tools for exploring paleo
environmental conditions, the carbon cycle, and aqueous geochemistry 
in carbonate-producing sedimentary environments throughout geolog
ical time. 

The evolution of δ13Ccarb in deep geologic time is classically inter
preted in the “carbon lever” framework (Holland, 1984). In this model, 
carbon is ultimately supplied to the Earth's surface via the degassing of 
CO2 from the solid earth by metamorphism and volcanism. Carbon is 
then cycled through the ocean-atmosphere system, and ultimately exists 
by burial and subduction of organic matter and carbonate (see review by 
Berner, 1999). As the mean isotopic composition of volcanic CO2 sources 
(estimated at − 5‰; Cartigny, 2005) as well as organic matter (δ13Corg; 
estimated at − 25‰; Havig et al., 2017 and references therein) are not 
thought to vary appreciably over geological timescales, the δ13Ccarb 
value is determined by the relative magnitudes of burial of organic 
carbon (i.e., the fraction of carbon buried as organic matter, Forg, whose 
value today is estimated at ca. 0.2) and carbonate carbon (i.e., the re
sidual carbon exit flux, Fcarb, whose value today is estimated at ca. 0.8). 
Over long geological timescales, this cycle is balanced, with the large 
majority of atmospheric and oceanic CO2 sequestration occurring in 
carbonate sediments. In the absence of biological activity, carbonates 
are expected to have values approaching that of the mantle at ca. -5 ‰. 
In order to maintain δ13Ccarb values near zero, the carbon lever frame
work necessitates a relatively static ratio for the importance of organic 
versus inorganic carbon burial over geological time. However, this runs 
contrary to evidence that organic carbon burial rates have varied sub
stantially over geological time (Hayes et al., 1999; Husson and Peters, 
2017; Kipp et al., 2021). Furthermore, the magnitude of the organic 
carbon fluxes implied by some of Earth's largest carbon isotope excur
sions are difficult to explain (e.g., Bristow and Kennedy, 2008). This 
long-standing problem in the interpretation of ancient carbon cycling 
merits mention here but is beyond the scope of this study. Finally, it is 
important to note that carbon isotopes in carbonates do not always 
reflect global carbon cycle, but rather may reflect local dissolve carbone 
inorganic reservoir influenced by biogeochemical processes such as 
methanogenesis, methanotrophy, or Rayleigh distillation. 

δ18Ocarb compositions of sedimentary carbonates can provide in
sights into paleotemperatures, aqueous geochemistry, and the relative 
importance of marine versus meteoric water sources in carbonate 
depositional environments (Ditchfield and Marshall, 1989; Jenkyns 
et al., 1994). It has long been noted that δ18Ocarb values in Precambrian 
carbonates show values that are significantly lower (lighter) than today 
(Degens and Epstein, 1962; Weber, 1965). The important secular evo
lution of δ18Ocarb over deep geological time has been classically inter
preted as reflecting diagenetic processes, such as meteoric diagenesis, or 
interaction with high-temperature fluids during later metamorphism, 
both of which tend to generate lighter secondary δ18O isotopic values in 
ancient carbonate rocks (e.g., Kaufman and Knoll, 1995; Melezhik and 
Fallick, 2003; see Knauth and Kennedy, 2009, for a succinct review). 

Three non-mutually-exclusive hypotheses have been suggested to 
explain the trend towards significantly lower δ18Ocarb values in deep 
time. The first evokes higher paleotemperatures in ancient seawater, as 
carbonates precipitated at elevated temperatures are depleted in 18O 
(Epstein et al., 1951). The application of typical carbonate paleother
mometers indicate seawater temperatures of up to 100 ◦C during the 
Archean based on such low δ18Ocarb (see review by Jaffrés et al., 2007). 
This assumes that primary isotopic compositions are preserved in 
ancient carbonates. However, this leads to the second hypothesis that 
alteration by meteoric and diagenetic fluids has systematically shifted 
the oxygen isotopic composition of ancient carbonates towards lighter 
values. Indeed, the high porosity of carbonates makes them equally 
important archives of post-depositional fluid alteration (Tan et al., 
2018), and this applies microbialites as well, where alteration and loss of 

fluid-mobile elements is also directly tied to porosity (Viehmann et al., 
2023). The alteration hypothesis is often supported by additional proxy 
data for fluid-rock interaction (e.g., elevated manganese to strontium 
ratio), although this may be problematic for Precambrian carbonates 
deposited from seawater of dramatically different composition from 
today (see below, section 3.2). 

Finally, it is possible that the oxygen isotopic composition of 
seawater evolved through geological time. The idea of secular evolution 
in the δ18O value of global seawater faces a significant challenge in that 
oxygen isotope exchange with basalt during hydrothermal circulation 
acts to buffer δ18O values of the global ocean to near zero over geological 
timescales (Muehlenbachs and Clayton, 1976). More recently, it was 
suggested that seawater-rock interaction may have been less efficient in 
deep geological time (Kasting et al., 2006) due to a higher heat flux and 
more important temperature gradient in the crust, such that the boiling 
and upwelling of water at shallower depths limited the efficiency of 
isotopic exchange during water-rock interaction. Indeed, recent studies 
examining the oxygen isotope compositions of sulfate (Killingsworth 
et al., 2019) and iron-oxides (Galili et al., 2019) both indicate that 
seawater may have been isotopically lighter by ca. 10 ‰ relative to 
today. If this last hypothesis proves correct, the light δ18O values of 
carbonates, like those of ancient cherts (c.f. Knauth, 2005), cannot be 
considered exclusively as evidence of alteration by post-depositional 
fluids. 

1.3.2. Rare earth elements in carbonate microbialites 
Rare Earth Elements (REE) are powerful tracers of sedimentary 

provenance as well as specific aqueous conditions that generate frac
tionation between different REE in solution, which are in turn expressed 
as water column REE anomalies that may be preserved in chemical 
sediments such as carbonates (see reviews by Bolhar et al., 2004, and 
Tostevin et al., 2016), including carbonate microbialites (Webb and 
Kamber, 2000; Kamber et al., 2014). REE have short residence times in 
aqueous environments (e.g., ranging from ca. 50 yr for Ce to ca. 3000 yr 
for Lu; Nozaki, 2001) and are thus local paleoenvironmental tracers that 
have shown significant utility for reconstructing depositional environ
ments based on their enrichments or depletions in ancient chemical 
sediments, such as freshwater versus marine environments (Bolhar and 
Van Kranendonk, 2007), the local importance of continental solute 
fluxes (Alexander et al., 2008), and the local redox environment (Bau 
and Dulski, 1996a). Furthermore, REE signatures can be highly 
distinctive and are generally unaffected by carbonate diagenesis (e.g., 
Hood et al., 2018; Liu et al., 2019) or high-temperature metamorphism 
(e.g., Bau, 1993; Cherniak, 1998; Bolhar et al., 2004). Yttrium (Y), while 
not a lanthanide, behaves similarly to holmium (Ho) but with slightly 
lower particulate reactivity in seawater, and supra-chondritic Y/Ho ra
tios are a useful indicator of open-ocean conditions (Byrne and Lee, 
1993; Bau et al., 1995). Accordingly, Y is often presented alongside REE 
data (sometimes denoted REE + Y or REY; for simplicity we employ the 
term REE in this work for REE data that includes Y). Upon normalization 
of REE concentration data to a suitable reference material, such as 
chondrite or the upper continental crust (most often represented by the 
Post-Archean Australian Shale composite dataset, PAAS; normalization 
values for this work are from Taylor and McLennan, 1985), one can 
immediately visualize REE fractionation relative crustal REE sources. 

Carbonate microbialites features generally appear to record the REE 
of the waters in which they formed (Webb and Kamber, 2000). While 
continental waters can have highly variable REE features, seawater of 
the open ocean presents a characteristic REE pattern typical that has 
remained broadly similar (with a few important exceptions) since 3.7 Ga 
(e.g., Bolhar et al., 2005). Open ocean seawater shows heavy REE 
(HREE) enrichment relative to light REE (LREE) as a consequence of the 
increasingly strong complexation with marine carbonate ions with 
progressively smaller lanthanide radii (Byrne and Kim, 1990; Zhong and 
Mucci, 1995). The particulate surface complexes of Y in seawater are 
less stable than those of REE of similar ionic radii such as Ho (Byrne and 
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Lee, 1993; Bau et al., 1995), making the Y/Ho ratio an important 
seawater signature that develops in natural waters with increasing 
salinity (Lawrence and Kamber, 2006), producing seawater-like Y/Ho 
ratios at salinities as low as 5–10 ppt (Tepe and Bau, 2016). Open 
seawater reaches Y/Ho ratios of 60 to 90 g/g in the modern ocean 
(Nozaki et al., 1997; compare to the PAAS Y/Ho ratio of 27; Taylor and 
McLennan, 1985). Finally, positive anomalies in both Gd and La repre
sent another important and widely-applied seawater signature. Both 
show natural anomalies due to a combination of enhanced carbonate 
complexation relative to their neighbors (e.g., Kim et al., 1991) and 
differential fractionation during flocculation of REE with organic matter 
across salinity gradients though an estuary (e.g., Byrne and Kim, 1990). 
Note that the small natural Gd anomalies introduced here are different 
than the large anthropogenic anomalies in natural waters arising from 
the medical use of Gd contrasting agents (Bau and Dulski, 1996b). 
Considering the small magnitude of Gd anomalies in natural waters free 
of anthropogenic influence compared to that of La, Gd anomalies are not 
treated further in this manuscript. 

Finally, two REE signatures with important paleoenvironmental 
applications may also be present in seawater and associated precipitates. 
PAAS-normalized cerium anomalies are of particular interest for pale
oenvironmental reconstruction as they are generated by oxidation of Ce 
(III) to more immobile Ce(IV) as a function of the redox conditions of the 
original sediment source, those experienced during sedimentary trans
port, and those of the depositional environment. Important negative Ce 
anomalies become widespread starting in the Paleoproterozoic due to 
increasingly important oxidative Ce removal from seawater associated 
with upper water column oxygenation in the wake of the GOE (Warchola 
et al., 2018; Hodgskiss et al., 2021). Under redox-stratified water col
umn conditions, oxidized cerium trapped in the sediment can be 
remobilized and released into anoxic bottom waters, driving the local 
development of positive cerium anomalies (e.g., Planavsky et al., 2009). 
Europium is another REE that shows redox-sensitive speciation under 
conditions relevant to Earth's surface. Positive Eu anomalies in natural 
water and their precipitates represent contributions from high temper
ature (>250 ◦C) reducing fluids, where Eu(III) is reduced to the more 
soluble Eu(II) form (Bau, 1991). Cooling of hydrothermal fluids, 
whether by conduction or mixing with lower-temperature fluids, results 
in the reoxidation of dissolved Eu(II) to Eu(III) and the loss of positive 
water column Eu anomalies (Bau et al., 2010). Marine chemical sedi
ments of Archean age, whether banded iron formations, cherts, or car
bonates (including carbonate microbialites), often show important 
positive Eu/Eu* anomalies due to the greater influence of high- 
temperature hydrothermalism on diverse aquatic habits of the early 
Earth (e.g., Bau and Dulski, 1996a, 1996b; Bolhar et al., 2004; Allwood 
et al., 2010; Kamber et al., 2014; Viehmann et al., 2015). 

1.3.3. Redox-sensitive elements in carbonate microbialites 
Enrichments of redox-sensitive elements such as iron (Fe), manga

nese (Mn), uranium (U), molybdenum (Mo), and vanadium (V) in car
bonate chemical sediments are powerful tracers of Earth surface redox 
conditions. These elements demonstrate redox-dependent solubility as 
the result of valence changes as well as redox-sensitive ligand coordi
nation that varies as a function of the amount of oxygen present in both 
continental and marine environments (e.g., Calvert and Pedersen, 1993; 
Russell and Morford, 2001; Wille et al., 2013; see Robbins et al., 2016 for 
review). In the case of the major elements Fe and Mn, both are solubi
lized under anoxic conditions, and form insoluble oxide precipitates in 
contact with free oxygen; Fe oxidizes rapidly and near-quantitatively at 
pH values greater than ca. 5 and at low O2 partial pressures, while Mn 
oxidation is kinetically inhibited at all but alkaline pH conditions, and 
the Mn(II)/Mn(IV) couple has a higher oxidizing potential and requires 
higher O2 partial pressures to drive oxidation and oxide precipitation 
(see Davison, 1993, for review). These metals are thus present in higher 
abundances in natural waters under low-O2 conditions and removed as 
oxides with different degrees of efficiency with increasing redox 

potential. 
The trace elements U, Mo, and V act somewhat inversely to Fe and 

Mn; all three are solubilized from oxic terrestrial weathering environ
ments and require oxic to suboxic conditions to remain in solution; 
under anoxic water-column conditions, they are preferentially scav
enged into sediments. Accordingly, in an O2-depleted ocean-atmosphere 
system, sedimentary enrichments of these trace elements are minimal, 
whereas anoxic sediments in contact with an O2-rich ocean-atmosphere 
system show enrichments that scale with atmospheric or marine 
oxygenation. Indeed, the enrichment of these redox-sensitive elements 
as well as their stable isotope compositions in ancient marine sedi
mentary rocks has been widely used to constrain the chronology of 
oxygenation on Earth (e.g., Arnold et al., 2004; Anbar et al., 2007; Wille 
et al., 2007; Sahoo et al., 2012). There exist subtle but important dif
ferences in the redox-driven behavior of these trace elements. Today, 
oxidative continental weathering results in the release of U(VI) from U 
(IV)-bearing uraninites (Grandstaff, 1976) and supplies most of the 
uranium entering the ocean via rivers (Dunk et al., 2002), where it ul
timately exits by sequestration largely in anoxic sediments (Anderson 
et al., 1989). U(VI) is easily integrated into the calcite lattice due to its 
small size (Sturchio et al., 1998) and is enriched in carbonates precipi
tated under oxic conditions. Vanadium is similarly supplied by conti
nental weathering in the form of the oxyanion vanadate and is 
sequestered similarly to uranium and molybdenum into reducing sedi
ments deposited under anoxic conditions (Breit and Wanty, 1991). 
Molybdenum is supplied by oxidative continental weathering of sulfide 
minerals, and to a lesser degree marine hydrothermalism, and is largely 
sequestered by organic rich sediments deposited under anoxic condi
tions (McManus et al., 2002), with the added particularity that its 
removal is significantly enhanced via thiolation in the presence of 
aqueous S(-II) (Helz et al., 1996, 2011; Vorlicek et al., 2004). Carbonate 
sediments may capture all these different processes by the enrichment or 
depletion of these two “O2-immobile” major elements and three “O2- 
mobile” trace elements. In this study we evaluate the systematics of 
these redox-sensitive elements in carbonate samples of the MNHN 
Microbialite Collection to evaluate whether they record the evolution of 
Earth's surface redox conditions in a manner similar to non-microbialitic 
carbonates. 

1.4. The MNHN microbialite collection: a community resource for 
studying microbe-sediment interactions through time 

Microbialites are inherently diverse, distributed worldwide and 
increasingly protected – all factors that complicate their systematic and 
comparative study. To address these issues and promote microbialite 
research in general, we have assembled a large collection of microbialite 
samples accessible for examination by the public as well as for study and 
sampling by academic researchers. This collection was initiated on 
behalf of the MNHN, in accordance with its mission to promote research, 
specimen conservation, teaching, and public outreach. It is stored in the 
historical reserves of the MNHN in Paris (Fig. 2). Here, several hundred 
thousand specimens of rocks, minerals, fossils, and archeological arte
facts have been collected and curated since 1626, initially as a Royal 
collection (the “Droguier du Roi”) that laid the foundation for one of the 
world's first natural history museums, formally taking on this title in 
1793. The ultimate goal of the MNHN Microbialite Collection is to 
provide a comprehensive, curated, and accessible collection, along with 
associated metadata, including geochemical data, that would be avail
able for the microbialite scientific community in perpetuity. 

The MNHN Microbialite Collection is comprised of historical MNHN 
samples as well as new acquisitions secured from over 37 researchers to 
date (Supplementary Table 1), and is constantly growing. It includes 
numerous rare specimens, for example purported microbialites from the 
>3.7 Ga Isua Supracrustal Belt (West Greenland), from the 3.48 Ga 
Dresser Formation and 3.43 Ga Strelley Pool chert (Pilbara, Western 
Australia), and specimens of modern microbialites from the shallows of 
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Hamelin Pool (Shark Bay, Western Australia). In concrete terms, this 
collection gathers together samples from all continents (except 
Antarctica) and covers all of geological time since the first presumed 
traces of life on Earth. 

Microbialites have long been of interest for understanding the co- 
evolution of the atmosphere, hydrosphere, and biosphere over geolog
ical time, as well as to trace and understand major perturbations in 
Earth's history. Such a large microbialite collection begs comparative 
study, whereby specific questions regarding microbialite archives may 
be addressed such as: are microbialites reliable recorders of the paleo
environments in which they formed? Does the chemical and isotopic 
composition of microbialites trace the evolution of Earth's major 
biogeochemical cycles in the same way as their non-microbial carbonate 
counterparts? What are the compositional characteristics of micro
bialites deposited in different environments, and do they change 
through Earth history? To begin to address these questions, we provide 
here high-precision trace element data as well as carbonate C and O 
stable isotope data for over 400 samples out of the ca. 1370 that 
currently constitute the collection, and compare them to a large data
base of carbonates from literature in an attempt to understand the na
ture and fidelity of microbialites as chemical and isotopic recorders of 
Earth system change. 

2. Methodology 

2.1. Curation and Sampling 

In total, for this study, we inventoried over 1370 specimens of 
microbialites, stored under 480 inventory numbers; multiple specimens 
from the same strata, locality and age are classified under the same in
ventory number. All samples are part of the General Geology Collection 
of the MNHN and thus possess inventory codes beginning with “Gg”. The 
Microbialite Collection is comprised of a combination of samples that 
were already in the General Geology Collection, however a large number 
of samples were added in 2021 as the result of a concerted effort to 
establish this microbialite subcollection. Associated data were collated 
from historical catalogs when available, and for both historical and 

newly entered samples, efforts were made via literature search to 
establish depositional age constraints, state of preservation or meta
morphic degree, and stratigraphic, depositional, and paleoenvir
onmental context. Samples were packed in crystal polystyrene LAB 
boxes (transparent, chemically neutral, and UV resistant, Fig. 2D), and 
were stored in a dedicated section of the General Geology Collection 
archives for easy access by researchers. Most samples of the Microbialite 
Collection are now included in the MNHN public database which can be 
consulted at https://science.mnhn.fr/institution/mnhn/collection/gg/ 
item/search. All metadata, including geochemistry data, associated to 
the MNHN Microbialite Collection at the time of publication has been 
made available at EarthChem repository (Fogret et al., 2024); additional 
information on the collection is also available at https://www.mic 
robialites.com/collection-and-database/. 

For chemical and isotopic analyses, 478 microbialites were sampled 
from the collection using an electric hand drill equipped with tungsten 
carbide drill bits (HP-4 series, Karnasch GmbH, Heddesheim, DE). Be
tween samples, the bit was cleaned with ethanol and dried with com
pressed air. The powders analyzed were extracted from the most 
representative mesostructures of the microbialite under consideration 
after its complete description. For this reason, some samples have been 
drilled in several spots, especially if from a macrostructure that reveals 
an evolution of the depositional environment (e.g., between the base 
and the top of a stromatolitic column), or if they present different 
mesostructures (e.g., stromatolitic and dendrolitic areas in the same 
sample). Between 30 and 200 mg of powder was recovered on new 
aluminum foil and directly transferred into 5 ml polypropylene vials for 
analysis and archiving. While targeted micro-drilling was performed, 
volumes approaching a cubic cm were sampled and homogenized into 
powder, such that we consider them bulk analyses; future work using in- 
situ methods (e.g., SIMS, LA-ICP-MS) would certainly reveal finer-scale 
variation and heterogeneity that we are admit are certainly present but 
not captured but our current study. 

2.2. Stable carbon and oxygen isotopic analysis 

Most of the stable carbon and oxygen isotope compositions (n = 253) 

Fig. 2. The historical collections of the MNHN. (A and B) Sample Gg2002–35, a stromatolite from Potosi, Bolivia, collected for the MNHN by Alcide d'Orbigny in 
1834, i.e., before the definition of stromatolites. Its historic inventory number 169 is referred to in one of the contemporary catalogs (C) as “169 – Calcaire 
magnésien, concrétionné jaunâtre. Santa Lucia.” (Translation: “magnesian limestone, yellowish and concretioned”). (D) Samples from the MNHN Microbialite 
Collection are packed in LAB boxes after the curation and sampling and stored in the drawers of the historical reserves of the Geology and Mineralogy Gallery of 
the MNHN. 
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of the microbialite samples reported here were determined following the 
analytical procedure of Santrock et al. (1985) using a ThermoFisher 
Delta V Advantage isotope-ratio mass spectrometer (IRMS) located at 
the SSMIM (Service de Spectrométrie de Masse Isotopique du Muséum), the 
isotopic analysis platform of the MNHN. Another portion of the samples 
(n = 166) was measured on a MAT253 instrument of the Pôle Spec
trométrie Océan (PSO; Plouzané, France) using identical procedures but 
without the use of the Marbre LM standard (see below). In both cases (n 
= 419 in total), the measurements were carried out on powdered sam
ples (between 60 and 90 μg) which were weighed and then transferred in 
glass vials to be placed into a KIEL IV Carbonate Preparation Device. 
This instrument extract and purify CO2 gas from carbonate (CaCO3), in a 
thermostatic chamber at 75 ◦C for 8 min, by adding orthophosphoric 
acid (H3PO4) according to the following equation: 

3CaCO3 (s) +2H3PO4 (aq)→3CO2 (g) +3H2O(g) +Ca3(PO4)2 (aq).

For each analytical run comprising 48 analyses, 10 standards were 
dispersed throughout the run to correct for shifts in mass bias and 
linearity and to calibrate the data, namely: NBS-19 (National Bureau of 
Standards, U.S.A.), MarbreLM (SSMIM internal standard, used for 
samples analyzed at the MNHN), and CAMIL-21 (in-house standard of 
Neoproterozoic cap carbonate available from P. Sansjofre). The per
centage of carbonate in each sample was calculated using the mass 44 
signal. All isotopic data are expressed in permil (‰) relative to V-PDB. 
The internal precision, as determined by replicate standard analyses, 
was better than 0.03 ‰ for δ13Ccarb and better than 0.06 ‰ for δ18Ocarb 
(2 standard errors; 2σx‾). The external precision, as determined by the 
mean of the differences between replicate samples (n = 32), is better 
than 0.09 ‰ for δ13Ccarb and better than 0.13 ‰ for δ18Ocarb (2σx‾). 

2.3. Major, trace, and rare earth element analyses 

The concentrations of selected major, trace, and rare earth elements 
(REE) in carbonate samples were determined using an ElementXR high- 
resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) 
of the PSO. Firstly, samples were weighed and digested in a class 1000 
clean laboratory using a weak carbonate leach procedure to preferen
tially liberate elements from the carbonate without digesting any clays, 
oxides, or crystalline silicates that may have been present in the 
microbialites samples, following the method of Rongemaille et al. 
(2011). All concentrations are reported as leachable concentrations with 
respect to the total mass of the leached sample. After weighing the 
powdered samples (between 30 and 60 mg) in Savillex PFA vials, 1 ml of 
5% trace-metal grade acetic acid (Fisher Scientific) was added, and the 
vials were vortexed by hand. Then, 100 μl of the leachate was pipetted 
from the top of the aqueous phase after the samples had settled over
night at room temperature; no centrifugation, decantation, or filtration 
was additionally employed. The small aliquot of leachate was added to 
5 ml polycarbonate tubes and diluted with 4.9 ml of 2% PFA-distilled 
nitric acid (HNO3) containing 2 ppb indium (In) as an internal stan
dard. HR-ICP-MS analyses were performed using a cyclonic spray 
chamber with a PFA nebulizer and standard (H) cones. Samples were 
measured in low-, medium-, or high-resolution mode, depending on the 
potential interferences for each element and the sensitivity required. 
Data were corrected for instrumental drift using In measured in low, 
medium, and high-resolution mode and calibrated against commercial 
multi-element solutions prepared gravimetrically to concentrations of 
50 ppb, 5 ppb, and 0.5 ppb. The 5 ppb standard was repeated every 10 
samples to further correct instrumental drift and to calculate internal 
precision. Detection limits were determined by the average values of the 
2% HNO3 rinses that were passed and analyzed between each sample. 
External precision, as determined by replicate analysis of the CAL-S 
international standard (which was passed through the entire prepara
tion process, i.e., weighing, leaching, and dilution, and included in every 
run) was better than 5% (one relative standard deviation, RSD) for REE 

and Y (Supplementary Fig. 1) and ca. 10% (1 RSD) for other trace ele
ments. All presented REE spectra and anomaly indicators were shale- 
normalized to post-Archean Australian shale (PAAS) using the values 
of Taylor and McLennan (1985) with the exception of Y/Ho, Pr/Yb, and 
Sm/Yb (which are reported in g/g). 

As discussed in the introduction, anomalies in specific REE may carry 
important information about microbialite depositional environments. 
Such anomalies may be evaluated quantitatively as the normalized ratio 
Ln/Ln*, where Ln* is the lanthanide concentration expected by 
extrapolation of an appropriate combination of close neighbors around 
the lanthanide Ln under consideration (Lawrence et al., 2006). Values 
below unity represent negative anomalies, and above unity, positive 
anomalies. Extrapolations for Ln* are often performed semi- 
logarithmically (i.e., using a geometric mean), resulting in straight- 
line extrapolations on semi-log-scale REE diagrams; calculation using 
geometric means provides for the most robust calculation of anomalies 
over typical REE compositional ranges such as that covered in this study 
(Barrat et al., 2023). In this work, europium (Eu/Eu*), lanthanum (La/ 
La*), and cerium (Ce/Ce*) anomalies are calculated geometrically using 
the following equations: 

Eu* = Sm x (Sm/Nd)1/2 (1)  

La* = Pr x (Pr/Nd)2 (2)  

Ce* = Pr x (Pr/Nd) (3)  

as per Lawrence et al. (2006), while other useful indicators, such as the 
Y/Ho and Pr/Yb (an anomaly-free indicator of light vs. heavy REE 
enrichment), are calculated on a g/g basis. 

The instrument was tuned to minimize oxide production, which was 
further quantified by the analyses of control solutions (Ba–Ce, Pr–Nd) 
before each session. Despite low oxide production rates (measured BaO/ 
Ba <0.0012%), samples with the highest Ba concentrations nonetheless 
generated false Eu anomalies by the interferences of 135Ba16O and 
137Ba16O on masses corresponding to 151Eu and 153Eu, respectively, that 
were generally well-corrected by subtraction of BaO interferences 
(compare Supplementary Fig. 2A and B). Nonetheless, as a precaution, 
Eu/Eu* data were not plotted for 14 samples that had Ba/Sm ratios 
exceeding 1000 g/g. 

3. Results and discussion 

3.1. Situating the MNHN microbialite collection in time and space 

The MNHN Microbialite Collection is intended to provide a com
munity resource for the study and comparison of microbialites spread 
across geological time and from all over the globe. Excluding a few 
samples for which the age or location are not precisely known, >1340 
samples of well-constrained provenance currently comprise the collec
tion (Fogret et al., 2024). The temporal and modern spatial distribution 
of the samples constituting the MNHN Microbialite Collection are pre
sented in Figs. 3 and 4. Despite the large number of samples, it can be 
seen in these figures that sampling bias affects these distributions. As for 
the distribution of the MNHN collection through geological time, certain 
eras are over-represented due to an uneven distribution of specific pe
riods of more or less scientific interest. For example, despite their limited 
preservation, Archean samples are widely studied due to their important 
implications for early biospheric evolution, and this is reflected by their 
numbers in the MNHN collection. Conversely, an overabundance of 
modern samples, despite the scarcity of microbialites today relative to 
most of geological history, is explained by their readily preserved nature 
and the high scientific interest in the study of present-day stromatolites 
to understand ancient ones. 

The geographical distribution similarly reflects biases in participa
tion in the collaborative networks of researchers examining microbialite 
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records, as well as areas that are more or less difficult to access due to the 
nature of the individual field sites or even issues regarding regional 
stability and accessibility from a socio-political context. Currently, the 
MNHN Microbialite Collection spans all continents except Antarctica 
(Fig. 4) and favors samples largely from old provinces (e.g., North 
America, Amazonia, West Africa, Sahara, Congo, South Africa, 
Australia) but also from some areas with specific hydrological and 
biogeochemical conditions conducive to microbialite formation (e.g., 
Mediterranean coast, Mexican lakes, Australian gulf). Despite its limited 
sample size and thus predictive power, the MNHN collection shows 
certain trends in temporal distribution that have been previously 

observed in meta-analytical studies (see section 1.2). Notably, in the 
MNHN collection, microbialites spanning the Paleoproterozoic to Neo
proterozoic are relatively abundant, and a decline in abundance is seen 
in the earliest Phanerozoic. Both observations were first noted by 
Awramik and Sprinkle (1999), supported by later work by Riding, 2000, 
Riding, 2006, Riding, 2011), as well as the more recent meta-analysis, 
for North America–Caribbean region, using machine reading tools (Pe
ters et al., 2017). Thus, despite a sample size necessarily inferior to those 
available for larger meta-analytical studies, the MNHN collection ap
pears broadly representative in its temporal distribution of microbialites 
relative to current understanding of their actual abundance evolution 
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over geological time. The degree to which the samples may be attributed 
to specific paleoenvironments is highly dependent on age; e.g., for 
Quaternary samples, the depositional environments are directly 
observable and highly nuanced classifications are possible (see section 
3.3.3). For older Phanerozoic samples and especially for Precambrian 
samples, the attribution of highly specific paleoenvironments is subject 
to high uncertainty; for this reason, for most samples in the MNHN 
Microbialite Collection we avoid classification more specific than ma
rine vs. non-marine unless highly robust independent paleoenvir
onmental constraints exist. 

To evaluate how the MNHN Microbialite Collection, and carbonate 
microbialite geochemical records in general, record important patterns 
of Earth surface geochemical evolution, in the following sections we 
compare their stable carbon (δ13Ccarb) and oxygen (δ18Ocarb) isotope 
compositions, as well as paleoenvironmental and redox signatures for 
selected elements, against large geochemical data compilations repre
senting carbonate rocks in general. We precede these interpretations by 
an evaluation of the reliability of the paleoproxies treated herein, 
detailed below. 

3.2. Reliability of carbonate microbialite paleoproxies 

While carbonate sediments may capture chemical and isotopic sig
natures from their depositional environment and thus form the basis of 
multiple geochemical paleoproxies, they are also susceptible to post- 
depositional modification as the result of dissolution and reprecipita
tion, recrystallization, and elemental and isotopic exchange with alter
ation fluids during diagenesis and metamorphism. Furthermore, detrital 
contamination, as well as the presence of specific mineral phases such as 
Fe- and Mn-oxide, phosphates, and sulfides, may all act to perturb 
paleoproxy signals that were originally developed for application to 
sediments dominated by highly pure carbonate minerals. Correspond
ingly, as a function of the chemical composition or alteration history of 
the carbonate sample in question, not all potential carbonate paleoproxy 
signals necessarily reflect depositional conditions. In this section we 
examine our dataset in light of potential secondary effects that may 
perturb the paleoproxy systems investigated in this study. 

3.2.1. Mineralogical and alteration effects on carbonate proxies 
Carbonate minerals are subject to a series of transformations that 

begin at sedimentation, proceed from early sedimentary diagenesis all 
the way through to peak metamorphism, and may continue upon surface 
exposure and supergene weathering (for reviews, see Fantle et al., 2010, 
2020; Swart, 2015). From the first application of oxygen isotopes in 
carbonate minerals as a temperature paleo-proxy, Urey et al. (1951) 
recognized that alteration via solid-state diffusion meant that crystals 
smaller than 1 mm may not preserve their original isotopic compositions 
over long (million-year) timescales. Later workers realized that recrys
tallization, and not solid-state diffusion, was the primary process 
modifying the chemical and isotopic composition of modern carbonates 
during burial diagenesis (Gieskes et al., 1975; Sayles and Manheim, 
1975), and that this process may affect both elemental (e.g., Mg/Ca; 
Baker et al., 1982) and isotopic (δ18O; Killingley, 1983) compositions. In 
some cases, recrystallization-driven early diagenetic elemental and 
isotopic redistribution may represent the dominant control over puta
tive marine carbonate proxy signals (e.g., Jones et al., 2019), and 
caution is clearly warranted in their interpretation. 

Carbonate recrystallization during diagenesis and metamorphism 
can be traced using elemental ratios. In general, elements with ionic 
radii larger than Ca (e.g., Sr) tend to be preferentially incorporated into 
more disordered carbonate minerals (e.g., aragonite) whereas those 
with radii smaller than Ca (e.g., Fe, Mn) are preferentially substituted 
into more ordered carbonates such as calcite and dolomite (Veizer, 
1983). The net result is increasing Mn/Sr and decreasing Sr/Ca during 
carbonate recrystallization. The ensemble of non-REE based proxies 
(REE proxies discussed separately below, section 3.2.2) examined in this 

study are plotted against Mn/Sr and Sr/Ca in Supplementary Figs. 3 and 
4, respectively. Carbonate carbon and oxygen isotope compositions 
generally tend towards lighter values, and U and Mo concentrations 
decrease, with increasing Mn/Sr, while Mn and Fe increase (Supple
mentary Fig. 3); the opposite is observed for Sr/Ca (Supplementary 
Fig. 4). No systematic variation with either indicator is observed for 
vanadium concentrations. Importantly, in the Supplementary Figs. 3 
and 4 where the data are color-coded according to age, it is clear that 
older samples occupy the high Mn/Sr – low Sr/Ca space, and samples 
tend to lower Mn/Sr and higher Sr/Ca with age. Conventionally, these 
trends could be taken to indicate that in the MNHN carbonate micro
bialite dataset, lighter stable isotope compositions, depressed U and Mo 
concentrations, and elevated Mn and Fe concentrations are all a 
consequence of important recrystallization-driven post-depositional 
modification of the most ancient samples, and that younger samples 
were less affected. However, this interpretation is clearly non-unique 
when applied to carbonates spanning such a large period of Earth his
tory. Specifically, it is at odds with independent evidence for seawater in 
deep geological time that as significantly lighter with respect to oxygen 
isotopes (Galili et al., 2019; Killingsworth et al., 2019), more ferruginous 
(e.g., Holland, 1973) and manganiferous (e.g., Robbins et al., 2023), and 
significantly depleted in U (Partin et al., 2013a, 2013b) and Mo 
(reviewed by Thoby et al., 2019) relative to modern seawater. 
Furthermore, partitioning of U and Mo should be enhanced, and not 
depressed, with recrystallization to more ordered carbonate minerals, 
whereas the MNHN carbonate microbialite data show the opposite 
trend. The most parsimonious explanation for the above is that the 
evolving major, trace, and isotopic composition of seawater has played a 
primary role in setting these signatures. As a corollary, while they are 
certainly useful when examining carbonates that are all of contempo
raneous age, alteration indicators such as Mn/Sr and Sr/Ca ratios may 
be of limited utility when comparing carbonate sediments deposited 
over such large swaths of Earth history and that formed under corre
spondingly diverse chemical and redox conditions. Nonetheless, despite 
the long-recognized difficulty in distinguishing true paleoenvironmental 
signals from secondary overprints in ancient and altered carbonate 
rocks, as seen below in sections 3.3 to 3.5, the carbonate microbialite 
record examined here is remarkably consistent with multiple indepen
dent lines of evidence describing the long-term chemical evolution of the 
Earth system. 

3.2.2. Isolating the carbonate signal: influence of carbonate impurities on 
REE signatures 

Many carbonate paleoproxies are based on the partitioning behavior 
of elements or isotopes into pure carbonate minerals. However, natural 
carbonate-rich sediments are never pure, but rather contain a variety of 
secondary mineral phases that may also contain analytes of interest. 
Partitioning of elements into chemically pure carbonate results in only 
weak enrichments, and by consequence, even trace amounts of sec
ondary mineral phases may dominate elemental budgets at the whole- 
rock level. For example, chemically pure carbonates often contain 
trace elements such as REE at concentrations that are 50 to 1000 lower 
than the average continental crust (e.g., Webb and Kamber, 2000). For 
this reason, and as was done for this study, elemental proxies in car
bonate sediments are often analyzed using weak leach approaches that 
chemically target the pure carbonate fraction while avoiding the 
dissolution of secondary mineral phases. These include detrital materials 
such as clays, metal sulfides or oxyhydroxides such as Fe- and Mn- 
oxides, and phosphates. Below we examine our REE dataset with 
particular regard to potential biases that might arise from elemental 
contribution from secondary phases despite the use of a weak-leach 
digestion approach. 

As mentioned above, the differential partitioning of cations into 
different carbonate minerals means that carbonate mineralogy may 
exert control over carbonate elemental enrichment; this clearly seen in 
the MNHN carbonate microbialite data in the case of carbonate- 
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leachable Fe contents when examined against sample Mg/Ca ratios 
(Supplementary Fig. 5A); as mentioned in section 3.2.1, partitioning of 
elements with ionic radii smaller than Ca, such as Fe and REE, should be 
favored into more crystalline, high Mg/Ca carbonate minerals such as 
ankerite and dolomite (Fantle et al., 2010). Surprisingly, contrary to the 
above example for Fe, no clear scaling relationships between total REE 
contents and Mg/Ca (positive relation expected) nor Sr/Ca ratios 
(negative relation expected) are observed (Supplementary Fig. 5B and 
C); we speculate that this may relate to the lower concentrations of REE 
compared to Fe in most diagenetic or metamorphic waters, and the 
greater immobility of REE more generally. The presence of REE-rich 
authigenic mineral carrier phases such as sedimentary phosphates and 
Fe- and Mn-oxides can significantly modify whole-rock REE signatures, 

however in the MNHN carbonate microbialite dataset, no trends exist 
between the REE anomaly indicators Eu/Eu*, La/La*, Ce/Ce*, and Y/ 
Ho, and the leachable concentrations of P (Supplementary Fig. 6), Fe 
(Supplementary Fig. 7), or Mn (Supplementary Fig. 8). Furthermore, the 
slopes of REE spectra (as evaluated by the Pr/Yb mass ratio) show no 
relation with P, Fe, nor Mn concentrations, and significant middle REE 
enrichment that is characteristic of phosphate-associated REE is also 
absent across two orders of magnitude of leachable P contents (as 
evaluated by the Sm/Yb mass ratio; Supplementary Fig. 6F). Together, 
these data indicate that the potential presence of phosphates and Fe-Mn- 
oxides did not make significant contributions to the REE spectra pre
sented here and confirms the suitability of the weak leach method of 
Rongemaille et al. (2011) employed herein that was specifically 

Fig. 5. Evolution of δ13Ccarb (A) and δ18Ocarb (B) in microbialites and marine carbonates over geological time. Each scatter plot is composed of 392 data points from 
samples analyzed in the MNHN Microbialite Collection (colored circles) and 24,467 data points compiled from literature (grey diamonds, compilation by Havig 
et al., 2017). 
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designed to minimize digestion of these phases. 
Detrital contamination is especially problematic for REE- and redox- 

sensitive carbonate elemental paleoproxies as the concentrations of the 
elements in question tend to be hundreds to thousands of times higher in 
detrital materials such as clays and weathering-resistant accessory 
minerals. Indeed, Supplementary Fig. 9 reveals positive scaling between 
leachable total REE and Al concentrations that spans nearly three orders 
of magnitude in Al concentrations. Despite the strong general correla
tion, REE anomaly indicators such as Eu/Eu*, La/La*, Ce/Ce*, and Y/ 
Ho, as well as the REE slope indicator Pr/Yb, show no systematic vari
ation with Al concentrations. Rather, the vast majority of samples show 
leachable Al contents that are two orders of magnitude below conti
nental crust values, and important REE anomalies persist up to the 
highest leachable Al contents determined in this study (approaching 0.7 
wt% Al). Simple mixing models reveal that detrital contamination had 
little effect on REE systematics (Supplementary Fig. 9), consistent with 
the weak leach technique employed (5% acetic acid), and accordingly, 
no samples were excluded from consideration on the basis of Al con
centrations. The clear positive correlation between total REE concen
trations and Al concentrations noted above, but without apparent effects 
on REE anomaly indicators at all but the highest Al concentrations, is 
often observed in large chemical sedimentary datasets and may have 
multiple origins beyond simple mixing of detrital material. For example, 
if chemical sediments accumulate both water column-derived REE and 
Al-rich detrital material simultaneously as a function of time, a corre
lation between total REE and Al concentrations would be expected 
without Al-rich detrital material necessarily dominating the whole-rock 
REE budget. Regardless, for the REE data presented in this study, it can 
be affirmed that carbonate impurities, whether in the form of detrital 
materials, phosphate minerals, or Fe- and Mn-oxides, had little role on 
the REE proxy indicators in the MNHN carbonate microbialites exam
ined in this study. 

3.3. Microbialites as recorders of the evolution of Earth's carbon cycle and 
hydrosphere 

The δ13Ccarb and δ18Ocarb values determined in this study from the 
MNHN Microbialite Collection are tabulated in Fogret et al. (2024) and 
plotted in the Fig. 5. The mean and median δ13Ccarb values across all 
samples are − 0.21 ‰ and + 0.38 ‰, respectively. Carbon isotope 
variability is greatest among Holocene samples, which span a large di
versity of modern environments and accordingly cover a wide range of 
values (2σ = 8.99 ‰, mean = +2.03 ‰, median = +2.28 ‰). On the 
contrary, Archean samples show a very narrow range of carbon isotope 
compositions (spanning only 3.15 ‰ in total) and are centered around a 
mean value of δ13Ccarb = +0.20 ‰ (median = +0.22 ‰) with low 
dispersion (2σ = 1.79 ‰). Archean samples are particularly depleted 
with respect to δ18Ocarb, with a remarkably low mean of − 12.3 ‰ 
(median = − 11.8 ‰) and 2σ of ±9.34 ‰, compared to Holocene sam
ples that are close to the PDB reference material (mean = − 1.18 ‰, 
median = − 0.12 ‰, 2σ of ±8.71 ‰). Holocene samples again have the 
widest isotopic variability (spanning a range of 26.1 ‰ in total), due in 
part to some exceptional present-day microenvironments that do not 
appear to be well-represented in the ancient rock record (see section 
3.3.3 below). 

The microbialite stable isotope results from this study are compared 
to a larger literature dataset comprised of isotopic data from 24,467 
carbonates as compiled by Havig et al. (2017); data largely from Schopf, 
1983; Hayes et al., 1983; Shields and Veizer, 2002; and Prokoph et al., 
2008). This compilation reveals that carbonates on a global scale exhibit 
a wide range of signatures, spanning − 24.7 to +18.0 ‰ in δ13Ccarb 
(median = +0.54 ‰) and from − 30.4 to +4.23 ‰ in δ18Ocarb (median =
− 7.30 ‰). Comparison of our microbialite data with this larger body of 
data available in the literature permits an evaluation of whether the 
carbonate microbialites from the MNHN Microbialite Collection record 
previously recognized trends in carbonate isotopic compositions 

worldwide. In other words, whether microbialites may serve as reliable 
records of the isotopic evolution of Earth's surface reservoirs. 

3.3.1. The stable carbon isotope record of carbonate microbialites 
The δ13Ccarb values of the MNHN Microbialite Collection average 

around 0 ‰ across geological time (Fig. 5A). Carbonate data compiled 
from literature show the same average of around 0 ‰ as the microbialite 
data, with a similarly restricted δ13Ccarb range for Archean samples (i.e., 
2σ = ± 4.47 ‰ for Archean carbonate data from literature vs. ± 1.79 ‰ 
for Archean microbialites). If globally representative, δ13Ccarb values 
around zero are conventionally attributed to “typical” Earth surface 
carbon cycling driven by biological CO2 fixation and sedimentary car
bon burial in a ratio of around 1:4, while extreme δ13Ccarb values are 
interpreted as periods of either elevated productivity and organic carbon 
burial (in the case of positive C isotope excursions), or enhanced organic 
matter remineralization (in the case of negative C isotope excursions). 
Importantly, the compiled carbonate data highlight some of Earth's most 
important carbon isotope excursions, notably the ca. 2.2 Ga Lomagundi- 
Jatuli Event (LJE; Schidlowski et al., 1976; Melezhik and Fallick, 1996) 
and the ca. 600 Ma Terminal Neoproterozoic Shuram-Wonoka Anomaly 
(SWA) (Fike et al., 2006; see Halverson et al., 2010, for review) 
(Fig. 5A). Samples in the MNHN Microbialite Collection also capture 
these excursions; notably the positive LJE excursion in microbialite 
samples from the Nash Fork Formation of the Wyoming Craton, as 
previously recognized by Bekker et al. (2003), and the negative SWA 
excursion in the Oued Djouf Formation of the Hank-Fersiga Area of the 
Taoudéni Basin, Algeria (Deynoux et al., 2006) where it had been pre
viously recognized by Álvaro et al. (2007). While the causes of these 
major Earth surface carbon cycle perturbations remain highly debated 
(e.g., Prave et al., 2021), it can be concluded that whatever drove these 
major excursions clearly affected carbonate microbialites as well. 

The microbialite δ13Ccarb record presented here also contains some 
notable deviations from known lacustrine and marine records that 
warrant special consideration. First, marine stromatolites from the 
Bonne River Formation of the Hoyoux Group of Warnantian age (ca. 
326 Ma) (Belgium; Aretz and Chevaliers, 2007) show consistently low 
δ13Ccarb values, ranging from − 8.95 ‰ to − 10.3 ‰; such values are 
unprecedently low for the entire Mississippian (c.f. Bruckschen et al., 
1999) and indeed highly atypical for most of the Phanerozoic. Such 
departures almost certainly relate to environments with highly local 
processes driving atypical carbon cycling (see also section 3.3.3), in this 
case likely by a shallow-water or porewater dissolve inorganic carbone 
(DIC) pool that was heavily influenced by organic matter reminerali
zation and likely methanotrophy. Indeed, anaerobic oxidation of 
methane is implicated in the formation of similarly-light carbonates 
(spanning − 8.31 ‰ to − 11.0 ‰ in the MNHN samples analyzed) from 
the Upper Jurassic (ca. 146 Ma) Münder Formation (Germany) that 
formed in an evaporitic marine setting (Arp et al., 2008). These two 
examples of extreme light C isotope enrichment in Phanerozoic marine 
carbonate microbialites (the lowest marine (blue) data points, between 
500 and 50 Ma, in Fig. 5A) highlight the propensity for microbialites in 
specific cases to record extreme values due to localized and exotic car
bon cycling, even if for the most part microbialites provide a C isotope 
record that is comparable to sedimentary carbonates across geological 
time. 

Intriguingly, the available dataset from the MNHN Microbialite 
Collection highlights the absence of significant differences between 
marine and lacustrine samples (Fig. 5A; mean and 2σx‾ values of − 0.47 
± 0.43 ‰ vs. +0.77 ‰ ± 0.41 ‰, respectively). This indicates that, 
other than specific cases (such as those discussed immediately above as 
well as below in section 3.3.3) where intense local productivity or 
methane escape locally drives the DIC pool to extreme values, the 
overarching control for setting δ13Ccarb in microbialites deposited 
throughout Earth's history is the rapid equilibrium between ambient DIC 
and atmospheric CO2. Thus, excepting certain specific cases of intense 
and localized carbon cycling, carbonate microbialites in both marine 
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and lacustrine settings appear to be reliable recorders of global carbon 
cycling. 

3.3.2. The stable oxygen isotope record of carbonate microbialites 
The trend to heavier δ18Ocarb compositions over geological time is 

clearly visible in the literature compilation dataset (Fig. 5B). Archean 
carbonate data from literature show a mean δ18Ocarb value of − 12.3 ‰ 
(median = − 11.8 ‰, 2σ = 9.34 ‰), while Proterozoic carbonates 
display a mean of − 6.57 ‰ (median = − 5.67 ‰, 2σ = 7.12 ‰), and 
Phanerozoic carbonates average around − 3.02 ‰ (median = − 2.69 ‰, 
2σ = 8.58 ‰). Even if the mean and median δ18Ocarb values overlap 
within error for sedimentary carbonates across these different eons due 
significant dispersion in the data, and the same is true for data from 
MNHN Microbialite Collection, both effectively record the same 
macroevolutionary trend through time towards higher δ18Ocarb values 
(Fig. 5B). 

The MNHN Microbialite Collection includes Archean lacustrine 
microbialite samples from the 2.7 Ga old Tumbiana Fm. and our new 
analyses confirm previous reports of lacustrine carbonate δ18O values in 
the Archean that are as light as their marine counterparts (Thomazo 
et al., 2009 and references therein; Fig. 5B). We suggest that this is best 
explained as reflecting a global hydrological cycle anchored at δ18O 
values lighter than those set by oceanic hydrothermal circulation, as it 
occurs today. This inference is consistent with recent studies highlighted 
in the introduction indicating marine δ18O values near − 8 ‰ ca. 2.4 to 
2.0 Ga, whether via the temperature-insensitive iron oxide δ18Oox record 
(Galili et al., 2019) or the occurrence of marine barium sulfates in the 
Turee Creek Group with abnormally light δ18Ocarb values (Killingsworth 
et al., 2019). While the possibility that both marine and lacustrine 
samples of Archean age were both altered to lower δ18Ocarb values by 
metamorphic fluids cannot be entirely excluded, the similarity in 
δ18Ocarb between lacustrine and marine microbialite samples collection 
is entirely consistent with the “evolving hydrological cycle” interpreta
tion and underlines the potential for resolving the issue of highly 
depleted δ18O values in Precambrian sediments through the careful 
comparison of marine and lacustrine deposits, and possibly new 
analytical approaches (e.g., triple O isotopes of oxyanions in marine vs. 
lacustrine microbialites). 

For both the δ18O and δ13C datasets (Fig. 5), it is clear that the MNHN 
Microbialite Collection favors different environments at different times 
in Earth's history: Precambrian samples tend to be marine, whereas 
Phanerozoic microbialites often occur in freshwater. Considering that 
there exists significantly less data for Precambrian stromatolites relative 
to their Phanerozoic counterparts or sedimentary carbonates in general, 
whether this feature is a true reflection of the evolution of microbialite- 
forming niches, or stems from biases related to recognition or preser
vation of lacustrine environments in deep time, warrants future 
consideration. Regardless, as seen in Fig. 5 and explored further below, 
it is thus expected that modern microbialites may show greater de
viations from the near-zero δ18O values proscribed by marine carbonate 
deposition, for example towards lighter values driven by the influence of 
meteoric or hot spring waters. 

3.3.3. Local effects on carbonate microbialite C and O isotope 
compositions: insights from quaternary examples 

At the broadest scales, carbonate microbialites worldwide record a 
history of evolving C and O isotope compositions that is similar to their 
non-microbialite carbonate counterparts (see sections 3.3.1 and 3.3.2). 
At the same time, they may be more prone to local effects due to their 
shallow-water photic zone habitat and the fact that they often occur 
under extreme hydrological conditions (e.g., highly evaporitic settings, 
hydrothermal springs) and/or in association with high productivity and 
exotic carbon cycling. Even more so today, widespread predation limits 
modern microbialite occurrence, whereas in the past, more extreme 
oceanic and climatic conditions, as well as a lack of predation, favored 
microbialite formation in the semi-restricted and open-marine realm. 

Recognizing extreme depositional settings such as highly evaporitic la
goons or hydrothermally influenced fresh waters is not always 
straightforward from outcrop observation, stratigraphic records, or 
elemental composition; for this reason, paleoenvironmental classifica
tion beyond “marine” vs. “non-marine” is imprudent for many ancient 
microbialites in the MHNH collection. However, modern microbialite 
occurrences are much better constrained by simple observation of the 
environments in which they are found. In this section we examine 
Quaternary carbonate microbialites in the MNHN collection for which 
their precise depositional context is well constrained (Supplementary 
Table 2) and for which specific processes affecting local carbon and 
oxygen cycling may be resolved. 

Indeed, Quaternary carbonate microbialites may show a wide range 
of δ13Ccarb and δ18Ocarb in a single deposit, and also show some 
remarkable grouping patterns in δ13Ccarb vs. δ18Ocarb space that may 
testify to the unique climatic, chemical, or biological conditions intrinsic 
to their depositional environments (Fig. 6). With respect to carbon, the 
modern open marine microbialites analyzed are centered around 0 ‰ in 
δ13Ccarb, but span a surprisingly large range, from − 5.19 ‰ to +5.02 ‰. 
However, most of the Quaternary carbonate microbialites analyzed are 
isotopically heavier than 0 ‰; this includes samples from semi-restricted 
marine settings and coastal lagoons as well as saline and (saline-) vol
canic crater lakes. These may all be explained to first order by biological 
removal of carbon by biomass and removal of isotopically light carbon 
from the local DIC pool. Indeed, in restricted and hypersaline settings 
and especially at warmer temperatures, the solubility of CO2 is 
depressed such that the DIC pool may become small relative to biolog
ical demand, leading to an isotopically heavy DIC pool that may also be 
expressed in isotopically heavy δ13Corg signatures of co-eval biomass 
(Schidlowski et al., 1984). In the alkaline volcanic crater lakes Atexcac 
Lagoon (Mexico; Pleistocene age) and Dziani Dzaha (Mayotte, Holocene 
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Fig. 6. Cross plot of δ13Ccarb (VPDB) vs. δ18Ocarb (VPDB) of Quaternary car
bonate microbialite samples analyzed from the MNHN Microbialite Collection 
classified by their depositional environment. A complete list of the 99 samples 
plotted is provided in Supplementary Table 2. 

L. Fogret et al.                                                                                                                                                                                                                                   



Chemical Geology 662 (2024) 122239

13

age), carbonates are enriched in δ13Ccarb by over +13 ‰ (purple points 
at right in Fig. 6) relative to modern marine carbonates. Similarly, 
carbonate microbialites analyzed from the coastal lagoon Lagoa Salgada 
(Brazil, Holocene age; green points at right in Fig. 6) show δ13Ccarb 
values up to +12.5 ‰, consistent with values of greater than +16 ‰ 
reported in literature from this site (Birgel et al., 2015; Hu et al., 2023). 
At the two latter localities, the extreme positive δ13Ccarb values have 
been interpreted to represent high primary productivity coupled with 
efficient methanogenesis and the escape of isotopically light carbon to 
the atmosphere via methane emission (Birgel et al., 2015; Cadeau et al., 
2020). Surprisingly, at Atexcac Lagoon, where dissolved organic carbon 
constitutes an important fraction of the total dissolved carbon pool, no 
evidence for important methanogenesis is reported, and the aqueous DIC 
pool is near 0 ‰ (Havas et al., 2023); the mechanism responsible for the 
elevated δ13Ccarb values measured at this site remains unknown. 

Lacustrine and fluvial carbonate microbialites (grey points in Fig. 6) 
present δ13Ccarb values that tend to be isotopically lighter than marine 
carbonate due to the mixed nature of their carbon sources; for rivers and 
lakes fed by catchments draining predominantly carbonate bedrock, 
their carbonates tend to be isotopically heavier, while catchments with 
organic matter as an important source of alkalinity tend to show isoto
pically lighter δ13Ccarb values. The modern carbonate microbialites 
showing the lowest δ13Ccarb values (down to − 10.7 ‰) are from Lake 
Lunz (Austria, Holocene age), an oligotrophic mountain lake where in
ternal cycling of carbon between the organic and DIC pools represent 
only a minor component (ca. 0.5%) of the annual carbon flux in and out 
of the lake, both of which are strongly dominated by riverine DIC inflow 
and outflow (Ejarque et al., 2021). While δ13CDIC data is not available for 
neither the lake nor its main inlet (the Oberer Seebach stream), the 
catchment drains a forested setting with humic-rich soils, and contri
butions from organic carbon to the lake DIC pool are likely responsible 
for the light isotopic compositions measured here. 

Lacustrine and fluvial microbialites also present among the lowest 
and most variable δ18Ocarb values, which are in these cases controlled by 
the local hydrological context (latitude, and to a lesser extent, altitude). 
Modern carbonate microbialite from Mammoth Hot Springs, Yellow
stone National Park (orange point in Fig. 6), represents an extreme case 
(− 19.4 ‰) of local hydrological control (the presence of hot spring 
waters). Microbialites in isolated water bodies stand in contrast with 
carbonate microbialites from modern marine and lagoonal settings, 
which range from − 4.04 to +3.46 in δ18Ocarb, buffered close to seawater 
values and with a tendance towards higher values in cases where iso
topic distillation during evaporation drove the entire water body to 
isotopically heavy δ18O compositions. For example, in the MNHN 
Microbialite Collection, Quaternary stromatolites from Mexican lakes 
such as Atexcac and Alchichica have high δ18O values (+6.23 and + 6.63 
‰, respectively) that they go beyond those reported in the carbonate 
literature data compilation employed herein that contains over 24,000 
analyses (maximum value of +4.23 ‰); this is a clear reflection of their 
extreme depositional environment. Interestingly, while carbonates can 
be deposited at a variety of water depths, microbialites are generally 
restricted to the shallow waters in the photic zone, such that they may be 
exposed to greater variability in water sources and surface water tem
peratures, as illustrated by the above cases. 

3.4. Rare Earth Element records of evolving microbialite depositional 
environments 

In the following section, data obtained by REE analyses of the MNHN 
Microbialite Collection are compared against a compilation of 5131 
carbonates from two major data sources that have been recently pub
lished as open datasets in coordination with this work. The first is 
comprised of sedimentary carbonate major and trace element data 
compiled from literature, totaling 4476 samples and including over 60 
literature sources, supplemented with additional data from diverse 
microbialites the authors have amassed over the years analyzed using 

the same weak-leach technique employed herein (Lalonde et al., 2024). 
The second is a large compilation (n = 655) of new weak-leach REE data 
that was recently made available as an open dataset in the context of an 
independent study (Patry et al., 2024) on Mesoarchean stromatolitic 
carbonates at three sites of the Superior Province (Canada): Red Lake 
(2.87 Ga), Woman Lake (2.86 Ga) and Steep Rock Lake (2.80 Ga). These 
large datasets permit us to evaluate the representativity of the REE 
systematics observed in the MNHN Microbialite Collection with respect 
to global sedimentary carbonates and, in turn, the utility of REE tracers 
in microbial carbonates more generally for paleoenvironmental recon
struction. All REE spectra and most REE anomaly indicators (unless 
otherwise indicated) are reported as shale-normalized to PAAS, as 
described in section 2. 

3.4.1. REE spectral features in carbonate microbialites 
In Fig. 7, PAAS-normalized spectra are presented for samples that 

were selected for the particularly clear REE characteristics that they 
show in relation to diverse depositional paleoenvironments represented 
by the carbonate microbialites of the MNHN Microbialite Collection (see 
Supplementary Table 3). Many of the characteristic REE spectral fea
tures of modern seawater, namely LREE/HREE enrichment, positive La/ 
La* and Gd/Gd* anomalies, and suprachrondritic Y/Ho ratios, are 
visible in Archean microbialites deposited under open ocean marine 
conditions (light blue spectra, Fig. 7), such as from the Campbellrand- 
Malmani carbonate platform (South Africa) and Woman Lake Assem
blage (Canada). The importance of local hydrothermal inputs to 
microbialite-forming environments is exemplified by the presence of 
strong positive Eu/Eu* anomalies in carbonate microbialites from the 
Red Lake Greenstone Belt and Nash Fork Formation (navy blue spectra, 
Fig. 7). Carbonates from the 3.75 Ga Isua Greenstone Belt, for which 
claims of microbial influence are currently controversial (e.g., Nutman 
et al., 2016; Allwood et al., 2018), are also characterized by important 
positive Eu/Eu* anomalies that testify to deposition from hydrother
mally influenced seawater (the top spectrum among the 3 navy blue 
ones in Fig. 7). By contrast, lagoonal and shallow marine environments 
may not express typical seawater signatures but instead often present 
flat REE patterns with slight MREE enrichment and muted to absent La 
and Y anomalies. These include carbonate microbialites from Mari Ermi 
(Sardinia), North Caicos (the Caribbean), and Shark Bay (Australia), 
which are presented as the uppermost green spectra in Fig. 7. In these 
environments, REE are dominated by the riverine flux that generally 
(but not always; Merschel et al., 2017) bears a flat continental-type REE 
pattern when normalized to PAAS. 

In the lacustrine samples of the collection, a large proportion of 
microbialites come from saline-alkaline lakes and tend to present a flat 
pattern with elevated REE concentrations (yellow spectra, Fig. 7). The 
yellow spectra plotted in Fig. 7 are examples of microbialites from Lake 
Logipi (Kenya, Holocene), El Molino at Agua Clara (Bolivia, 70 Ma), 
Cedar Mountain (USA, 125 Ma), and Green River (USA, 40 Ma). 
Remarkably, stromatolites from the intracontinental lake in the Richat 
Structure (Mauritania) show exceptionally high REE concentrations and 
a pattern clearly enriched in MREE (grey spectrum, Fig. 7). Volcanic 
crater lake samples represented by Rincón de Parangueo, Atexcaca, 
Alberca de Los Espinos (Mexico) and Lake Tauca (Altiplano of Bolivia) 
show large positive Eu anomalies, significant high HREE enrichment, a 
small positive Y anomaly, and negative Ce anomalies (purple spectra, 
Fig. 7). These characteristics are remarkably seawater-like and are also 
observed in stromatolite samples from Lamalou-les-Bains (France) that 
were deposited in a continental setting influenced by modern hydro
thermal fluids (red spectrum, Fig. 7). Alkaline lake waters are also 
known to present seawater-like patterns (Kreitsmann and Bau, 2023), 
although this was not observed in the MNHN carbonate microbialite 
samples from saline-alkaline lakes. Interestingly, a distinct pattern is 
observed in Mammoth Hot Springs stromatolites from Yellowstone Na
tional Park (USA) that precipitated in a geothermal environment, with a 
clear positive anomaly in both Eu and Gd, accompanied by a slight 
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positive anomaly in Y (orange spectrum, Fig. 7). 
As seen above, REE in stromatolitic carbonates are powerful paleo

environment tracers that may reveal a variety of specific processes 
operating in different aqueous environments once other confounding 
factors (e.g., detrital contamination, phosphate mineralization) can be 
eliminated. Some overlap in features clearly occurs, and sometimes 
similar settings may provide contrasting signals. Indeed, the spectra 
presented in Fig. 7 were selected as representing some of the most clear- 
cut examples; we highlight to the reader that the greater REE dataset 
associated with this article is somewhat noisy based on visual inspection 
of the hundreds of spectra generated. Nonetheless, the above examples 
effectively illustrate how microbialites may indeed record REE spectral 
features that are informative with regards to their paleodepositional 
settings. 

3.4.2. REE anomalies in carbonate microbialites: perspectives from the 
MNHN microbialite collection 

An overview of total REE abundances and REE anomaly indicators 
determined for the MNHN Microbialite Collection are presented as a 
function of age in Fig. 8. Total REE concentrations using the weak acetic 
acid leach technique show a median value of 20.8 ppm, but due to some 
extreme values (e.g., up to 2000 ppm of REE for the Holocene stro
matolites from the hydrothermally influenced Richat Structure in 
Mauritania), the mean value is significantly higher at 50.1 ppm. Total 
REE concentrations in the MNHN collection are variable as a function of 
age, with generally low concentrations in Paleoarchean stromatolites, 
elevated but secularly decreasing values from the Mesoarchean to the 
Paleoproterozoic, and a greater range in values from the Neoproterozoic 
through the Cambrian (Fig. 8A). The dichotomy between the Archean 
and post-Archean samples may be related to a preponderance of highly 
pure chemical sediments composing Archean stromatolites deposited 
under more sediment-starved or open-ocean conditions, vs. their 
younger equivalents which tend to include more evidence of sediment 
re-working and grain binding/trapping. Yet higher total REE in the 
Cambrian could similarly be a consequence of the restriction of stro
matolites to shallow-water or highly evaporitic systems subject to even 
greater detrital sourcing. That said, it is important to note that carbonate 
mineralogy (e.g., aragonite vs. calcite vs. dolomite) as well as fluid 
composition (pH, carbonate content, environmental-specific REE load) 
may have equally contributed or even controlled the evolving REE 
contents of microbialites through time. 

PAAS-normalized europium anomalies in the MNHN Microbialite 
Collection average Eu/Eu* = 1.50 and show important secular variation 
with time (Fig. 8B). Strong positive Eu anomalies are clearly expressed 
in Archean to Paleoproterozoic microbialites, regardless of normaliza
tion (here normalized to PAAS; note that chondrite-normalized values 
would be lower by a factor of 0.61). These important Eu anomalies 
almost certainly reflect local sources of high-temperature hydrothermal 
fluids in most marine depositional environments at the time (e.g., Bau 
and Dulski, 1996a, 1996b; Bolhar et al., 2004; Allwood et al., 2010; 
Kamber et al., 2014). Archean samples show significantly higher 
anomalies, around 2.80 for the Eo- to Paleo-archean, with values up to 
3.38; values then generally decrease until the Mesoproterozoic after 
which they remain generally low. This record is remarkably consistent 
with the evolution of Eu/Eu* in Precambrian iron formations, which, 
with the exception of a notable peak in Eu/Eu* values ca. 2.7 Ga, 
similarly show waning Eu/Eu* throughout the Archean and earliest 
Paleoproterozoic (Viehmann et al., 2015). 

In general, the oldest microbialites in the MNHN collection of Paleo- 
to Meso-archean age show a restricted range in Ce/Ce* values, rarely 
lower than 0.95 nor higher than 1.05, and a median close to 1 (Fig. 8C), 
consistent with the general absence of oxidative Ce processing at that 
time. That said, the most extreme Ce/Ce* values are remarkably variable 
in MNHN collection carbonate microbialites deposited prior to the GOE. 
While some carbonate microbialites in the collection come from 
previously-proposed oxygen oases for which the REE spectra appear 
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Fig. 7. PAAS-normalized REE spectra from the MNHN carbonate microbialite 
dataset of samples selected for their high degree of representativity (with clear, 
environment-specific features) of different end-member depositional environ
ments. The 21 selected samples are specified in Supplementary Table 3; we 
emphasize that most samples in the dataset do not show features as clear as 
these selected examples. Some REE anomalies of interest, specifically those 
affecting cerium (Ce), europium (Eu), and yttrium (Y), are noted with vertical 
dashed lines. 
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undisturbed (e.g., 2.80 Ga Steep Rock Lake; Riding et al., 2014), post- 
depositional Ce/Ce* fractionation as the result of surface weathering 
appears to have affected some ancient chemical sediments examined in 
other studies (Planavsky et al., 2020) and, thus, caution is warranted in 
interpreting these data as redox signatures without geochronological 
constraints on Ce oxidation (Bonnand et al., 2020). Median Ce/Ce* 
anomalies in the MNHN collection samples are below one in the Neo
archean and Paleoproterozoic, rise slightly in the Meso- and Neo
proterozoic, and become more variable afterwards, with a significantly 
expanded spread in Ce/Ce* values beginning in the Neoproterozoic. This 
increasing range in Ce/Ce* values (both positive and negative) indicates 
that microbialite depositional environments were generally more 

oxidizing with respect to Ce; part of this trend may have been driven by 
the increasing importance of Mn-oxide minerals in Earth surface envi
ronments (Maynard, 2010; Robbins et al., 2023) and their role as cata
lyzers for Ce oxidation. 

As introduced in section 1.3.2, the presence of La/La* anomalies, 
Gd/Gd* anomalies, suprachrondritic Y/Ho ratios, and the relative 
enrichment of HREE over LREE (evaluated here using the Pr/Yb ratio) 
are all considered seawater REE signatures that are recognizable in 
chemical sediments as far back as Earth's oldest sediments deposited ca. 
3.7 Ga ago (Bolhar et al., 2004). The MNHN collection REE dataset 
permits us to evaluate in a broad fashion how these signatures in ancient 
carbonate microbialites have evolved over geological time. Box plots of 

Fig. 8. Violin plots summarizing multiple features of the REE data from the MNHN Microbialite Collection: total REE concentrations (A), PAAS-normalized europium 
anomalies (B), PAAS-normalized cerium anomalies (C), PAAS-normalized lanthanum anomalies (D), praseodymium to ytterbium ratios (E), and yttrium to holmium 
ratios (F). Samples are classified according to age, with Holocene samples explicitly separated from the rest of the Cenozoic samples. 
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La/La* anomalies, Pr/Yb ratios, and Y/Ho ratios in the MNHN collection 
samples are presented over geological time in Fig. 8D, E, and F, and 
show remarkable variation. Both La/La* and Y/Ho ratios are elevated in 
Eo- to Paleo-archean samples, drop significantly in the Mesoarchean, 
and then rise until the Paleoproterozoic, after which La/La* ratios 
remain relative static around 1 until the Cenozoic, while Y/Ho ratios 
show more variability from the Neoproterozoic onwards. For all periods 
in the MNHN dataset, median La/La* values are below 1.20, and median 
Y/Ho ratios remain close to continental crust value of 26 (Kamber et al., 
2005), not depassing 35. Intriguingly, the carbonate microbialite Y/Ho 
record is somewhat different than that for banded iron formations, 
which show generally higher and less variable Y/Ho throughout Earth 
history (Ernst and Bau, 2021), which may be a reflection of the variety of 
microbialite-forming niches in deep time vs. the generally deep-water 
locus of precipitation of the latter. 

Finally, there appears to be significant evolution in the Pr/Yb ratio of 
carbonate microbialites across the Archean that generally stabilizes in 
the Proterozoic onwards (Fig. 8E). The HREE enrichment of seawater is 
driven by pH-dependent aqueous carbonate complexation of lantha
nides (Byrne and Kim, 1990), and this early secular evolution in car
bonate microbialites may reflect changes in ocean alkalinity and pH in 
responses to evolving atmospheric CO2. That said, the evolution in the 
composition of rocks available at Earth's surface from mafic to felsic over 
this time window may have also played a role in the apparently higher 
degree of HREE enrichment in deep geological time previously observed 
in Archean chemical sediments (Kamber, 2010) and reaffirmed here 
through the MNHN collection carbonate microbialite data. 

The preponderance of important positive Eu anomalies in the ancient 
sedimentary carbonate record in general is also evident in Fig. 9A, where 
the MNHN collection data (circles) are plotted against compiled litera
ture data for sedimentary carbonates worldwide. Here, Eu/Eu* is plotted 
against Pr/Yb as an indicator of LREE vs. HREE enrichment; HREE 
enrichment being a classic seawater REE signature (see above and 
below). It can be seen that Paleo- and Meso-archean carbonates gener
ally dominate the high Eu/Eu*, low Pr/Yb (seawater) pole. Looking at 
the data plotted as a function of marine vs. lacustrine depositional set
tings (Fig. 9B), one important exception is immediately apparent in the 
form of a cluster of Cenozoic microbialites with high Eu/Eu* values and 
low Pr/Yb despite their lacustrine origin. This underlines that while 
global Eu/Eu* in both the literature carbonate REE data as well as the 
MNHN collection carbonate microbialite data indicate a waning 
importance of high-temperature hydrothermal fluids in carbonate 
sedimentary environments over geological time, high Eu/Eu* values 
combined with other seawater signatures may not necessarily be diag
nostic of hydrothermally influenced marine deposition, but rather are 
simply consistent with it. 

When plotted against Y/Ho ratios in (g/g) as an indicator of open 
marine vs. freshwater or closed-basin conditions (Fig. 9C), it can be seen 
that Archean to Paleoproterozoic carbonate microbialites dominate at 
Y/Ho values above 50.0 while showing generally near-zero to slightly 
negative Ce/Ce* values, while younger carbonate microbialites gener
ally show Y/Ho values below 50.0 (Fig. 9C) and are characterized by 
highly variable Ce/Ce* values. Recast in the context of known deposi
tional environments (lacustrine vs. marine; Fig. 9D), the MNHN 
collection data reveal that marine and lacustrine microbialites deposited 
since the Paleoproterozoic show comparable ranges in both Ce/Ce* and 
Y/Ho ratios. This is significant for two reasons. First, it demonstrates the 
applicability of Ce/Ce* as a redox tracer in both lacustrine and marine 
microbialites (e.g., Wilmeth et al., 2022). Second, it indicates that some 
REE proxy indicators thought to represent deposition under marine 
conditions, such the Y/Ho ratio, may be less diagnostic than previously 
assumed for the freshwater vs. marine origin of carbonate microbialites, 
as we explore further below. 

Importantly, plots of La/La* vs. Y/Ho for the dataset, combined with 
carbonate data from literature (Fig. 9E), reveal that carbonates depos
ited in the Archean, including microbial carbonates (the majority of 

compiled data for Archean carbonates are from microbialites; Patry 
et al., 2024), tend to show scaling in both La/La* and Y/Ho with 
increasing open seawater influence, likely reflecting their growth under 
more open-ocean conditions. Younger carbonate microbialites are pre
dominately lacustrine or hypersaline/lagoonal, and are rarely repre
sented in the “open-ocean” space in Fig. 9E and F, projecting instead 
more vertical arrays with a tendency for greater variation in La/La* than 
Y/Ho. While Phanerozoic carbonate microbialites rarely show the high 
La/La*, high Y/Ho open-ocean seawater signature of Archean carbon
ates, they none the less show more crustal-like signatures in lacustrine 
settings and more extreme La/La* (and to a lesser extent, Y/Ho) values 
in marine settings that tend to be predominantly lagoonal or hypersa
line, which may explain their muted values compared to the expanded 
Archean range. 

3.5. Earth surface oxygenation recorded by redox-sensitive elements in 
ancient microbialites 

As developed in section 1.3.3, the enrichment of redox-sensitive el
ements such as Fe, Mn, U, Mo, and V in chemical and fine-grained clastic 
sedimentary rocks have proven potential for reconstructing the evolu
tion of Earth's surface and marine redox conditions (Calvert and Ped
ersen, 1993; Russell and Morford, 2001; Wille et al., 2013; Robbins 
et al., 2016). In this section we examine the concentrations of these five 
elements in the carbonate microbialites of the MNHN Microbialite 
Collection with the specific goals of (1) revealing secular trends in their 
evolution and (2) comparing them to previously published records from 
other sedimentary lithologies to evaluate to what degree carbonate 
microbialites mirror other sedimentary records of Earth system change. 

Carbonate microbialites from the MNHN Microbialite Collection 
present very high iron concentrations (Fe) in the Archean (mean = 5640 
ppm, median = 3610 ppm), which decrease remarkably through the 
Proterozoic (mean = 3260 ppm, median = 2320 ppm), and finally reach 
lowest concentrations in the Phanerozoic (mean = 908 ppm, median =
209 ppm; Fig. 10A). Likewise, manganese concentrations (Mn) in 
collection samples are high during the Archean (mean = 2130 ppm, 
median = 2340 ppm), appear to increase across the Meso-to Neo
archean, and drop precipitously in the Paleoproterozoic (Fig. 10B). Mn 
concentrations remain elevated throughout the Proterozoic (mean =
1920 ppm, median = 529 ppm) relative to the Phanerozoic, which 
generally shows lower mean Mn concentrations with the exception of a 
notable peak in the Mesozoic (overall Phanerozoic mean = 901 ppm, 
median = 314 ppm). For both Fe and Mn, long tails representing rare Fe- 
and Mn-rich samples persist from the Neoproterozoic through to the 
Holocene, with maximal values tending to decrease over this period. The 
redox-sensitive trace elements U and Mo show the opposite trend, with 
increasing concentrations in carbonate microbialites over time (Fig. 10C 
and D). Their concentrations are depressed in the Precambrian (means 
= 0.32 ppm and 0.45 ppm, medians = 0.16 ppm and 0.12 ppm, for U and 
Mo, respectively), and show important but rare enrichments (long pos
itive tails in Fig. 10C and D) associated with the Paleoproterozoic GOE, 
but otherwise remain relatively low until the Neoproterozoic, after 
which they show significantly and permanently increased mean and 
median concentrations (Phanerozoic means = 2.18 ppm and 0.45 ppm, 
medians = 1.08 ppm and 0.17 ppm, for U and Mo, respectively), with 
the most enriched samples reaching significantly higher values after the 
Paleozoic. Vanadium shows intermediate behavior between the two 
cases; like Fe and Mn, V concentrations show elevated median values 
during the Precambrian (1.71 ppm) relative to the Phanerozoic (1.35 
ppm), but depressed means (2.84 ppm vs. 3.95 ppm for the Precambrian 
vs. Phanerozoic, respectively), as higher absolute concentrations in the 
most enriched microbialite samples are achieved during the Phanero
zoic, a case similar to U and Mo. 

A comparison of the carbonate microbialite data from the MNHN 
Microbialite Collection obtained for this study to literature data 
compiled from the analyses of ca. 4500 samples sedimentary carbonates 
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worldwide (Lalonde et al., 2024) reveals some remarkable coherence 
between the two records (Fig. 11). While evolving carbonate mineralogy 
over geological time (e.g., from predominately dolomite to predomi
nately calcite) may have played a role in these trends, Fig. 11A and B 
reveal that the overall trajectory of decreasing Fe and Mn in the MNHN 

microbialite data follow the well-recognized general paradigm of 
increasingly effective removal of these elements from aqueous envi
ronments over geological time (Maynard, 2010; Poulton and Canfield, 
2011; Robbins et al., 2023). Both datasets are consistent with progres
sive Fe oxidation and Mn accumulation at Earth's surface leading up to 

Fig. 9. PAAS-normalized europium anomalies plotted against praseodymium to ytterbium ratios (A and B as well as PAAS-normalized cerium anomalies (C and D) 
and lanthanum anomalies (E and F) plotted against yttrium to holmium. The plots in the first column (A, C and E) show data according to age, with Holocene samples 
plotted separately from Cenozoic samples. In the second column (B, D and F), the same data are plotted as a function of depositional environment (marine and non- 
marine) with additional annotations specific to each plot. The plots are composed of the same data from the MNHN Microbialite Collection presented in Fig. 8 
(colored circles) and available REE data out of compiled literature data (from Lalonde et al., 2024 and Patry et al., 2024; colored and grey diamonds, 5131 samples 
compiled in total). 

Fig. 10. Violin plots showing concentrations in the MNHN Microbialite Collection of selected redox-sensitive elements: iron (A), manganese (B), uranium (C), 
molybdenum (D), and vanadium (E). Samples are classified according to age, with Holocene samples explicitly separated from the rest of the Cenozoic samples. 
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the GOE, during which iron oxidation was increasingly important but 
Mn oxidation was hindered due to a combination of insufficient oxidants 
and slow oxidation kinetics; after the GOE, both elements show impor
tant decreases as thresholds for efficient Mn oxidation were surpassed, 
giving rise to Earth's major Mn deposits in the Paleoproterozoic (May
nard, 2010; Robbins et al., 2023). In the specific case of Mn, the car
bonate microbialite data inversely mirrors previously recognized trends 
in Mn mineral abundance (increasing with time) and their average 
oxidation state (increasing with time) in global crustal records (Hummer 
et al., 2022); it would thus appear that for the most part, Mn concen
trations in carbonate microbialites are more of a reflection of the 
evolving seawater Mn reservoir (decreasing with time) than a locus of 
Mn oxidation as reflected by Mn mineral abundance and redox state 
(although exceptions likely exist, e.g., microbialites where localized Mn 
oxidation concentrates Mn beyond values expected from simple divalent 
Mn partitioning in carbonates). The picture is largely the same when the 
data are normalized to Al to distinguish detrital Fe and Mn sources (that 
should draw the data towards crustal Fe/Al and Mn/Al values) from true 
authigenic enrichments that lead to higher Al-normalized values (Sup
plementary Figs. 10 and 11). The MNHN collection data generally sug
gests that the Fe and Mn systematics of ancient microbialites are useful 
tracers of Earth surface redox evolution by their propensity to reflect 
ambient seawater Fe and Mn concentrations at the time of deposition. 

The carbonate microbialites of the MNHN collection show a notable 
secular trend to higher U concentrations through geological time. This 
trend is broadly mirrored in the available carbonate literature data 
(Fig. 11C) and is in remarkable accordance with the evolution of U 
concentrations in black shales (Partin et al., 2013a) as well as banded 
iron formations (Partin et al., 2013b) over geological time. While this 
trend paints a coherent picture of progressive enrichment in seawater U 
concentrations over geological time, it's important to note that pro
gressive U enrichment in carbonate microbialites extends equally to 
non-marine samples. This example illustrates how microbialites, by the 
diversity of their depositional environments both on land and at sea, 
may provide additional insight into global biogeochemical cycling 
beyond the marine realm. Uranium is a special case where its internal 
oceanic sources are near-negligible; U concentrations are near-zero in 
marine hydrothermal fluids and the near-entirety of marine U is sup
plied by oxidative continental weathering and riverine supply of U to the 
oceans (Dunk et al., 2002). The strong accordance between the marine 
and non-marine carbonate microbialite U records thus ties the evolving 
marine U reservoir directly to the evolution of continental weathering, 
opening new avenues of inquiry for examining the coupling between 
atmospheric O2 concentrations, oxidative processes on land, and the 
response of the marine reservoir that is less accessible via chemical 
sedimentary records uniquely restricted to the marine realm, such as 
Precambrian iron formations or black shales. 

Like uranium, moldybenum is largely supplied by oxidative conti
nental weathering and is also characterized by sedimentary sinks that 
are highly redox-dependent (see section 1.3.3). While there are less Mo 
concentration data available due to the low abundance of Mo in sedi
mentary carbonates, especially prior to the Neoproterozoic, previous 
work on black shales, banded iron formations, and sedimentary car
bonates reveals that sedimentary Mo enrichment across all of these li
thologies has similarly strong potential for paleoredox reconstruction 
(see review by Thoby et al., 2019, for secular trends in compiled liter
ature carbonate, shale, and BIF Mo concentration data). The concen
trations of Mo in carbonate microbialites of the MNHN Microbialite 
Collection do not show an increase that is as clear as that observed for U 
over geological time; rather, it appears to be the highest Mo concen
trations achieved that vary over time (c.f. violin plots in Fig. 10D (Mo 
concentrations) and Supplementary Fig. 10D (Mo/Al ratios)). Fig. 11D 
reveals significantly more variation for compiled literature carbonate 
Mo concentration data compared to the microbialite record presented 
here. Mo concentrations determined for the most ancient carbonate 
microbialites in the collection were often below detection (below ca. 20 

ppb), consistent with isotope dilution data for Archean microbialites 
(Thoby et al., 2019). In contrast, there exists significant literature data 
reporting ppm-level Mo concentrations for Archean carbonates 
(Fig. 11D). Considering the low Mo abundances determined here using 
clean-laboratory techniques and high-resolution ICP-MS, and elsewhere 
using isotope dilution (Thoby et al., 2019), there is a strong possibility 
that Mo concentrations are overestimated in much of the available 
literature data. 

Additionally, considering strong Mo isotope evidence for an impor
tant evolution in marine Mo cycling through geological time, it is 
curious that baseline Mo concentrations in carbonates remain low while 
the presumed trajectory of progressive Earth surface oxidation appears 
best reflected in highest Mo concentrations attained (c.f. long tails in 
Fig. 10D). One possibility is that contrary to the case for U, but similar to 
Mo enrichment in reducing sediments (see section 1.3.3), the enrich
ment in Mo in sedimentary carbonates may be highly dependent on the 
presence of H2S (Romaniello et al., 2016). This leads to the possibility 
that “nugget effects”, or localized sources of Mo enrichment (e.g., sulfide 
minerals) in otherwise Mo-poor carbonate, may dominate both the 
literature carbonate and carbonate microbialite records presented here. 
Furthermore, contrary to the case for U, an important part of the modern 
marine Mo input flux is supplied by hydrothermalism (McManus et al., 
2002). In deep geological time, when riverine Mo supplied by oxidative 
weathering was minimal (Anbar et al., 2007), it is possible that, contrary 
to the case for U, hydrothermal Mo fluxes sustained a minimal Mo 
reservoir, leading to a dampened signal for the evolution of Mo con
centrations in marine carbonates through geological time. In this light, 
one interpretation of the expanded tails in the MNHN carbonate 
microbialite data is that localized microenvironments favoring Mo 
enrichment (e.g., sulfide-rich porewaters and diagenetic sulfide min
erals) became more commonplace from the Paleoproterozoic onwards. 

Available V concentration data for the MNHN Microbialite Collec
tion indicates a tampered response to progressive oxygenation at Earth's 
surface (Fig. 11E), similar to the case for Mo. While V has proven redox 
proxy potential in shale records (e.g., Tribovillard et al., 2006; Sahoo 
et al., 2012), it remains little explored to date in the ancient sedimentary 
carbonate record, and the data presented here indicates an enrichment 
history similar to that of Mo, although further work is clearly warranted. 
In any case, the carbonate microbialite concentration records presented 
here of redox-sensitive trace metals such as Fe, Mn, and U, and to a lesser 
extent Mo and V, paint a picture of increasingly important oxidative 
processing in both terrestrial and oceanic environments. The coherence 
in these records with carbonate data compiled from literature reinforces 
the growing appreciation of carbonate microbialites as potentially 
powerful tracers of Earth redox evolution. 

4. Conclusion 

We present here the MNHN Microbialite Collection, a large collec
tion of microbialite samples that reflects the evolving morphological and 
compositional diversity of microbialites worldwide and provides a 
unique carbonate geochemical record to evaluate the evolving paleo
environmental signatures that microbialites may have recorded at 
different periods in geological time. We also provide an associated 
dataset comprised of over 400 high quality carbonate stable isotope (C 
and O) and trace element (including REE) analyses that we explore 
broadly through comparison to large datasets compiled from literature 
for carbonates worldwide. A major aim of this study was to evaluate the 
suitability of carbonate microbialites as recorders of the long-term bio
logical and geological evolution at the Earth surface. In this regard, we 
demonstrate through this review that carbonate microbialites show 
comparable patterns of secular evolution through time in carbonate C 
isotopes (including major positive and negative excursions), O isotopes 
(with progressively increasing δ18O values through time), and redox- 
sensitive trace elements. We further examine their evolving REE sys
tematics with respect to carbonate literature data and find that ancient 
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Fig. 11. Evolution of iron (A), manganese (B), uranium (C), molybdenum (D), and vanadium (E) concentrations in carbonate microbialites of the MNHN Microbialite 
Collection (colored circles, same data as presented in Fig. 10) compared to compiled literature data for carbonates through geological time (grey diamonds, available 
data for 5131 samples compiled). 
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carbonate microbialites, like sedimentary carbonates worldwide, record 
the REE systematics of their depositional environments, with respect to 
hydrothermal inputs, oxidative Ce processing, and the evolving impor
tance of seawater-like fluids vs. more continentally sourced REE in hy
persaline/lagoonal and lacustrine settings. Redox-sensitive trace 
element enrichments in carbonate microbialites are similarly consistent 
with literature carbonate data that testify to increasing oxygenation of 
Earth's atmosphere and oceans over geological time. Ultimately, the 
MNHN Microbialite Collection and associated datasets were established 
as a community sample and data resource at the service of microbialite 
researchers worldwide, and we hope that this review will stimulate 
further research and additional understanding of Earth's biological and 
geochemical evolution as preserved by microbial sediments worldwide. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.chemgeo.2024.122239. 
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