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The generalized Ridge penalty is a powerful tool for dealing with multicollinearity
and high-dimensionality in regression problems. The generalized Ridge regression
can be derived as the mean of a posterior distribution with a Normal prior and a
given covariance matrix. The covariance matrix controls the structure of the coeffi-
cients, which depends on the particular application. For example, it is appropriate to
assume that the coefficients have a spatial structure when the covariates are spatially
correlated. This study proposes an Expectation-Maximization algorithm for estimat-
ing generalized Ridge parameters whose covariance structure depends on specific
parameters. We focus on three cases: diagonal (when the covariance matrix is diago-
nal with constant elements), Matérn, and conditional autoregressive covariances. A
simulation study is conducted to evaluate the performance of the proposed method,
and then the method is applied to predict ocean wave heights using wind conditions.
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1 INTRODUCTION

Recently, there has been a growing interest in the climate community in using statistical and data-driven methods as alternatives
to computationally expensive, physics-based deterministic models (Reichstein et al. 2019). For instance, statistical methods
are increasingly utilized for wave climate characterization, a crucial aspect for sectors such as marine engineering and coastal
management (Camus et al. 2017; Charles, Idier, Delecluse, Déqué, & Le Cozannet 2012; Michel, Obakrim, Raillard, Ailliot, &
Monbet 2022; Obakrim, Ailliot, Monbet, & Raillard 2023; Otto, Piter, & Gijsman 2021). Despite their promise, these methods
face significant practical challenges. The high dimensionality of the data, due to a limited number of observations combined with
a large number of covariates, increases the risk of overfitting. Additionally, strong spatial dependencies among covariates create
issues with multicollinearity. To enhance predictive accuracy and physical interpretability, statistical and data-driven models
must account for these complexities (Stevens et al. 2021). This study focuses on regression models with one dependent variable
and covariates exhibiting strong spatial dependencies. An example of such a scenario is the prediction of ocean wave heights
at a specific East Atlantic coastal location (Charles et al. 2012; Obakrim et al. 2023), where the regression model uses North
Atlantic wind conditions as covariates represented by gridded data with significant spatial dependencies.

Classically, in regression models for spatial data, it is generally assumed that both the response variable and the covariates
are available at each spatial location (see e.g. Heaton et al. (2019) for a review). In this context, methods that combine penalized
likelihood approaches with geostatistical models to manage high dimensionality have been discussed in the literature (Chu,
Zhu, & Wang 2011; Maranzano, Otto, & Fassò 2023). The most common way of regularizing a regression problem is to
reduce the dimension of the covariate space. This reduction can be achieved by approximating the covariance function of the
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2 Said Obakrim ET AL

spatial covariate with a low-rank matrix, similar to the principles of PCA (see, for instance, Cressie and Johannesson (2008)),
or through variable selection. Conventional variable selection methods, such as LASSO or SCAD penalties, are commonly
employed in spatial statistical regression models (Liang, Cheng, Su, Xiao, & Song 2022), and spatial variable selection through
cross-validation has been explored in previous work (Meyer, Reudenbach, Wöllauer, & Nauss 2019). However, we argue that
regularization via variable selection may not be the most convenient approach when spatial covariates are highly correlated.
When covariates at all spatial locations impact the response variable similarly, selecting specific variables could result in arbitrary
choices. Instead, we propose implementing a Ridge regularization approach van Wieringen (2015) in the estimation procedure,
which considers the spatial structure of the covariates and helps controlling the estimation variance.

Consider an experiment where we have the data {𝑦,𝑋}, of 𝑛 observations of a continuous variable 𝑌 and 𝑛 × 𝑑 matrix of
covariates 𝑋. Suppose that 𝑌 is related to 𝑋 via a linear model

𝑌 = 𝑋𝛽 + 𝜖, (1)
where 𝛽 are model coefficients and 𝜖 ∼  (0, 𝜎2) is the model error. We suppose that the intercept is either included in 𝛽 (so
that the first column of 𝑋 is a vector of 1) or that 𝑌 and 𝑋 are centered. In this study, we focus on the case where the response
variable and covariates are climate variables. Climate data are known to be multicollinear and high-dimentional (Hessami,
Gachon, Ouarda, & St-Hilaire 2008; Permatasari, Djuraidah, & Soleh 2017; Sungkawa, Rahayu, et al. 2019). In the case of
multicollinearity or high-dimensionality, penalized linear regression methods, like Ridge regression, are needed to control the
variance of the estimate. For example, Hessami et al. (2008) used Ridge regression to downscale precipitation and temperature
in eastern Canada and pointed out that Ridge estimates are more robust than ordinary least squares estimates. Ridge estimator
of the problem (1) is

𝛽𝑅𝑖𝑑𝑔𝑒𝜆 = argmin
𝛽

−𝓁(𝛽, 𝜎2) + 𝜆‖𝛽‖2 (2)
where 𝜆 is the regularization parameter and 𝓁(𝛽, 𝜎2) is the log-likelihood of the model (1). The hyperparameter 𝜆 needs to be
selected in order to get a trade-off between variance and bias (Hastie, Tibshirani, Friedman, & Friedman 2009), since for example
high values of 𝜆 permit to reduce the variance but increase the bias of the model.

Boonstra, Mukherjee, and Taylor (2015) classified methods for selecting 𝜆 into goodness-of-fit-based and likelihood-based
methods. Goodness-of-fit-based methods define a goodness of fit criterion (such as the mean squared error) and minimize it
in terms of 𝜆. The most common goodness-of-fit-based method is the k-fold cross-validation which consists of partitioning
observations into 𝑘 groups and estimating 𝛽 𝑘 times for each 𝜆 leaving out one group. For each 𝜆, a goodness of fit score is
calculated, and 𝜆 with the minimum score value is chosen. The typical choices of 𝑘 are 5 and 10, while setting 𝑘 = 𝑛 leads to
leave-one-out cross-validation (LOOCV). LOOCV leads to a better estimation of 𝜆; however, it is computationally expensive
given that it requires fitting the model 𝑛 times (Patil, Wei, Rinaldo, & Tibshirani 2021). Generalized cross-validation (GCV)
(Golub, Heath, & Wahba 1979) is an approximation of LOOCV that does not require fitting 𝑛 models. GCV uses a weighted
version of the predicted residual error sum of squares (PRESS) statistic (Allen 1974) as a goodness of fit criterion. One of the
problems with goodness-of-fit-based methods is the selection of the grid for the search of the optimal 𝜆, which influences the
estimation.

Assuming that 𝑌 |𝛽 ∼  (𝑋𝛽, 𝜎2𝐼𝑛), Ridge regression can be derived as the mean of a posterior distribution with the prior
𝛽 ∼  (0𝑑 , 𝜎2𝜆−1𝐼𝑑) (van Wieringen 2015) and as in hierarchical linear regression, likelihood-based methods maximize the
likelihood with respect to 𝜎2 and 𝜆 using for instance an iterative method (Boonstra et al. 2015). Unlike goodness-of-fit-based
methods, the advantage of likelihood-based approaches is, on the one hand, that they do not require grid selection for the
regularization parameters. On the other hand, likelihood-based methods can be generalized to consider any form of prior for the
coefficients 𝛽, such as spatial dependence. For instance, Tew, Schmidt, and Makalic (2022) propose a diagonal covariance for 𝛽
with varying variances. This covariance shape allows a local shrinkage.

When the covariates have a spatial structure, it is reasonable to suppose that coefficients have a spatial structure and a joint
penalization of the coefficients is required (Tibshirani, Saunders, Rosset, Zhu, & Knight 2005). To do that, the generalized Ridge
(van Wieringen 2015) can be used. Generalized Ridge extends the equation (2) by replacing the term 𝜆‖𝛽‖2 to 𝛽𝑇Δ𝛽, where Δ
is called the penalty matrix. In general, Δ depends on some regularization parameters (see, e.g., Goeman (2008) and Hemmerle
(1975)); however, when the number of the regularization parameters is greater than 1, it is difficult to tune these parameters
due to the combinatorial explosion. Generalized Ridge in the hierarchical linear model framework, is equivalent to suppose that
𝛽 ∼  (0𝑑 ,Σ𝜃) where Σ𝜃 is a covariance matrix that depends on some parameters 𝜃. Note that Σ𝜃 corresponds to the inverse of
the penalty matrix Δ. The classical Ridge is a special case of this model when the covariance matrix Σ𝜃 is proportional to the
identity matrix, and 𝜃 is the usual regularization parameter 𝜆.
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𝛽 is a latent field and this suggests using an Expectation Maximization algorithm to estimate the parameters. Indeed the EM
algorithm (Dempster, Laird, & Rubin 1977) is probably the most usual method for estimating the parameters of a model with
latent variables. The EM algorithm alternates between two steps: the expectation (E-step) and maximization (M-step) steps.
The E-step calculates the conditional expectation of the log-likelihood given the observations and current parameters. In the
M-step, the parameters are estimated by maximizing the conditional expectation of the log-likelihood calculated in the E-step.
Note that EM algorithm for maximizing the likelihood in spatial models has already been used for instance for multivariate
coregionalization models (Zhang (2007) Fassò and Finazzi (2011)).

In this study, we extend the algorithm in Bishop and Nasrabadi (2006), Tew et al. (2022) and Tew, Boley, and Schmidt (2024)
and propose an EM algorithm to estimate the parameters of hierarchical linear regression when 𝛽 ∼  (0,Σ𝜃). At first, we study
the case where Σ𝜃 is diagonal with constant elements, which corresponds to the classical Ridge in equation (2) and the problem
studied by Bishop and Nasrabadi (2006) and Tew et al. (2022). Then, our main contribution is to consider the case where the
coefficients 𝛽 have a spatial structure, especially when Σ𝜃 is the Matérn or the conditional autoregressive (CAR) covariance. To
the best of our knowledge, this is the first time that it is proposed to regularize a spatial covariate linear regression by considering
a latent parameter with a structure and calibrating the model using an EM algorithm in order to prevent the selection of the
regularisation constant.

This paper is organized as follows. The proposed method and its special cases are presented in Section 2. Then, a simulation
study is conducted in Section 3 to assess the performance of the proposed method. In section 4, we apply the methodology to
oceanography data where the proposed methodology is used to predict significant wave height at a location in the Bay of Biscay
using North Atlantic wind conditions as covariates. Finally, this study is concluded in Section 5.

2 PROPOSED METHOD

As stated in the introduction, Ridge regression can be viewed as a hierarchical linear model where 𝛽 ∼  (0𝑑 , 𝜎2𝜆−1𝐼𝑑). When
there is a structure on the coefficients, it is unreasonable to consider all possible covariance functions as possible candidates for 𝛽.
Therefore, we suppose that the covariance of 𝛽 depends on some parameters 𝜃, so that 𝛽 ∼  (0𝑑 ,Σ𝜃). This motivates using the
EM algorithm to find the maximum likelihood estimation of the parameters, where the model parameters are then Θ = (𝜎2, 𝜃).
The proposed method is described in this section, and three special cases of the covariance Σ𝜃 (the diagonal, Matérn, and CAR)
are studied.

2.1 EM algorithm for generalized Ridge
Consider the linear model (1) and assume that 𝛽 is a latent variable that follows a normal distribution. We define the regression
model hierarchically as

𝛽 ∼  (0𝑑 ,Σ𝜃)
𝑌 ∣ 𝛽,Θ ∼  (𝑋𝛽, 𝜎2𝐼𝑛)

(3)

where Θ = (𝜎2, 𝜃). Note that for simplicity, we assume that the mean of 𝛽 is zero. The EM algorithm for the case where 𝛽 has a
non-zero mean will be presented in the Appendix.

Given a sample 𝑦 = (𝑦1, ..., 𝑦𝑛), the complete log-likelihood is expressed as

ln 𝑝(𝑦, 𝛽; Θ) = ln 𝑝(𝑦 ∣ 𝛽; 𝜎2) + ln 𝑝(𝛽; 𝜃)

= −1
2

(

𝑛 ln(2𝜋) + 𝑛 ln(𝜎2) + 1
𝜎2

‖𝑦 −𝑋𝛽‖2 + 𝑑 ln(2𝜋) + ln(|Σ𝜃|) + 𝛽𝑇Σ−1
𝜃 𝛽

) (4)

Maximum likelihood estimation consists of maximizing (4) with respect to the parameters Θ. This is usually done with the
Expectation-Maximization algorithm in the latent variable context. The EM algorithm alternates between the E-step and M-
step. In the E-step, the expectation 𝑄(Θ|Θ(𝑖)) of the complete likelihood with respect to the posterior distribution of the latent
variable 𝛽 and the parameters Θ(𝑖) from the previous iteration 𝑖 is calculated. In the M-step, the quantity 𝑄(Θ|Θ(𝑖)) is maximized
with respect to the parameters Θ.

The E-step and M-step are defined as follows
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4 Said Obakrim ET AL

• E-step:

𝑄(Θ|Θ(𝑖)) = 𝔼(ln 𝑝(𝑦, 𝛽; Θ) ∣ 𝑦,Θ(𝑖)). (5)
The posterior distribution of the latent variable 𝛽 is a normal distribution with mean 𝜇𝛽∣𝑦 and covariance matrix Σ𝛽∣𝑦 such that

{

Σ𝛽|𝑦 = (Σ−1
𝜃 + 1

𝜎2𝑋𝑇𝑋)−1

𝜇𝛽|𝑦 = (𝑋𝑇𝑋 + 𝜎2Σ−1
𝜃 )−1𝑋𝑇 𝑦.

(6)

Note that 𝜇𝛽|𝑦 defined in (6) is a generalized Ridge estimator (see e.g. van Wieringen (2015)) solution of the optimization problem
𝜇𝛽|𝑦 = argmin

𝛽

‖𝑦 −𝑋𝛽‖2

𝜎2
+ 𝛽𝑇Σ−1

𝜃 𝛽 (7)
Therefore,

𝑄(Θ|Θ(𝑖)) = −1
2

(

ln(|Σ𝜃|) + Tr(Σ−1
𝜃 𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑖))) + 𝑛 ln(𝜎2) + 1

𝜎2
𝔼(‖𝑦 −𝑋𝛽‖2 ∣ 𝑦,Θ(𝑖))

)

+ 𝐶 (8)
where 𝐶 = (𝑛 + 𝑑) ln(2𝜋) is a constant and

{

𝔼(𝛽𝛽𝑇 |𝑦; Θ(𝑖)) = Σ𝛽|𝑦 + 𝜇𝛽|𝑦𝜇𝑇
𝛽|𝑦

𝔼(‖𝑦 −𝑋𝛽‖2|𝑦; Θ(𝑖)) = ‖𝑦‖2 − 2𝑦𝑇𝑋𝜇𝛽|𝑦 + Tr(𝑋𝑇𝑋𝔼(𝛽𝛽𝑇 |𝑦; Θ(𝑖))),
(9)

and Tr denotes the trace operation.
• M-step:

In the M-step, the goal is to compute the updates of the parameters, denoted by Θ(𝑖+1), that maximize the objective function
𝑄(Θ|Θ(𝑖)) given

Θ(𝑖+1) = argmax
Θ

𝑄(Θ|Θ(𝑖)) (10)
The closed-form update for the variance, denoted by 𝜎2,(𝑖+1), is computed as follows:

𝜎2,(𝑖+1) = 1
𝑛
(‖𝑦‖2 − 2𝑦𝑇𝑋𝜇𝛽|𝑦 + Tr(𝑋𝑇𝑋𝔼(𝛽𝛽𝑇 |𝑦; Θ(𝑖)))). (11)

The update for the parameter 𝜃, denoted by 𝜃(𝑖+1) is found by maximizing the following optimization problem:
𝜃(𝑖+1) = argmax

𝜃
ln(|Σ−1

𝜃 |) − Tr(Σ−1
𝜃 𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑖))). (12)

This optimization requires the parameterization of the covariance matrix Σ𝜃 , the details of which will be discussed in the
subsequent section, highlighting certain special cases.

2.2 Special cases
The M-step in equation (12) requires the maximization of 𝑄(Θ|Θ(𝑡)) over the parameters of the covariance Σ𝜃 . In this study,
we will explore three cases. First, we consider the case where Σ𝜃 is diagonal. Then, the case where 𝛽 has a spatial structure,
especially when the parametric covariance is the Matérn covariance function. Finally, we consider the conditional autoregressive
model (CAR).

2.2.1 Diagonal case
In the classical Ridge, the covariance matrix of the coefficients 𝛽 is supposed to be diagonal such that

Σ𝜃 = 𝜎2
𝛽𝐈𝐝. (13)

Consequently, the determinant of the inverse covariance matrix can be expressed as:

|Σ−1
𝜃 | =

𝑑
∏

𝑖=1
𝜎−2
𝛽 = 𝜎−2𝑑

𝛽 . (14)
Substituting this into (11), we obtain:

𝜎2,(𝑖+1)
𝛽 = argmax

𝜎2
𝛽

−𝑑 ln(𝜎2
𝛽 ) −

1
𝜎2
𝛽

Tr(𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑖))). (15)
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Said Obakrim ET AL 5

Setting the derivatives with respect to 𝜎2
𝛽 to zero, we obtain the M-step

𝜎2,(𝑖+1)
𝛽 =

Tr(𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑖)))
𝑑

. (16)
Note that 1

𝜎2
𝛽

corresponds to the regularization parameter 𝜆 in (1). In the classical Ridge regression framework, selecting the
regularization parameter 𝜆 is essential and is typically achieved through cross-validation methods. Cross-validation methods
have demonstrated efficacy in mitigating overfitting across a variety of statistical and machine learning applications. How-
ever, in our study, the hierarchical regression model defined in (3) inherently incorporates the regularization of the coefficients
through the covariance Σ𝜃 . Through a simulation study, we show in Appendix A that the EM algorithm effectively estimates
the regularization parameters without the need for cross-validation. As mentioned in the introduction, most Ridge regression
cross-validation methods necessitate selecting a grid for the regularization parameters, a task that is not straightforward. Fur-
thermore, when dealing with multiple regularization parameters, as elaborated in subsequent sections, applying cross-validation
to select parameters becomes challenging due to combinatorial explosion. In contrast, the EM algorithm allows for the estima-
tion of regularization parameters directly from the data. We provide a comparison of the two methods (cross-validation and EM
algorithm) in the Appendix A.

It is important to note that some studies argue that the EM algorithm may be prone to overfitting (Andrews 2018; Tian, Xia,
Zhang, & Feng 2011), leading to the consideration of hybrid approaches that combine the EM algorithm and cross-validation to
mitigate this issue (Shinozaki & Ostendorf 2008; Takenouchi & Ikeda 2010). However, this aspect falls beyond the scope of our
paper, which primarily focuses on demonstrating the efficiency of the EM algorithm in estimating regularization parameters.

2.2.2 Spatial covariance functions
In spatial statistics applications, one may assume that 𝛽 has a spatial structure. One way to do that is to assume that 𝛽 has a
parametric covariance function. There are many choices of covariance functions that are widely used for Gaussian processes and
kriging (Schulz, Speekenbrink, & Krause 2018). In this study, we focus on the stationary Matérn covariance, which has the form

𝐾(ℎ;𝜙, 𝜅) =
𝜎2
𝛽

2𝜅−1Γ(𝜅)

(

ℎ
𝜙

)𝜅

𝐾𝜅

(

ℎ
𝜙

)

(17)
where ℎ is the distance between two points, Γ is the Gamma function, and 𝐾𝜅 is the modified Bessel function (Abramowitz,
Stegun, & Romer 1988). The Matérn function is parameterized by the variance parameter 𝜎2

𝛽 , the range parameter 𝜙, and the
smoothness parameter 𝜅. The range parameter 𝜙 controls the decay rate with distance, with larger values of 𝜙 corresponding
to more strongly correlated variables, and the smoothness parameter 𝜅 controls the mean-square differentiability of the spatial
process.

By expressing Σ𝜃 = 𝜎2
𝛽𝑅𝜃 , the maximization step for the covariance of 𝛽 in (13) can be reformulated as follows:
(𝜎2,(𝑖+1)

𝛽 , 𝜃(𝑖+1)) = argmax
𝜎2
𝛽 ,𝜃

ln(|𝑅−1
𝜃 |) − 𝑑 ln(𝜎2

𝛽 ) −
1
𝜎2
𝛽

Tr(𝑅−1
𝜃 𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑖))) (18)

where 𝑅𝜃 is the Matérn correlation and 𝜃 = (𝜙, 𝜅). Since the variance parameter is constant and following Bachoc (2013), the
optimization of the variance parameter 𝜎2

𝛽 can be carried out separately with the correlation parameters 𝜙 and 𝜅. Therefore,

𝜎2,(𝑖+1)
𝛽 =

Tr(𝑅−1
𝜃 𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑖)))

𝑑
𝜃(𝑖+1) = argmax

𝜃
ln(|𝑅−1

𝜃 |) − 𝑑 ln(Tr(𝑅−1
𝜃 𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑖)))).

(19)

The solution to the optimization problem in equation (19) cannot be done analytically; therefore, numerical optimization algo-
rithms are used. This study uses the quasi-Newton method L-BFGS-B to optimize the parameters. Given the difficulties in
estimating Matérn parameters (Kaufman & Shaby 2013), we a priori fix the smoothness parameter as 3

2
, which gives the classical

3
2
-Matérn covariance function.

2.2.3 Conditional autoregressive model
The M-step in equation (10) requires the inversion of the covariance matrix, which can be challenging for large matrices. This
problem is wildly discussed in Gaussian processes literature (Ambikasaran, Foreman-Mackey, Greengard, Hogg, & O’Neil 2015;
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6 Said Obakrim ET AL

Storkey 1999). Therefore, it can be numerically advantageous to parameterize the precision matrix (inverse of the covariance
matrix) instead of the covariance matrix. This is motivated by the fact that the precision matrix 𝑃𝜃 = Σ−1

𝜃 can be approximated by
a sparse matrix (Tajbakhsh, Aybat, & Del Castillo 2020). In fact, the off-diagonal elements of the precision matrix correspond to
the conditional covariance between two variables given the remaining variables. Therefore, conditionally independent variables
have zero values in the precision matrix.

Gaussian Markov random fields (GMFs) are wildly used in spatial statistics (Cressie & Wikle 2015). GMFs models have a
Markov property making them computationally and theoretically suitable (Rue 2001). Furthermore, (Rue & Tjelmeland 2002)
demonstrated that a GMF model can approximate a Gaussian field with a Matérn correlation function and other families of
correlation functions. Conditional autoregressive (CAR) models are classes of GMFs with well-defined joint Gaussian distribu-
tion (Cressie & Kapat 2008). This subsection will study cases where the coefficients 𝛽 have the CAR model property. The joint
distribution of a CAR is expressed as

𝛽 ∼  (0, 𝜏2(𝐼𝑑 − 𝛼𝐻)−1Φ). (20)
The distribution of 𝛽 depends on unknown parameters 𝛼 and 𝜏2, and many types of CAR models depend on the choice of the
matrices 𝐻 and Φ. Following Besag, York, and Mollié (1991), in this study, we consider the Weighted CAR (WCAR) model
where

Φ = diag(|𝑁1|
−1, ..., |𝑁𝑑|

−1) (21)
where |𝑁𝑖| is the number of neighbors of location 𝑖 and 𝐻 =

(

𝑎𝑖𝑗
|𝑁𝑖|

)

𝑑×𝑑
; 𝑖, 𝑗 = 1, ..., 𝑑, where 𝑎𝑖𝑗 is the (𝑖, 𝑗) element of the

adjacency matrix 𝐴 = (𝑎𝑖𝑗)𝑑×𝑑 , where 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 1 if and only if location 𝑖 and 𝑗 are neighbors and otherwise 𝑎𝑖𝑗 = 0. Putting
𝑃𝜃 = 𝜏−2Φ−1(𝐼𝑑 − 𝛼𝐻), the second part of the M-step in the equation (11) becomes

𝜃(𝑖+1) = argmax
𝜃

ln(|𝑃𝜃|) − Tr(𝑃𝜃𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑖))) (22)
where 𝜃 = (𝜏2, 𝛼).

As for the Matérn covariance, the solution to the optimization problem (22) cannot be done analytically, and the numerical
optimization algorithm L-BFGS-B is used. Note that the optimization of the variance parameter 𝜏2 can also be carried out
separately with the parameter 𝛼.

Remark that this leads to a spatial extension of the fused Ridge method proposed in Goeman (2008). Indeed, when 𝛼 = 1

𝛽𝑃𝜃𝛽
𝑇 = 1

𝜏2
𝛽𝑇Φ−1(𝐼𝑑 − 𝛼𝐻)𝛽 = 1

2𝜏2
∑

(𝑖,𝑗)|𝑎𝑖𝑗=1
(𝛽𝑖 − 𝛽𝑗)2. (23)

and thus equation (7) becomes
𝜇𝛽|𝑦 = argmin

𝛽

‖𝑦 −𝑋𝛽‖2

𝜎2
+ 1

2𝜏2
∑

(𝑖,𝑗)|𝑎𝑖𝑗=1
(𝛽𝑖 − 𝛽𝑗)2 (24)

This shows that any spatial coefficient variations will be penalized when solving (24). In this case, replacing the L2 norm with
the L1 norm leads to the fused LASSO method proposed in Tibshirani et al. (2005). However, the matrix (𝐼𝑝 − 𝛼𝐻) is not
semi-positive definite when 𝛼 = 1 and thus Σ𝜃 is degenerate. Hereafter we impose the constraints |𝛼| < 1 to ensure that the
precision matrix is positive definite. Another strategy would consist of adding a regular Ridge penalty (e.g., the discussion in
van Wieringen (2015)).

3 SIMULATION STUDY

In this section, a simulation study is conducted to assess the performance of the proposed method for estimating model parameters
for the three cases: diagonal, Matérn, and CAR.

3.1 Setup
This study focuses on using the proposed method for spatial applications. Therefore, we consider a 15 × 15 regular spatial grid
in a square domain [1, 15]2 where each location 𝑗 has a covariate 𝑥𝑗 . We generate 𝑋 = (𝑥𝑖𝑗)𝑛×𝑑 of 𝑛 independent and identically
distributed observations from a multivariate normal distribution with zero mean and a Matérn covariance with some arbitrary
parameters (𝜎2

𝑥, 𝜙𝑥, 𝜅𝑥) = (6, 2, 3∕2). Then, the coefficients 𝛽, kept the same for all observations, are simulated using either the
diagonal, Matérn, or CAR case. Finally, for a given 𝜎2, 𝑌 is simulated from the normal distribution according to equation (3).
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The parameters chosen for each case are:
• Diagonal: 𝜎2 = 36 and 𝜎2

𝛽 = 7

• Matérn: 𝜎2 = 36, 𝜎2
𝛽 = 0.1 and 𝜙 = 4

• CAR: 𝜎2 = 36, 𝜏2 = 1 and 𝛼 = 0.9

The parameters are chosen so that the results of the three methods are comparable. For the CAR model, we consider four
neighbors to construct the adjacency matrix, and we chose 𝛼 = 0.9 to sufficiently smooth the resulting coefficients.

The EM algorithm is initialized with an arbitrary set of parameters, and the E-step and M-step are repeated until no further
improvement can be made to the likelihood value or to limit the computational cost until a maximum number of iterations is
reached. The computation time for one iteration on an i5-7500 CPU and 16Go computer is 0.16, 3, and 1.8 seconds for diagonal,
Matérn, and CAR, respectively.

3.2 Results
In this section, we present the results of the simulation study, outlined into five distinct segments. First, we employ a single
simulation procedure to assess the accuracy of the estimated regression coefficients (Figure 1 ). Following this, we conduct
three additional simulations using a Monte Carlo approach. These simulations assess the method’s performance under varying
conditions such as sample size, number of covariates, and residual variance (Figure 1 to 5 ). Lastly, we conduct a final Monte
Carlo simulation to evaluate the method’s robustness in estimating the regression coefficients in the case where the coefficients
are estimated using a different covariance model that was used for simulation. In instances where the sample size (𝑛) and the
number of covariates (𝑑) remain unchanged, we use a standard configuration where the sample size is set at 800, and the number
of covariates is set at 250.

At first, one simulation is done for each case (diagonal, Matérn, and CAR) with 𝑛 = 800. The parameters are estimated using
the EM algorithm presented in the previous section. Figure 1 shows the first simulation results. Left panels correspond to the
true 𝛽, and right panels correspond to the estimated 𝛽 using the EM algorithm. For all the cases, the EM algorithm does well in
estimating the parameters, especially the variance 𝜎2.

To assess the influence of the sample size on the estimations, for each case, we perform 100 independent random simulations
for each sample size varying from 50 to 850. For each simulation, the EM algorithm is used to estimate the parameters. Figure
2 shows the normalized root mean square error 𝑁𝑅𝑀𝑆𝐸𝛽 and 𝑁𝑅𝑀𝑆𝐸𝑦 for the three cases where

𝑁𝑅𝑀𝑆𝐸𝛽 =

√

1
𝑑

∑𝑑
𝑗 (𝛽𝑗 − 𝛽𝑗)2

𝜎𝛽

𝑁𝑅𝑀𝑆𝐸𝑦 =

√

1
𝑛′

∑𝑛′
𝑖 (𝑦𝑖 − 𝑦𝑖)2

𝜎̂𝑦

(25)

where 𝛽𝑗 and 𝑦𝑖 are the estimated 𝛽𝑗 and 𝑦𝑖 and 𝜎𝛽 and 𝜎̂𝑦 are the sample standard deviation of 𝛽 and 𝑦, respectively. 𝑁𝑅𝑀𝑆𝐸𝑦
is calculated in a test set (which is not used in the estimation) of size 𝑛′ = 𝑛

2
. For the three cases, 𝑁𝑅𝑀𝑆𝐸𝛽 and 𝑁𝑅𝑀𝑆𝐸𝑦

decrease as the sample size increases. However, the decay rate is quicker for the diagonal case, both for the prediction of the
coefficients 𝛽 and the response variable 𝑦. This disparity is expected as the parameter space for 𝛽 is less restricted compared to
the other cases where a spatial structure is constrained.

To evaluate the parameter estimates, we compare the EM estimates with the maximum likelihood estimates of the parameters,
hereafter referred to as MLE, knowing the true 𝛽. More precisely, the MLE estimates are defined as

ΘMLE = argmax
Θ

−1
2

(

ln(|Σ𝜃|) + 𝛽𝑇trueΣ
−1
𝜃 𝛽true + 𝑛 ln(𝜎2) + 1

𝜎2
‖𝑦 −𝑋𝛽true‖2

)

+ 𝐶 (26)
where 𝛽true is the true 𝛽 simulated for each case with the parameters given in section 3.1. Along with the sample size, we are
also interested in how the estimates behave when varying the number of covariates, 𝑑, and the variance parameter 𝜎2. Note that
in practice, ΘMLE cannot be found in practical applications, given that the true 𝛽 is not observed (latent variable). Therefore, we
expect the EM algorithm to provide less accurate estimates than MLE. However, we expect that by varying the sample size, the
dimension, and the variance 𝜎2, the EM estimates asymptotically will be close to MLE estimates.
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FIGURE 1 Simulation results for the three cases (diagonal, CAR, and Matérn). The left panels correspond to the true 𝛽 coef-
ficients with the true parameters given in section 3.1, and the right panels correspond to the 𝛽 estimated when the sample size
𝑛 = 800 and number of covriates 𝑑 = 225

.

Figures 3 , 4 and 5 show boxplots of EM (red) and MLE (blue) estimates for the diagonal, Matérn and CAR cases as a
function of sample size, number of covariates 𝑑, and variance 𝜎2. For the diagonal case, the estimate of 𝜎2 seems to converge to
the true value of the parameter (blue line) when the sample size 𝑛 increases as it does in the usual linear regression model. It is
noteworthy that the variability in estimates of the spatial variance 𝜎2

𝛽 does not significantly change as the sample size increases,
but when 𝑛 is large enough, EM and MLE seem to provide similar results. This is not unexpected since both methods are based on
a single sample of the d-dimensional field 𝛽. As expected, the number of covariates 𝑑 also affects the estimate of the parameter
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FIGURE 2 Results of 𝑁𝑅𝑀𝑆𝐸𝛽 (left panels) and 𝑁𝑅𝑀𝑆𝐸𝑦 (right panels) for the diagonal, CAR, and Matérn case as a
function of the sample size 𝑛 varying from 50 to 850 with a fixed number of covriates 𝑑 = 225

.

𝜎2
𝛽 , which converges towards the true value as 𝑑 increases; however, no significant change is observed for 𝜎2 when 𝑑 increases.

The effect of the variance 𝜎2 on the estimation of 𝜎2
𝛽 is small, and we observe that for 𝜎2 larger than 100, the EM and MLE tend

to underestimate 𝜎2
𝛽 . Similar behavior can be observed for the Matérn case: the variance parameter 𝜎2 seems to converge towards

the actual value with increasing sample size. However, there is no significant change in the other parameters (the variance 𝜎𝛽
and the range 𝜙). The number of covariates 𝑑 mainly influences the parameters 𝜎𝛽 and 𝜙, which describe the spatial structure
of the d-dimensional field 𝛽, and as 𝑑 increases, the estimates converge to the actual values. As for the diagonal case, the EM
algorithm underestimates the parameters 𝜎𝛽 and 𝜙 when the variance 𝜎2 increases. Finally, for the CAR case, the sample size

Acc
ep

ted
 M

an
us

cri
pt



10 Said Obakrim ET AL

20

40

60

50 250 450 650 850
Sample size

E
st

im
at

ed
 σ

2

4

6

8

10

50 250 450 650 850
Sample size

E
st

im
at

ed
 σ

β2

EM

MLE

32

36

40

49 144 225 324 441
Number of covariates

E
st

im
at

ed
 σ

2

4

6

8

10

49 144 225 324 441
Number of covariates

E
st

im
at

ed
 σ

β2
EM

MLE

0

50

100

150

10 60 110 160

σ2

E
st

im
at

ed
 σ

2

5

6

7

8

9

10 60 110 160

σ2

E
st

im
at

ed
 σ

β2

EM

MLE

FIGURE 3 Estimated parameters in the case where the covariance of 𝛽 is diagonal as a function of the sample size (with a
fixed number of covariates 𝑑 = 225), the number of covariates 𝑑 (with a fixed sample size 𝑛 = 800), and the variance 𝜎2 (with a
fixed sample size 𝑛 = 800 and number of covariates 𝑑 = 225). Red boxes correspond to EM estimates and the blue ones to MLE
estimates. The blue line corresponds to the true value of the parameter 𝜎2 and 𝜎2

𝛽 , which are equal to 36 and 7, respectively.

influences the parameters 𝜎2 and 𝜏2, but only slightly the correlation parameter 𝛼, which is mainly influenced by the number of
covariates 𝑑. The variance 𝜎2 has a significant influence on 𝜏2, but only a small one on 𝛼.

Notice that in the high-dimensional scenario, the diagonal covariance underestimates the variance of residuals, which is not
the case for the Matérn and CAR covariance cases. This underestimation and uncertainty in the diagonal case is a clear indication
of overfitting, as the parameter space in this scenario is notably less constrained. However, it is important to note that this
uncertainty in the high-dimensional case is generally more pronounced when no regularization is applied. If no regularization
is applied in the high-dimensional case, there is not a unique solution to the regression problem given that the matrix 𝑋𝑇𝑋 in
equation (6) is not invertible. By introducing proper regularization through the covariance Σ𝜃 , the matrix (𝑋𝑇𝑋 + 𝜎2Σ−1

𝜃 ) in
equation (6) becomes invertible, enabling a closed solution for Ridge regression.
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FIGURE 4 Estimated parameters in the case where the covariance of 𝛽 is the Matérn as a function of the sample size (with a
fixed number of covariates 𝑑 = 225), the number of covariates 𝑑 (with a fixed sample size 𝑛 = 800), and the variance 𝜎2 (with
a fixed sample size 𝑛 = 800 and number of covariates 𝑑 = 225)
. Red boxes correspond to EM estimates and the blue ones to MLE estimates. The blue line corresponds to the true value of the

parameter 𝜎2, 𝜎2
𝛽 , and 𝜙, which are equal to 36, 0.1, and 4, respectively.

To summarize:
• The sample size 𝑛 mainly influences the estimation of the variance of the residuals 𝜎2.
• The parameters which describe the spatial structure of 𝛽 are mainly influenced by the number of covariates 𝑑.
• As the variance 𝜎2 increases, EM underestimates the parameter 𝜎2

𝛽 of the diagonal and Matérn case, and the range
parameter 𝜙.

• EM estimates are close to MLE estimates in most cases when the sample size and the number of covariates 𝑑 are large
enough and the variance 𝜎2 is small.

Another interesting aspect worth investigating involves simulating coefficients 𝛽 using one covariance model and estimating
them using a different covariance model. The objective is to observe the sensitivity of estimation when the true covariance of
the coefficients differs from the one used for model estimation. In this regard, we conducted 100 independent simulations of
𝛽 utilizing the Matérn covariance function, and subsequently estimated the parameters utilizing three distinct cases: diagonal,
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FIGURE 5 Estimated parameters in the case where the covariance of 𝛽 is the CAR as a function of the sample size (with a
fixed number of covariates 𝑑 = 225), the number of covariates 𝑑 (with a fixed sample size 𝑛 = 800), and the variance 𝜎2 (with
a fixed sample size 𝑛 = 800 and number of covariates 𝑑 = 225). Red boxes correspond to EM estimates and the blue ones to
MLE estimates. The blue line corresponds to the true value of the parameter 𝜎2, 𝜎2

𝛽 , and 𝛼, which are equal to 36, 1, and 0.9,
respectively.

Conditional Autoregressive (CAR), and Matérn covariances. The outcomes of this experiment are presented in Figure 6 . It
is clear that using the Matérn covariance for the estimation gives better results in terms of 𝑁𝑅𝑀𝑆𝐸𝛽 . Not surprisingly, the
diagonal case is the worst model for estimating the coefficients. However, in terms of 𝑁𝑅𝑀𝑆𝐸𝑦, there is a small difference
between the three methods.

4 APPLICATION

The proposed method is applied to the problem of predicting the significant wave height (𝐻𝑠) at a location in the Bay of Biscay
using wind conditions over the North Atlantic (Figure 7 ), where the significant wave height is the average height of the highest
third of the waves, a key measure of wave height that provides information about wave energy. In the Bay of Biscay, wave behavior
is influenced by both local and global wind conditions, with some swells originating as far away as Cape Hatteras (Ardhuin &
Orfila 2018). To accurately predict 𝐻𝑠,it is crucial to consider a large area covered by the swell generation (Obakrim et al. 2023).
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FIGURE 6 Results of the estimations when the true beta is simulated from Matérn with the parameters 𝜎2 = 36, 𝜎2
𝛽 = 0.1 and

𝜙 = 4 and sample size 𝑛 = 800 and number of covariates 𝑑 = 225. The left panel correspond to 𝑁𝑅𝑀𝑆𝐸𝛽 and the right one
to 𝑁𝑅𝑀𝑆𝐸𝑦.

FIGURE 7 CFSR projected wind in the North Atlantic in 1994-01-01 00h:00. The black point represents the target point.

The classical method used to define a relevant spatial domain for the predictors, is to fit different models at different radii around
the target point and select the optimal model, as shown in Michel et al. (2022); however, it could be computationally intensive to
test such a number of models. One significant advantage of regularization methods, such as generalized Ridge, is their capacity to
incorporate numerous covariates into the model while penalizing those that contribute minimally to the prediction (Hastie et al.
2009). For this study, we will therefore utilize a broad spatial domain, following previous studies Michel et al. (2022); Obakrim
et al. (2023), for predicting wave height at the target location in the Bay of Biscay and use generalized ridge regression, allowing
the regularization technique to automatically prioritize the most influential locations in terms of wave energy at the target point.

The data used for 𝐻𝑠 comes from the Homere hindcast database (Boudière et al. 2013), and the wind data comes from Climate
Forecast System Reanalysis (CFSR) (Saha et al. 2010). The wind data are pre-processed before being used as a predictor (see
Obakrim et al. (2023) for the pre-processing procedure). We consider 23 years of 𝐻𝑠 and wind data from 1994 to 2016 with a
temporal resolution of 3 hours.
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Method r RMSE(m) bias(m) Computation time (min)
Diagonal 0.941 0.414 -0.0004 16.77
Matérn 0.956 0.354 -0.04 40.9
CAR 0.957 0.352 -0.06 30.06

TABLE 1 Quantitative comparison of the diagonal, Matérn, and CAR methods in the validation set using the correlation (r),
root mean square error (RMSE), bias, and computation time.

The regression problem is of the form

𝐻𝑠(𝑡) =
𝑑
∑

𝑗=1
𝑋𝑗(𝑡)𝛽𝑗 + 𝜖(𝑡) 𝑡 = 1, ..., 𝑛 (27)

where 𝑋𝑗(𝑡) is the predictor at time 𝑡 and location 𝑗 defined as
𝑋𝑗(𝑡; 𝑡𝑗 , 𝛼𝑗) =

1
2𝛼𝑗+1

∑𝑡−𝑡𝑗+𝛼𝑗
𝑖=𝑡−𝑡𝑗−𝛼𝑗

𝑊 2
𝑗 (𝑖), (28)

𝑡𝑗 + 𝛼𝑗 + 1 ≤ 𝑡 ≤ 𝑡𝑗 − 𝛼𝑗 + 𝑛

where 𝑊𝑗 is the projected wind (figure 7 ) defined as
𝑊𝑗 = 𝑈𝑗 𝑐𝑜𝑠

(1
2
(𝑏𝑗 − 𝜃𝑗)

)

(29)
𝑈𝑗 is the wind speed, 𝑏𝑗 is the great circle bearing, and 𝜃𝑗 is the wind direction at location 𝑗. 𝛼𝑗 controls the length of the
time window, and 𝑡𝑗 is the mean travel time of waves which are estimated using the maximum correlation between 𝐻𝑠 and the
predictor

(𝑡𝑗 , 𝛼̂𝑗) = 𝑎𝑟𝑔max
𝑡𝑗 ,𝛼𝑗

(

𝑐𝑜𝑟𝑟(𝐻𝑠, 𝑋
𝑔
𝑗 (𝑡𝑗 , 𝛼𝑗))

) (30)
where 𝑡𝑗 and 𝛼̂𝑗 are the estimated 𝑡𝑗 and 𝛼𝑗 , respectively. Let𝑋 = {𝑋1, ..., 𝑋𝑑} denote the predictor variables, with 𝑑 representing
the number of spatial locations, specifically 𝑑 = 5651 in this case. The dataset is comprised of a sample size of 𝑛 = 67088. Since
the predictor has a spatial structure, it is reasonable to assume that the coefficients 𝛽 also have a spatial structure so that nearby
locations have close contributions to the waves at the target point. This assumption is equivalent to suppose that 𝛽 ∼  (0,Σ𝜃).
For the covariance Σ𝜃 , we will consider the cases of Matérn and CAR. For comparison, we also consider the diagonal case even
though it does not consider any structure between coefficients.

The model’s parameters (equation 27) are estimated using data from 1994 to 2013, and the model is evaluated in terms of
correlation, RMSE, and bias, using a validation set from 2014 to 2016. Figure 8 shows the estimated posterior mean 𝜇̂𝛽|𝑦 of
the coefficients 𝛽, defined in equation (6), and its corresponding lower and upper bound prediction interval Lower 𝜇̂𝛽|𝑦 and
Upper 𝜇̂𝛽|𝑦, respectively, for the diagonal, Matérn, and CAR cases. The lower and upper bound prediction interval are defined
as follows:

Lower 𝜇̂𝛽|𝑦 = 𝜇̂𝛽|𝑦 − 1.96 ∗
√

diag(Σ̂𝛽|𝑦) (31)
Upper 𝜇̂𝛽|𝑦 = 𝜇̂𝛽|𝑦 + 1.96 ∗

√

diag(Σ̂𝛽|𝑦)

where diag(Σ̂𝛽|𝑦) is the diagonal of the estimated posterior covariance matrix of 𝛽 defined in equation (6). Not surprisingly, the
coefficients estimated with the diagonal covariance display no discernible physical spatial structure. Therefore, the assumption
that close locations have close coefficients cannot be taken into account using the diagonal case. This motivates using the Matérn
and CAR covariances. The Matérn and CAR covariances yield smoother coefficients with evident spatial structure. Moreover,
coefficients for locations in proximity to the target point are notably larger, aligning with our prior assumption regarding the
covariance. In addition, the prediction interval for 𝛽 is relatively narrow, implying that the uncertainty surrounding the estimated
coefficients is relatively low. It is worth noting that the CAR method incurs lower numerical computational costs compared to
Matérn, particularly in terms of inverting the covariance matrix during each iteration of the optimization algorithm employed
in the M-step.

Table 1 shows the results of the quantitative comparison between the three methods for predicting significant wave height in
the validation set using correlation (r), root mean square error (RMSE), bias, and computation time in minutes. The computation
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FIGURE 8 The posterior mean estimate for 𝛽 and its corresponding lower and upper bound prediction interval, denoted as
Lower 𝜇̂𝛽|𝑦 and Upper 𝜇̂𝛽|𝑦, respectively, for the diagonal, Matérn, and CAR cases.

times were measured on a computer equipped with 28 cores and 115GB of RAM. In terms of correlation and RMSE, the diagonal
method is the less accurate method. Therefore, adding the spatial structure in the covariance is advantageous in predicting
the significant wave height. The CAR and Matérn methods lead to close results regarding r, RMSE, and bias. In Figure 9 ,
the time series of observed and predicted significant wave height (𝐻𝑠) for February 2014 are showed for three distinct cases,
along with the corresponding 95% prediction interval. The coverage probability is found to be lowest for the diagonal case.
This is particularly evident during the event around 22 February, where the predicted values underestimate the observed 𝐻𝑠.
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FIGURE 9 Time series of observed versus predicted 𝐻𝑠 at the target location in February 2014 for the three cases. The gray
shadow corresponds to the 95% prediction interval and CP is the coverage probability.
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FIGURE 10 Root Mean Squared Error (RMSE) of the model, considering the three cases (diagonal, Matérn, and CAR), in
predicting 𝐻𝑠 within the validation set, plotted against the sample size utilized for training the model.

The diminished coverage probability in the diagonal case can be attributed to its limited capability to accurately predict swells
originating from remote regions, primarily due to its neglect of spatial dependencies between neighboring locations.

In the simulation study, we studied the effect of the sample size on the estimation and we will use the same procedure in this
application. We vary the sample size used for training, ranging from 1000 to 54000, , and analyzed its influence on predicting
𝐻𝑠 in the validation period. The results of the experiments are showed in figure 10 . The diagonal covariance struggles with
the challenges posed by high dimensionality, with the RMSE showing a consistent decline as the sample size grows. In the
case of the CAR model, performance is also suboptimal, albeit better than the diagonal case in high dimensions. However, the
RMSE for the CAR model decreases rapidly and stabilizes as the sample size reaches 6815. On the contrary, the Matérn model
is less sensitive to the sample size, maintaining a relatively stable RMSE which aligns with the findings from the simulation
experiments presented in section 3.2.
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5 CONCLUSIONS

This study proposes an EM algorithm for estimating generalized Ridge regression with spatial covariates. We study three cases:
the diagonal, Matérn, and the CAR case. A simulation study is carried out to evaluate the performance of the algorithms, and the
EM algorithm successfully estimates the parameters in all cases. We study the influence of the sample size, number of covariates,
and the variance 𝜎2 on the estimation. The sample size mainly influences the variance parameter 𝜎2. The range parameter of the
Matérn and the correlation parameter of the CAR are mainly influenced by the number of covariates 𝑑.

The proposed method is applied to the problem of downscaling the significant wave height in the Bay of Biscay using wind
conditions over the North Atlantic. The Matérn method gives smooth coefficients with a clear spatial structure; however, CAR
and Matérn methods lead to close results regarding 𝑟, RMSE, and bias. The Matérn covariance is clearly a better choice for
spatial applications. However, estimating the parameters requires the inversion of the covariance matrix at each iteration of the
optimization method in the M-step, which may be a computational bottleneck in many applications. To address this issue, instead
of parameterizing the covariance matrix, one can parameterize the precision matrix directly as we do with the CAR method.

APPENDIX

A COMPARISON BETWEEN CROSS-VALIDATION AND EM

As stated in section 2, the EM algorithm can be used to estimate the regularization parameter in the classical Ridge regression
framework. In this section, we compare the EM algorithm results with those obtained using least squares Ridge regression
method with cross-validation (CV). The latter employs k-fold cross-validation to estimate the regularization parameter using
cv.glmnet function in R (Friedman et al. 2023). We examine two distinct scenarios for the covariates: one where the covariates
exhibit strong correlations and another where the correlations are weak. In the first case the covariates are simulated using
a Matérn covariance characterized by parameters (𝜎2

𝑥, 𝜙𝑥, 𝜅𝑥) = (6, 2, 3∕2), while the second scenario employs parameters
(𝜎2

𝑥, 𝜙𝑥, 𝜅𝑥) = (6, 0.02, 3∕2). Furthermore, we investigate two scenarios concerning the residuals of the regression model: one
where the residuals are Gaussian distributed, similar to previous simulations, and another where the residuals do not follow a
Gaussian distribution. In the latter case, we simulate the response variable 𝑌 according to the model:

𝑌 = 𝑋𝛽 + 𝜖, where 𝜖 ∼ 𝑈 (2, 30). (A.1)
Thus, we account for a total of four distinct scenarios. For each scenario, we conduct 100 independent random samples of

coefficients 𝛽 using the diagonal method, with parameters 𝜎2 = 36 and 𝜎2
𝛽 = 7. In each simulation, we estimate the coefficients

utilizing both the EM algorithm and the cv.glmnet method.
Figures A1 and A2 show the box plot of 𝑁𝑅𝑀𝑆𝐸𝛽 and 𝑁𝑅𝑀𝑆𝐸𝑦 in the Gaussian and non Gaussian cases, respectively,

for the two scenarios of the covariates. Significant difference between the two methods is noticed, demonstrating better estima-
tions by the EM algorithm for both 𝛽 and the response variable, when the covariates are highly correlated. Conversely, when
the covariate are weakly correlated, the distinction in performance is marginal or absent, particularly in the non Gaussian sce-
nario. This means that the EM algorithm is less sensible by the multicolinearity problem than k-fold cross-validation, which may
be explained by variability of cross-validation determining the best regularization parameter due to fold assignment (Algamal
2020).

B THE CASE WHERE 𝛽 HAS A NON-ZERO MEAN

In this section, we consider the case where 𝛽 has a non-zero mean as defined by the hierarchically model
𝛽 ∼  (𝜇𝜉 ,Σ𝜃)
𝑌 ∣ 𝛽,Θ ∼  (𝑋𝛽, 𝜎2𝐼𝑛)

(B.1)

where Θ = (𝜎2, 𝜇𝜉 , 𝜃).
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FIGURE A1 Results of estimating Ridge regression with the EM algorithm and 10-fold cross-validation in the Gaussian case
when the covariates are highly correlated (top panel) and weakly correlated (bottom panel).

The complete log-likelihood is expressed as

ln 𝑝(𝑦, 𝛽; Θ) = ln 𝑝(𝑦 ∣ 𝛽; 𝜎2) + ln 𝑝(𝛽; 𝜃)

= −1
2

(

𝑛 ln(𝜎2) + 1
𝜎2

‖𝑦 +𝑋𝛽‖2 + ln(|Σ𝜃|) + 𝛽𝑇Σ−1
𝜃 𝛽 − 2𝛽𝑇Σ−1

𝜃 𝜇𝜉 + 𝜇𝑇
𝜉 Σ

−1
𝜃 𝜇𝜉

)

+ 𝐶
(B.2)

Where C is a constant. In the M-step, the quantity 𝑄(Θ|Θ(𝑡)) is maximized with respect to the parameters Θ.

• E-step:

𝑄(Θ|Θ(𝑡)) = 𝔼(ln 𝑝(𝑦, 𝛽; Θ) ∣ 𝑦,Θ(𝑡)). (B.3)
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FIGURE A2 Results of estimating Ridge regression with the EM algorithm (diagonal) and 10-fold cross-validation (CV) in
the non Gaussian case when the covariates are highly correlated (top panel) and weakly correlated (bottom panel).

The posterior distribution of the latent variable 𝛽 is a normal distribution with mean 𝜇𝛽∣𝑦 and covariance matrix Σ𝛽∣𝑦 such that
{

Σ𝛽|𝑦 = (Σ−1
𝜃 + 1

𝜎2𝑋𝑇𝑋)−1

𝜇𝛽|𝑦 = Σ𝛽|𝑦(Σ−1
𝜃 𝜇𝜉 +

1
𝜎2𝑋𝑇 𝑦).

(B.4)

Therefore,
𝑄(Θ|Θ(𝑡)) = −1

2

(

ln(|Σ𝜃|) + Tr(Σ−1
𝜃 𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑡))) − 2𝜇𝑇

𝛽|𝑦Σ
−1
𝜃 𝜇𝜉 + 𝜇𝑇

𝜉 Σ
−1
𝜃 𝜇𝜉 + 𝑛 ln(𝜎2) + 1

𝜎2
𝔼(‖𝑦 −𝑋𝛽‖2 ∣ 𝑦,Θ(𝑡))

)

+ 𝐶
(B.5)

where
{

𝔼(𝛽𝛽𝑇 |𝑦; Θ(𝑡)) = Σ𝛽|𝑦 + 𝜇𝛽|𝑦𝜇𝑇
𝛽|𝑦

𝔼(‖𝑦 −𝑋𝛽‖2|𝑦; Θ(𝑡)) = ‖𝑦‖2 − 2𝑦𝑇𝑋𝜇𝛽|𝑦 + Tr(𝑋𝑇𝑋𝔼(𝛽𝛽𝑇 |𝑦; Θ(𝑡)))
(B.6)

• M-step:
The maximization step computes

Θ(𝑡+1) = argmax
Θ

𝑄(Θ|Θ(𝑡)) (B.7)
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which leads to the following updates of the parameters
𝜎2,(𝑡+1) = 1

𝑛
(‖𝑦‖2 − 2𝑦𝑇𝑋𝜇𝛽|𝑦 + Tr(𝑋𝑇𝑋𝔼(𝛽𝛽𝑇 |𝑦; Θ(𝑡))))

(𝜉(𝑡+1), 𝜃(𝑡+1)) = argmax
𝜉,𝜃

ln(|Σ−1
𝜃 |) − Tr(Σ−1

𝜃 𝔼(𝛽𝛽𝑇 ∣ 𝑦,Θ(𝑡))) + 2𝜇𝑇
𝛽|𝑦Σ

−1
𝜃 𝜇(𝑡)

𝜉 − 𝜇𝑇
𝜉(𝑡)Σ

−1
𝜃 𝜇(𝑡)

𝜉

(B.8)
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