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A B S T R A C T

Measuring socioeconomic indices at the scale of regions or countries is required in various contexts, in
particular to inform public policies. The use of Deep Learning (DL) and Earth Observation (EO) data is
becoming increasingly common to estimate specific variables like societal wealth. This paper presents an end-
to-end framework ‘DeepWealth’ that calculates such a wealth index using open-source EO data and DL. We
use a multidisciplinary approach incorporating satellite imagery, socio-economic data, and DL models. We
demonstrate the effectiveness and generalizability of DeepWealth by training it on 24 African countries and
deploying it in Madagascar, Brazil and Japan. Our results show that DeepWealth provides accurate and stable
wealth index estimates with an 𝑅2 of 0.69. It empowers computer-literate users skilled in Python and R to
estimate and visualize well-being-related data. This open-source framework follows FAIR (Findable, Accessible,
Interoperable, Reusable) principles, providing data, source code, metadata, and training checkpoints with its
source code made available on Zenodo and GitHub. In this manner, we provide a DL framework that is
reproducible and replicable.
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1. Motivation and significance

The increase of publicly available very high resolution Earth Ob-
servations (EO) data, together with tools that can easily access and
manipulate those data, has become a key factor in supporting the
achievement of the United Nations Sustainable Development Goals
(SDGs) [1–3]. EO data are increasingly used in this context, providing
valuable insights and information to policy-makers, researchers, and
practitioners on natural and human landscapes and their evolutions. EO
data can help monitor progress towards SDGs, especially those related
to climate, land, oceans, and water resources, and facilitate evidence-
based decision-making, which ultimately supports the implementation
of sustainable development strategies at all levels [4–6]. These data
are often combined with ground-truthed data to help extract infor-
mation from those images. Machine Learning (ML) algorithms can for
instance be used to analyze patterns and relationships in EO data to
generate new datasets. By learning from the target variable and its
relevant features, ML models can identify correlations that humans
might miss, leading to the creation of new datasets that can enhance
our understanding of the Earth’s observations and assist in various
applications [6–9].

Deep Learning (DL) models have recently been used to tackle clas-
sification and regression tasks across diverse domains, predicting vari-
ables with a high degree of confidence [10]. DL has proved to be
highly effective, with its ability to extract nuanced features from large
amounts of data. Moreover, such models establish a temporal link,
making DL an invaluable tool for analyzing and interpreting dynamic
changes over time. Overall, DL is poised to play a major role in shaping
the future of data-driven research [11,12]. The success of DL, however,
depends directly on the quantity and quality of the data used to train
those algorithms. Building a trained DL model is a time-consuming
task, which becomes more prolonged when the data come from several
sources.

This paper focuses on the use of DL for estimating well-being in
rural communities using large spatial–temporal datasets of EO data. In
this way, populations’ overall wealth could be assessed on a more con-
tinuous basis, rather than relying on the decadal census typically used
for making such an assessment. Conducting such analyses can however
be challenging as obtaining the large datasets required for DL to reach
high performance can be problematic [13]. The selection of a satellite
sensor that aligns with the socioeconomic survey granularity is also not
easy [13], and the quality of the training process can be confounded by
noise in the ground-truthing data. Building on previous DL experiments
is not often possible, as their reproducibility and replicability depend
on dataset quality and a good description of the DL architecture [14].

Several DL-facilitated estimations of socioeconomic conditions have
been conducted with some success using satellite images [13,15,16],
street view images [17]. Due to the high demand for data when using
Convolutional Neural Network (CNN) methods, most studies are limited
to a single time stamp.

DL models have been used for socioeconomic condition estimation
in various regions across the globe, such as in Thailand and Viet-
nam [18], China [19], Africa [13], and in Brazil [20]. However, there
are limitations in accurately capturing rural areas and ensuring data
quality. This leads to a lack of necessary information for precise analysis
and decision-making. By analyzing multispectral (MS) and nightlight
(NL) images and combining them with data from Demographic and
Health Survey surveys (DHS) data, [13] introduced a new method
to assess the economic well-being of 19,669 African villages. The
approach using satellite imagery and DL techniques allowed estimating
the well-being indicator with a 𝑅2 of 0.70.

Such deep learning-based models that achieve promising perfor-
mance have motivated researchers to construct end-to-end pipelines
that mimic the architectural and representational properties of the real
world [21]. The framework described in our paper was replicated from

multi-disciplinary method assessing socioeconomic conditions (wealth
or poverty) in clusters (i.e. villages) using survey data [13,15,16,20,22]
starts with gathering the relevant socioeconomic data. These datasets
are preprocessed in order to prepare the data for training. After the
preprocessing task is completed, the DL-based methodology is used to
obtain socioeconomic estimations for an area, as presented in [14].

Here, we present DeepWealth, an open-source software that uses
freely available satellite images to estimate well-being levels. The
model was trained on satellite images and socioeconomic data from
Africa and has been adapted to other geographic regions. The DL
training stage has been performed using 24 years (1997–2020) of data,
making it the longest temporal duration used in such an application.
We applied the model to three case studies for technical validation. The
proposed estimation model can potentially improve the accuracy and
timeliness of well-being estimates for decision-makers in various fields
such as global health, humanitarian aid, and economic policy.

This framework is designed in accordance with the FAIR princi-
ples [23] to ensure that our data, source code, meta-data, and training
checkpoints are easily locatable, openly accessible, compatible with
other datasets and tools, and well-documented. By making our re-
sources available on platforms like Zenodo and GitHub, we support
reproducibility and replicability, which are essential for advancing
scientific research.

2. Software description

This section provides an overview of how our framework is struc-
tured and how it can be implemented in practice. We present the main
components of DeepWealth, as shown in Fig. 1. The data and scripts
available on the DeepWealth data repository are held in 3 folders (A,
B and C): (A) ‘R scripts’ for generating the geographic coordinates at
a scale of ∼ 6 × 6 km in each study area and for building the wealth
index based on available socio-economic surveys, (B) ‘Python scripts’
providing all notebook scripts to enable reproduction and replication of
the well-being estimation pipeline, and (C) ‘Checkpoints’ for the trained
models for both MS and NL satellites images to be used for future case
studies.

2.1. Dataset collection

The training data used 92 household surveys from 24 African coun-
tries from 1997 to 2020. The countries were: Angola, Benin, Burk-
ina Faso, Cameroon, Côte d’Ivoire, Democratic Republic of Congo,
Ethiopia, Ghana, Guinea, Kenya, Lesotho, Malawi, Mali, Mozambique,
Nigeria, Madagascar, Rwanda, Senegal, Sierra Leone, Tanzania, Togo,
Uganda, Zambia, and Zimbabwe. Training data were collected in two
phases. In a first phase, a wealth index was constructed using Demo-
graphic and Health Surveys (DHS) data accessed through a DHS por-
tal request https://dhsprogram.com/data/available-datasets.cfm [24].
DHS data collate national household surveys and provide data on a
wide range of indicators. [The DHS data for these countries was a
valuable resource due to its extensive coverage of over 39 years, as well
as its inclusion of geospatial information. This enabled us to estimate
well-being indicators over time, providing a unique opportunity to
examine trends and patterns in well-being across different regions.]
The following variables were used for this study: the number of rooms
occupied in a house, whether the house had electricity, the quality
of flooring in the house, the water supply, and whether the house
had a toilet, a telephone, a radio, a television, cars, and motorcycles.
Principal component analysis (PCA) was performed in R, version 3.6, to
construct a multidimensional wealth index [25,26]. The first principal
component of the DHS response was taken as the wealth index. The
wealth index constructed for 36,182 villages is shown in Fig. 2 and
more details are in the Supplementary Material.

The wealth index values obtained from the analyses of DHS data
ranged from −2.3 (poorest) to 2.5 (richest), indicating a wide disparity
2
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Fig. 1. Overview of DeepWealth framework and code structure organized into folders (A) ‘R scripts’, (B) ‘Python scripts’, and (C) ‘Checkpoints’.

Fig. 2. The villages used to train the DL algorithm, were assigned their respective wealth index derived from DHS surveys (poorest in blue and richest in yellow). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
3
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Fig. 3. Examples of Landsat Bands (RGB, SWIR1, SWIR2, TEMP1, NIR) and DMSP or VIIRS bands for two regions: (a) a region of Angola with a wealth index of 2.76 for 2011
(lat: −12.350, long: 13.534), and (b) a region of Kenya with a wealth index of −1.31 for 2014 (lat: 1.179, long: 37.148).

Table 1
Remote sensing satellites/sensor and products used in the project.

Type Satellite/Sensor Product

Daytime
Landsat 5 (1984–2013) LANDSAT/LT05/C01/T1_SR
Landsat 7 (1999–2022) LANDSAT/LE07/C01/T1_SR
Landsat 8 (2013-) LANDSAT/LC08/C01/T1_SR

Nightlight DMSP (Year ≤ 2011) DMSP-OLS/CALIBRATED_LIGHTS_V4
VIIRS (Year ≥ 2012) VIIRS/DNB/MONTHLY_V1/VCMSLCFG

In the second phase, we downloaded satellite images based on the
geographic coordinates of each village Fig. 3 to analyze images within
∼ 6 × 6 km of the coordinates of the center of each village. Both MS
and NL images were processed in, and exported from, Google Earth
Engine with 3 years composition, and center-cropped to 224 𝑥 224
pixels (as pixels have a resolution of 30 m). Various daytime and
night light satellite images were used (Landsat 5/7/8) [27], (Defense
Meteorological Satellite Program (DMSP) [28]) and the Visible Infrared
Imaging Radiometer Suite (VIIRS) [29]) ( Table 1)

Information from all Landsat bands was used in the training, as well
as that from the nightlight images. The Landsat bands consist of Red,
Green, and Blue (RGB), Short-Wave Infrared 1 (SWIR1), Short-Wave
Infrared 2 (SWIR2), Thermal Infrared 1 (TEMP1), and Near-Infrared
(NIR). Examples of these bands are shown for two regions in Fig. 3, (a)
for an area of high wealth index (2.76 in Angola in 2011) and (b) with
a low wealth index (−1.31 in Kenya in 2014). Satellite images from
Landsat, DMSP, and VIIRS can all offer insights into a region’s wealth
index. For instance, areas with high wealth indices tend to have more
vegetation and urban development.

2.2. Data split

The village wealth index dataset was split into five folds for the
cross-validation. The CNN model was trained on 3-folds, validated on a
4th, and tested on a 5th. To prevent satellite image overlap between vil-
lages, we used two approaches: Out-Of-Country (OOC) and In-Country
configurations. In the former, entire countries were allocated to a single
split, whereas the latter allowed several clusters from the same country
to be assigned to different splits.

2.3. CNN based-method

In DeepWealth, two separate CNNs based on the ResNet-18 archi-
tecture were trained on Landsat and NL imagery, respectively. The
two-branch CNN used by DeepWealth was proposed by [13]. The final
fully connected layers of both models were then fused. The ResNet-18

architecture, with a modified first convolutional layer, was used as a
pre-trained model to take into account the multi-band of MS images.

Several configurations were tested (ResNet-18 MS+NL, ResNet-18
MS, ResNet-18 NL, ResNet-18 RGB). All the experiments used Python
3.7 with TensorFlow r1.15, and R 3.6. CNN models were trained
with an Adam optimizer and a mean squared-error loss function. A
batch size of 64 was employed, and the learning rate decayed by
a factor of 0.96 after each epoch. The models were trained for 150
epochs for In-Country and for 200 epochs for OOC. The performance
of the CNN model was tested on the testing set using the following
configurations: ResNet-18 (MS+NL), ResNet-18 (MS), ResNet-18 (NL),
ResNet-18 (RGB), and ResNet-18 (RGB+NL). The performance of the
models for both approaches (OOC and In-Country) were very similar,
the best fit being ResNet-18 (MS + NL) (Table 2).

3. Illustrative examples

Three case studies were used to evaluate DeepWealth. The first
case study involved spatio-temporal mapping of the wealth index in
Madagascar. Similarly, the second and third case study aims to show
the mapping of wealth index and to evaluate the correlation with local
socioeconomic data in Vale do Ribeira (Brazil), and Kita-Tōhoku region
(Japan). It is important to emphasize that these three case studies
are conducted independently, and are not aimed to make comparison
between them.

3.1. Madagascar case study

As detailed in Section 2.1, DeepWealth was trained using data
from 24 countries, including Madagascar. This case study aims to
show how users can ingest new country data for training purposes,
either from scratch or transfer learning. Madagascar, one of the world’s
poorest countries, has a significant percentage of its population living in
extreme poverty. For training, we used the ground truth from Madagas-
car, encompassing 1509 surveyed villages over five years (1997, 2008,
2011, 2013 and 2016). Particularly, the performance evaluation for
Madagascar yielded 𝑅2 = 0.73 for the ResNet-18 (MS + NL). The trained
CNN model contains data from 24 countries, including Madagascar.

DeepWealth was used to map the wealth index in Madagascar at a
fine scale. The resulting maps are presented in Fig. 4 at a resolution of
∼ 6×6 km. The spatio-temporal mapping of wealth index in Madagascar
from 1996 to 2020 suggests that the poorest populations are located
in rural areas, in the southeast, and in coastal areas of the southwest.
The poverty rate has decreased slightly over the past few years, but
remains high, with over 70% of the population living below the poverty
line. The estimated wealth index ranged from −1 (poorest) to 1.5
(richest), corresponding to the minimum and maximum values found
for Madagascar.
4
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Table 2
The coefficient of determination 𝑅2 for different CNN configurations.

Resnet-18 MS+NL Resnet-18 MS Resnet-18 NL Resnet-18 RGB Resnet-18 RGB+NL

In-Country 0.691 0.66 0.66 0.60 0.67
OOC 0.67 0.61 0.62 0.60 0.66

Fig. 4. Mapping of wealth index estimations in Madagascar from 1996 to 2020.

3.2. Vale do Ribeira, Brazil case study

The training checkpoints generated in DeepWealth were used to
estimate a wealth index in a Brazilian scenario, specifically in the Vale
do Ribeira region (VR). This was chosen because of data accessibility
and the ecological and economic significance of the area. VR is located
in the southern region of Brazil, encompassing the states of Paraná and
São Paulo. With a total area 28,306 km2, it comprises 30 municipalities
and contains 61% of Brazil’s remaining Atlantic forest, declared a
UNESCO Natural Heritage of Humanity in 1999. To validate our estima-
tions, we initially considered DHS data. However, it only covered Brazil
for 1986, 1991, and 1996, lacking both recent data and geospatial
information. Since this limited time frame did not align with available
satellite imagery, we used the Human Development Index (HDI) at
census sector level, which was derived from prior research [17], which
relied on data from the Brazilian Institute of Geography and Statistics
(IBGE) census surveys for their calculation.

Correlations were computed between the estimated wealth index
values and the Brazilian’s HDI. In the cited work [17], the income

indicator was computed using variables from the Brazilian Institute of
Geography and Statistics (IBGE) census 2010 survey. For this reason,
we considered the 880 census sectors that have HDI available according
to Brazilian census surveys of 2010. To compute the estimations, we
used MS imagery only to estimate well-being. We made wealth index
estimations on the VR region for the years 2010, 2015 and 2020 (Fig. 5)
using the same shapefile and HDI dataset generated by [17]. Areas with
high estimated indices (depicted in red) predominantly align with the
urban areas within the region, which can be seen to increase slightly
over the years.

We computed the Pearson correlation coefficient (𝑟) between the
wealth index estimation obtained using DeepWealth and the real HDI
indices, with a specific focus on its income dimension based on data
from the 2010 Census Survey, the most recent available. We employed
the dataset generated using the methodology by Machicao et al. [17]
for the calculation of HDI indices. While it is important to acknowledge
that the indices are not perfectly congruent, they do share analogous
characteristics in evaluating the well-being of the population. Our
5
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Fig. 5. Spatio-temporal mapping of wealth index estimations in Vale do Ribeira (southeast of Brazil) from 2010 to 2020 at census tract level. The bottom-right corner map
illustrates the absolute difference (𝛥) in estimated values between 2010 and 2020.

analysis produced a Pearson correlation coefficient, 𝑟 = 0.53 (Supple-
mentary Table S1). As expected, this correlation is slightly less than the
𝑟 = 0.69 performance achieved by the DeepWealth model against DHS
in the training phase with ResNet-18 MS+NL.

3.3. Kita-Tōhoku, Japan, case study

For the third case study we focused on the Kita-Tōhoku region, the
northernmost part of Honshū Island, in Japan. This region spans 36,558
km2 and includes the Aomori, Akita, and Iwate prefectures. The area is
characterized by a rugged coastline, Ōu Mountains, and forests covering
72% of the land. We selected a sample of 15 municipalities (Shichinohe-
machi, Takko-machi, Shingo-mura, Shizukuishi-machi, Kosaka-machi,
Yokohama-machi, Ōma-machi, Higashidoori-mura, Kazamaura-mura,
Sai-mura, Kanegasaki-machi, Ōtsuchi-machi, Fudai-mura, Happo-machi,
and Ugo-machi), having a total of 411 city/rural blocks, as the principal
unit for disseminating small area statistics.

We estimated the wealth index for the period of years from 2000
to 2022 using NL imagery as input for the training checkpoints of the
DeepWealth model (Fig. 6).

To validate these estimates, we conducted a correlation analysis
using local economic variables at the municipality level (Supplemen-
tary Table S1). In Japan, where DHS data was unavailable, we relied
on data from the Ministry of Internal Affairs and Communications for
Taxable Income per Taxpayer (TXI) and the United Nations Develop-
ment Programme for HDI income. We considered data from TXI over
two decades, as well as HDI income over a 5-year period, as presented
in Table S1. Pearson correlation coefficients were computed for both
TXI (𝑟 = 0.53) and HDI income (𝑟 = 0.64) with the Deep Wealth
estimated values, indicating moderate to strong associations. Notably,
these results closely align with those obtained in the Brazilian case
study, demonstrating consistency in performance.

4. Impact and conclusions

The combination of DL models and extensive EO databases has
been gaining popularity for estimating socioeconomic indicators. This

combination demonstrates significant promise in providing accurate
and actionable insights on the economic and social activities of various
levels, along with supporting local governments, nonprofit organiza-
tions, and businesses to make informed decisions. Such insights are
advantageous in tackling issues related to well-being reduction, disaster
response, and sustainable development. Combining DL with EO data
holds a strong potential to develop innovative and integrated solutions
to address critical global challenges. Expanding from the work of [13],
we have developed a comprehensive open-source framework capable
of estimating well-being using satellite images that can be utilized by
people with good knowledge of Python and R. Our approach combines
data preprocessing techniques with state-of-the-art DL algorithms to
extract relevant features and make accurate estimations.

DeepWealth has been shown to be generalizable across various
regions and valuable to implement in a range of applications, and
can provide granular wealth estimates at a high spatial resolution.
As proof of concept, we showed that in Madagascar, the framework
can be used to assess patterns of changes in the wealth index at
the scale of the country. In Brazil, the framework can be used to
analyze the impact of urbanization and population growth on natural
resources such as forests and water, for instance. In Japan, the frame-
work can be applied to study the socioeconomic impact of protected
areas on touristic and non-touristic areas, to improve resource allo-
cation and conservation strategies, for instance. Overall, DeepWealth
has shown improved performance and can be useful for policymakers,
more specifically, for spatio-temporal wealth index mapping, so that
alleviation efforts and aid organizations in targeting their interventions.
To facilitate fair comparisons among these case studies, further efforts
are required to align the ground truth data and indices. However, it
should be noted that these cases are for illustrative purposes regarding
spatio-temporal mapping and should not be directly compared, as they
represent independent cases.

DeepWealth was designed to facilitate replication and reproducibil-
ity in a variety of academic fields. It serves as a multi-disciplinary tool
for users to ensure their research can be easily duplicated and verified
by others. With its ability to generate consistent results, the platform
6
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Fig. 6. Spatio-temporal mapping of wealth index estimations for some sample years in 15 municipalities from the Kita-Tōhoku region.

offers researchers an efficient way to manage data, collaborate with col-
leagues, and contribute to their respective fields. Overall, DeepWealth
aims to support scientific rigor, transparency, and accountability across
academic communities.

The three parts of DeepWealth (Fig. 1)can be used for future de-
velopment. For example, the R script (A) enables the construction of a
wealth index for a specific country or region over a specified period.
The second part (B) enables the replication and reproduction of deep
learning models in other areas and allows the incorporation of other
indices such as health or water quality. The third part (C) is designed to
use trained checkpoints to estimate the wealth index, offering a conve-
nient and efficient way to generate novel estimations. A future direction
could be to incorporate more satellite image products in DeepWealth,
such as Sentinel-2, to enhance the estimation performance. This would
not only increase the spatial resolution and accuracy of the predictions
but also provide a more comprehensive understanding of the relation-
ships between the various socioeconomic indicators and environmental
factors. Additionally, integrating multi-task learning techniques would
allow us to leverage correlated indices, such as health, water, and
education, to improve the overall performance of the wealth index
estimation.
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