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Abstract  40 

Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen 41 

limitation. So far chemolithoautotrophic bacteria are widely recognized as the 42 

principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the 43 

contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats 44 

remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches 45 

integrated with cultivation assays to investigate the diversity, distribution, and activity 46 

of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays 47 

show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, 48 

nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide 49 

phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. 50 

Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, 51 

Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the 52 

predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 53 
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18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic 54 

taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs show that the 55 

main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, 56 

reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture 57 

experiments further demonstrate that members of chemolithoautotrophic 58 

Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur 59 

oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove 60 

sediments preferentially drain energy from diverse reduced inorganic compounds 61 

other than from organics. Overall, our results suggest that chemolithoautotrophs rather 62 

than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study 63 

underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems. 64 

Key words: Nitrogen fixation; Chemolithoautotroph; Campylobacterota; Mangrove  65 

sediment; Metagenomic; Metatranscriptomic 66 

Introduction 67 

Nitrogen serves as an essential component of all living organisms, constituting the 68 

main nutrient limiting life on our planet1,2. Nitrogen-fixing (diazotrophic) bacteria and 69 

archaea convert atmospheric dinitrogen gas (N2) into ammonia (NH3) for assimilation, 70 

which is mediated by three types of nitrogenases, including molybdenum-iron 71 

nitrogenase Nif (Mo-Fe), vanadium-iron nitrogenase Vnf (V-Fe), and iron-only 72 

nitrogenase Anf (Fe-Fe)3,4. Biological nitrogen fixation counteracts the removal of 73 

bioavailable N by microbial denitrification and anaerobic ammonium oxidation, and 74 

provides a source of N to the majority of the biosphere that cannot directly assimilate 75 
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N2
5-7. In particular, marine diazotrophs supply nearly one-half of the global fixed 76 

nitrogen demand, and their activity often regulates marine primary productivity8,9. 77 

However, despite the well-documented ecological and biogeochemical importance of 78 

nitrogen fixation in the oceans2,10,11, due to the high energy demand, only a few 79 

bacterial and archaeal populations have been shown to potentially fix nitrogen12.  80 

In oligotrophic marine environments, chemolithoautotrophs are considered 81 

important nitrogen fixers and can enhance the productivity of localized habitats13. For 82 

example, chemolithoautotrophic sulfur-oxidizing diazotrophs are identified as the key 83 

carbon and nitrogen providers to their symbiotic hosts, such as lucinid clams and cold 84 

water corals14-16. The ability to fix nitrogen has also been demonstrated in deep-sea 85 

anaerobic methane-oxidizing archaea from cold seep sediments17 and methanogenic 86 

archaea from hydrothermal vent fluids18. In addition, chemolithoautotrophic nitrogen 87 

fixation has been well studied in oligotrophic terrestrial environments13,19. 88 

Cyanobacteriota are considered the most important diazotrophs in glaciated 89 

forefields20. In mine tailings, it is postulated that chemolithoautotrophic diazotrophs 90 

utilize reduced sulfur compounds as electron donors for energy production19. 91 

Additionally, Beggiatoa-related chemolithoautrotrophic sulfur-oxidizing bacteria are 92 

suggested to actively fix nitrogen in oligotrophic sulfidic caves14,21. In contrast, in 93 

organic-rich marine ecosystems, nitrogen fixation is often associated with 94 

heterotrophs22-24. For instance, the process of nitrogen fixation coupled with 95 

heterotrophic sulfate reduction has been documented in the sediments of Eckernförde 96 

Bay (Baltic Sea) and Narragansett Bay (Rhode Island)25,26. Several heterotrophic taxa 97 
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within the phyla Pseudomonadota, Chloroflexota, Bacteroidota, Desulfobacterota, 98 

and Spirochaetota are reported as the main diazotrophs in sedimentary 99 

ecosystems27,28. These previous studies indicate that chemolithoautotrophs are the 100 

main nitrogen fixers in oligotrophic environments, whereas biological nitrogen 101 

fixation in organic-rich environments is mainly achieved by heterotrophs. 102 

Mangrove sediments are typically considered organic-rich but nitrogen-limited 103 

ecosystems29,30. Early research revealed a high rate of biological nitrogen-fixing 104 

activity mediated by microbes in the surface sediments of mangroves31-33. Recent 105 

work further indicated that nitrogen fixation rates increased with sediment depth from 106 

the surface to 100 cm in mangrove ecosystems34. Some heterotrophic prokaryotes in 107 

the phyla Pseudomonadota (classes Alpha- and Gamma-proteobacteria), 108 

Desulfobacterota, Myxococcota, and Bacteroidota were detected as the prevalent 109 

diazotrophs in mangrove sediments on the basis of nifH gene amplicons and 110 

metagenomics32,34. These diazotrophs are thought to depend on reduced organic 111 

compounds for their energy and carbon sources35. However, more studies have shown 112 

that some chemolithoautotrophic bacteria occupy a relative high abundance in 113 

mangrove sediment ecosystems36,37. For example, members of the genera Sulfurovum, 114 

Sulfurimonas, Thermodesulfovibrio, Desulfobacterium, and Desulfococcus are 115 

abundant, with relative abundances > 1% in the sediments (0-20 cm) of Yunxiao 116 

mangroves36. In other mangrove sediments collected from six locations along the 117 

coastline of the BeibuGulf in Guangxi Province, China, chemolithoautotrophic taxa 118 

such as Desulfococcus, Nitrosopumilus, and Sulfurimonas are also predominant38. The 119 
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dominance of chemolithoautotrophs in such organic-rich environments raises the 120 

question of whether the nitrogen fixation process is mediated by these autotrophs. 121 

Considering that mangrove sediment ecosystems are rich in reduced inorganic 122 

compounds such as H2 and sulfide produced by the degradation of organic matter39,40, 123 

we hypothesize that the oxidation of these reduced compounds is another crucial 124 

energy pathway for nitrogen fixation. 125 

In this study, to address the roles of chemolithoautotrophic diazotrophs in 126 

organic-enriched sediments, we quantified the concentrations of carbon, nitrogen, and 127 

sulfur in sediments, carried out activity measurements, and applied metagenomics and 128 

metatranscriptomics to investigate nitrogen-fixing microorganisms in mangrove 129 

sediments. Furthermore, we inferred the potential metabolic capabilities of the 130 

dominant chemolithoautotrophic diazotrophs and confirmed their nitrogen-fixing 131 

capacity using culture-dependent methods. Overall, this study reveals the true 132 

diazotrophic populations in mangrove surface sediments, and sheds new light on the 133 

significant role of chemolithoautotrophs in dark nitrogen fixation within mangrove 134 

ecosystems. 135 

Materials and Methods 136 

Site description and sampling 137 

The sampling site is located in the mangrove wetland of Jiulong River tributaries in 138 

Zhangzhou (117° 45′ N, 24° 20′ E), Fujian Province, China (Fig. S1), with a mean 139 

annual temperature of 21.2°C and an annual precipitation of 1714.5 mm. The irregular 140 

semidiurnal tides were on average 7.70 and -3.03 m of high and low tide levels, 141 
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respectively. Sediment cores were collected in August 2022 using a 20-cm long PVC 142 

sampling column after ebb and sliced at 2-cm intervals into 10 layers (0-2, 2-4, 4-6, 6-143 

8, 8-10, 10-12, 12-14, 14-16, 16-18, and 18-20 cm), yielding a total of 10 samples. At 144 

the sampling site, the sediments were not invaded by mangrove roots, and there was 145 

no apparent bioturbation. Sediment colors served as an indicator for the presence of 146 

active sulfide including the uppermost layer (brownish, sulfide-free), sulfide transition 147 

zone (brown to gray), or sulfidic layer (gray or dark, sulfide-rich). Sliced sediments 148 

were stored in a portable cooler at 4℃ and transported back to the laboratory within 149 

24 h. Each sample was then divided into two subsamples: one was stored at 4℃ for 150 

physicochemical properties analysis, and the other was kept at -80℃ for DNA and 151 

RNA extraction. 152 

Physicochemical properties analysis 153 

The water content of sediments was measured by drying 10.0 g of fresh sediment at 154 

105℃ to a constant weight34. The pH and salinity of the sediments were measured in 155 

suspensions containing 2.0 g dry sediment in a 1:2.5 (sediment/water) ratio and 1:5 156 

(sediment/water) ratio with a pH meter (SevenCompact S220, Mettler Toledo, OH, 157 

USA) and a salinity meter (Abbemat 300, Anton Paar, Graz, Austria), respectively37. 158 

Redox potential was measured using a digital voltmeter (Abbemat 550, Anton Paar, 159 

Graz, Austria) with Pt and Ag/AgCl reference electrodes41. Sediment ammonium 160 

(NH4
+), nitrate (NO3

−), and nitrite (NO2
−) were extracted using 2 M KCl, and 161 

measured with a continuous flow auto-analyzer (AA3, Bran-Luebbe, Hamburg, 162 

Germany)42. Porewater sulfate (SO4
2-) and thiosulfate (S2O3

2-) concentrations were 163 
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measured in porewater extracted from 10.0 g of fresh sediment by an ion 164 

chromatography (Dionex ICS-1100, Thermo Scientific, MA, USA)43. Acid volatile 165 

sulfide (AVS) was treated with acid to release H2S and measured by the iodometric 166 

titration method44. Sediment samples for measuring the total carbon (TC), total 167 

nitrogen (TN), and total sulfur (TS) were dried at 65°C to a constant weight, finely 168 

ground, and then measured by a Flash 2000 CHNS/O elemental analyzer (Thermo 169 

Scientific, MA, USA)45. Total organic carbon (TOC) was measured using the same 170 

elemental analyzer after the samples were digested with 5% HCl19.  171 

DNA extraction and 16S rRNA gene amplicon sequencing 172 

A total of ten sediment samples (5.0 g) were subjected to DNA extraction with a 173 

DNeasy PowerMax Soil Kit (12988-10, QIAGEN, Hilden, Germany) according to the 174 

manufacturer’s protocol. Quality assessment was achieved using a NanoPhotometer 175 

spectrophotometer (IMPLEN, CA, USA) and a Qubit 2.0 Fluorometer (Life 176 

Technologies, CA, USA). The V3-V4 region of the bacterial 16S rRNA gene was 177 

amplified with the universal primers 338F and 806R46. Amplicon sequencing was 178 

performed on a MiSeq platform (Illumina) using 2 × 300 bp chemistry. Reads were 179 

quality controlled using fastp (v0.19.6)47 and then merged using FLASH (v1.2.11)48. 180 

The amplicon sequence variant (ASV) was obtained after denoising and removal of 181 

chimeras by DADA249 algorithm recommended by QIIME250, and classified using a 182 

naive Bayesian classifier in QIIME2 (feature-classifier classify-sklearn) with a 183 

confidence score of 0.7 (--p-confidence) against the SILVA v138 database51.  184 

Quantitative PCR (qPCR) analysis of 16S rRNA gene 185 
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qPCR analyses were performed to estimate the abundance of bacteria and archaea at 186 

different depths in the sediment core. PCR reactions were set up using Bio-Rad 187 

SsoAdvanced Universal SYBR Green Supermix under the following conditions: 98°C 188 

for 2 min, 30 cycles of 98°C for 30 s, 50°C for 30 s, and 72°C for 1 min. 189 

Amplification of bacterial and archaeal 16S rRNA genes was performed with the 190 

domain-specific primers 338F-806R and 524F10extF-Arch958RmodR, respectively52. 191 

The specificity of the amplified products was confirmed by melting curve analysis and 192 

gel electrophoresis. Standards with known 16S rRNA gene copy numbers were 193 

serially diluted from 6.03 × 1010 to 6.03 × 103 copies/μL, and the amplification 194 

efficiency was between 90 and 105%. The bacterial and archaeal community 195 

abundances are shown in Fig. S2.  196 

Metagenomic sequencing, assembly, and binning 197 

The metagenomic DNA of ten sediment samples was extracted using DNeasy 198 

PowerMax Soil Kit as described above. DNA library was prepared with the NEBNext 199 

UltraTM DNA Library Prep Kit (E7645, New England Biolabs, MA, USA) following 200 

the manufacturer’s protocols. The libraries were then measured using an Agilent 5300 201 

Bioanalyzer (Agilent Technologies, CA, USA), and quantification was done using 202 

real-time PCR. Sequencing was performed on the HiSeq 2500 platform (Illumina) 203 

with 2×150 bp paired-end reads run at Majorbio Biotechnology Co. Ltd., (Shanghai, 204 

China). Raw reads were filtered, quality controlled, and trimmed using fastp v0.23.2 205 

with default parameters47. All clean reads from different samples were individually 206 

assembled with MEGAHIT (v1.1.3)53 with default settings. Genes were predicted for 207 
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CDSs on assembled contigs with Prodigal v2.6.3 with the -p meta option54. These 208 

sequences were then clustered at 95% amino acid identity using CD-HIT (v4.8.1)55 209 

with the parameters: -c 0.95 -aS 0.9 -g 1 -d 0, which yielded a total of 6,599,066 non-210 

redundant gene clusters.  211 

Assembled contigs were filtered by length (> 1000 bp) for subsequent binning. 212 

Each metagenomic assembly was binned using the metaWRAP v1.3.2 binning 213 

module (parameters: -maxbin2 -concoct -metabat2)56. All individual assemblies were 214 

also concatenated and binned separately using the VAMB tool (v3.0.2; parameters: --215 

minfasta 200000 -o C)57. The produced bins from each binning tool were integrated 216 

and refined using the Bin_refinement module of metaWRAP (v1.3.2; parameters: -c 217 

50 -x 10). All produced bins were aggregated and dereplicated to a non-redundant set 218 

of strain-level metagenome-assembled genomes (MAGs) using dRep v3.4.0 219 

(parameters: -comp 50 -con 10)58 at 95% average nucleotide identities. Completeness, 220 

contamination, and heterogeneity of MAGs were evaluated using CheckM v1.2.159. 221 

Additionally, we used GUNC (v1.0.5; default parameters)60 to assess chimerism and 222 

contamination of all diazotrophic MAGs, and MAGpurify software (v2.1.1; default 223 

parameters)61 to check the potential misassigned contigs based on the phylo-markers, 224 

clade-markers, tetra-freq, gc-content, and clean-bin modules. 225 

Taxonomic classification of MAGs 226 

Taxonomic annotations of each MAG were initially performed using GTDB-Tk 227 

v2.4.0 with the “classify_wf” workflow (default parameters) against the reference 228 

database (R220)62. The assignments were confirmed by the visual inspection of 229 
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taxonomic trees. Reference genomes downloaded from NCBI GenBank and MAGs 230 

from this study were used to construct a phylogenomic tree based on the 231 

concatenation of 43 conserved single-copy genes extracted by CheckM v1.2.1. The 232 

maximum-likelihood phylogenomic tree was constructed using IQ-TREE (v2.2.0.3)63 233 

with the “-m MFP -B 1000” options. All produced phylogenomic trees were 234 

visualized using Interactive Tree of Life (iTOL, v5)64.  235 

Functional annotation 236 

For functional profiling of the non-redundant gene catalog, we used the pipeline of 237 

Greening lab metabolic marker gene database v.1 with DIAMOND v0.9.1465,66. 238 

Searches were carried out using all quality-filtered unassembled reads with lengths 239 

over 140 bp. These genes were involved in sulfur cycling (fcc, sqr, soxB), nitrogen 240 

cycling (nifH), carbon fixation (aclB, rbcL, acsB), and NiFe-hydrogenases. Results 241 

were filtered based on an identity threshold of 50%, except for NifH and AcsB (65%), 242 

and NiFe-hydrogenases (60%)67. For individual MAGs and genomes from isolates, 243 

gene prediction was performed using Prodigal (v2.6.3, default settings), and the 244 

predicted genes were further annotated using KEGG Automatic Annotation Server 245 

(KAAS)68, KEGG-Decoder69, METABOLIC v4.010170, and Rapid Annotation Using 246 

Subsystems Technology approach (RAST, v2.0)71. 247 

Phylogenetic analyses and conserved residues of functional genes 248 

For each gene, amino acid sequences from the current study were aligned with 249 

reference sequences using MAFFT (v7.490, -auto option)72, and trimmed using 250 

trimAl (v1.2.59, -gappyout option)73. Maximum likelihood phylogenetic trees were 251 
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constructed using IQ-TREE (v2.2.0.3) with best-fit models and 1000 ultrafast 252 

bootstraps. All the tree files were visualized and embellished with iTOL v5. Multiple 253 

alignment of NifH, NifD, and NifK superfamily sequences for conserved active site 254 

residue analysis was performed using MAFFT (EMBL-EBI)74 and visualized with 255 

Jalview v2.11.2.075.  256 

Abundance profiles 257 

At the contig level, relative abundances of nifH gene in 10 metagenomes were 258 

calculated from non-redundant gene catalog using the program Salmon (v1.9.0)76 in 259 

the mapping-based mode (parameters: -validate Mappings -meta). Genes per million 260 

(GPM) values were used as a proxy for gene abundance, as described elsewhere77. 261 

GPM value was normalized based on the gene length and sequencing depth78. At the 262 

genome level, the relative abundance of each nif-containing MAG was profiled by 263 

mapping quality-trimmed reads from the 10 metagenomes against the MAGs using 264 

CoverM v1.2.1 in genome mode (parameters: -m relative_abundance --trim-min 0.10 265 

--trim-max 0.90 --min-read-percent-identity 0.95 --min-read-aligned-percent 0.75 --266 

min-covered-fraction 0)79.  267 

Metatranscriptomic analysis 268 

Total RNA was extracted from the same samples used for metagenome analysis using 269 

the RNeasy PowerSoil Total RNA Kit (12866-25, QIAGEN, Hilden, Germany) 270 

according to the manufacturer’s protocol. RNA purity and concentration were 271 

evaluated using a Qubit 2.0 Fluorometer (Life Technologies, CA, USA). RNA 272 

integrity was determined using an Agilent 5300 Bioanalyzer (Agilent Technologies, 273 
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CA, USA). Whole transcriptome amplification of total RNA was carried out using the 274 

RNA REPLI-g Cell WGA & WTA Kit (150054c, QIAGEN, Hilden, Germany) 275 

according to the manufacturer’s protocol. To enrich messenger RNA (mRNA), 276 

ribosomal RNA was depleted from total RNA using the RiboCop rRNA Depletion Kit 277 

(Lexogen, Vienna, Austria). Whole mRNA-Seq libraries were generated by Majorbio 278 

Biotechnology Co. Ltd., (Shanghai, China) using the NEBNext Ultra Nondirectional 279 

RNA Library Prep Kit (E6111, New England Biolabs, MA, USA) following the 280 

manufacturer’s instructions. The constructed libraries were sequenced on a NovaSeq 281 

6000 platform (Illumina), and 150 bp paired-end reads were generated. 282 

Raw metatranscriptomic reads were quality filtered in the same manner as 283 

metagenomes. The reads corresponding to ribosomal RNAs were removed using 284 

SortMeRNA v.4.3.480 with default parameters with the smr_v4.3_default_db database. 285 

Subsequently, these high-quality metatranscriptomic reads were mapped to predicted 286 

protein-coding genes from the reference gene catalog and nifH-containing MAGs 287 

using Salmon v.1.9.076 in mapping-based mode (parameters: -validate Mappings -288 

meta), with mapping rates of 7.11-14.87% and 0.02-0.67%, respectively. The 289 

expression level of each gene was normalized to transcripts per million (TPM) based 290 

on gene length and sequencing depth. 291 

Pure culture isolation and growth characteristics 292 

Sediment samples were collected in January 2019 from a mangrove wetland in 293 

Zhangzhou as described above. For isolation, 1.0 g sediment samples were transferred 294 

into 50 ml serum bottles containing 10 ml MMJS medium with a gas phase mixture of 295 
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80% N2/18% CO2/2% O2 (200 kPa), and incubated at 28°C as previously described81. 296 

Cells were purified via the dilution-to-extinction technique using the same medium. 297 

The purity of the culture was confirmed by microscopic examination and 16S rRNA 298 

gene sequencing. Genomic DNA of pure cultures was extracted using the method 299 

described by Jiang et al. (2009)82 and sequenced by Majorbio Biotechnology Co. Ltd., 300 

(Shanghai, China) using a HiSeq 4000 platform (Illumina, San Diego, CA, USA).  301 

Heterotrophic growth was tested in a MMJS medium without NaHCO3 with a 302 

series of organic compounds as the sole carbon source under a gas phase of 76% 303 

N2/20% CO2/4% O2 (200 kPa)83. These organic carbon sources included: 0.1% (w/v) 304 

peptone, yeast extract, tryptone, starch, casein, and casamino acids, 5 mM of acetate, 305 

formate, citrate, tartrate, succinate, propionate, and pyruvate, 5 mM each of 20 amino 306 

acids, 0.02% (w/v) sucrose, galactose, glucose, lactose, fructose, maltose, and 307 

trehalose. The utilization of these organic compounds as alternative energy sources 308 

was also examined in MMJ medium in the absence of thiosulfate under a gas phase of 309 

76% N2/20% CO2/4% O2 (200 kPa). Additionally, to examine the utilization of 310 

inorganic and organic nitrogen sources, ammonium chloride (1 mM), sodium nitrate 311 

(1 mM), sodium nitrite (1 mM), urea (1 mM), or a mixture of 20 amino acids (1 mM) 312 

was added to MMJHS medium lacking all nitrogen sources under a gas phase of 76% 313 

H2/20% CO2/4% O2 (200 kPa).  314 

Characterization of N2 fixation in mangrove sediment samples and isolates 315 

An acetylene reduction assay with slight modifications was used to measure 316 

nitrogenase activity84,85. Approximately 1.0 g sediment samples with four layers (0-2, 317 
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6-8, 12-14, and 16-18 cm) were separately mixed with 10 mL autoclaved MMJ 318 

medium in a 60 mL serum bottle with 10% (v/v) acetylene added to the headspace. 319 

Autotrophic N2-fixing potential was tested with 10 mM Na2S2O3 as the energy source 320 

and 10 mM NaHCO3 as the carbon source under 70% H2/20% CO2 (200 kPa). For 321 

heterotrophic diazotrophic potential, 10 mM sucrose was supplied as the carbon and 322 

energy sources. A blank control treatment was set up by adding only sediments. For 323 

the 0-2 cm layer, microoxic condition was set with 4% O2 as the sole electron acceptor 324 

during incubation. For the other three layers, S0 (5 g L−1) was added for anoxic 325 

condition, and sulfide was produced with a smell like rotten eggs. Samples were 326 

incubated at 30°C and 180 rpm in the dark. A 7890B GC-FID (Agilent Technologies, 327 

CA, USA) equipped with an Al/KCl capillary column (Agilent Technologies, CA, 328 

USA) was used to monitor the production of ethylene in the headspace. 329 

The 15N activity of the sediments and isolates was determined using the 15N2 330 

assimilation method with slight modifications (eg, time and volume)19. The culture 331 

conditions and treatment sets were established as described above. All cultures were 332 

incubated at 30°C in the dark and analyzed on day 10 for sediments and day 1 for 333 

isolates. All samples including sediments and isolates were then harvested by 334 

centrifugation (10,000 x g, 4℃, 20 min) after turbidity became apparent, washed 335 

twice in cold 20 mM Tris buffer in artificial sea water, and freeze dried overnight86. 336 

The atomic % 15N of freeze-dried cells was determined using a Carlo-Erba elemental 337 

analyzer (Model NA 1500, Fisons Instruments, MA, USA) linked to a Finnegan MAT 338 

(ThermoQuest, CA, USA) Delta S isotope ratio mass spectrometer22. 339 
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Results and discussion 340 

Physicochemical characteristics of mangrove sediments 341 

We measured total carbon (TC), total organic carbon (TOC), total nitrogen (TN), 342 

NO3
−, NO2

−, NH4
+, total sulfur (TS), acid volatile sulfide (AVS), SO4

2-, redox 343 

potential, moisture, pH, and salinity to characterize their vertical distributions from 0 344 

to 20 cm depth in Zhangzhou mangrove sediments (Fig. S3). High concentrations of 345 

TC and TOC (2.41-2.59% and 2.10-2.35%, respectively) were observed at all depths, 346 

whereas TN concentrations were low, ranging from 0.12-0.14% (Fig. S3 A-C). The 347 

C/N ratio ranged from 18.39 to 21.97 in the 0-20 cm layer, which is similar to that in 348 

other mangrove sediment ecosystems, and distinct from that in other habitats, such as 349 

tidal flats, brackish water, and freshwater87,88. The concentrations of inorganic 350 

nitrogen, including NO3
- (0.14-0.65 mg/kg) and NO2

- (0.01-0.04 mg/kg), were low 351 

and decreased consistently with depth (Fig. S3 D, E). NH4
+ concentrations varied 352 

between 1.27 and 3.23 mg/kg at all sediment depths (Fig. S3 F). Similar low 353 

ammonium-N concentrations have been reported in other mangrove habitats34,36,89, 354 

underscoring the nitrogen limitation in Zhangzhou mangrove surface sediments.  355 

High concentrations of TS and AVS increased with sediment depth, peaking in 356 

the 18-20 cm layer (Fig. S3 G, H), whereas the SO4
2− concentration exhibited a 357 

decreasing trend, with the highest concentration in the upper 0-6 cm layer (Fig. S3 I). 358 

Traces of thiosulfate (S2O3
2-) were detected only in surface sediments (~40 μM and 359 

~20 μM in the 0-2 cm and 2-4 cm layers, respectively). The redox potential (Eh) of 360 

the top 0-2 and 2-4 cm layers was 320 and 252 mV, respectively, and this value 361 
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decreased sharply with depth below 4 cm, reaching the lowest value of -120 mV at the 362 

deepest layer (Fig. S3 J). Among all measured parameters, TN, NO3
−, NO2

−, and 363 

SO4
2− were negatively correlated with depth (P < 0.05), whereas TS and AVS showed 364 

a positive correlation (P < 0.05) (Fig. S4). Collectively, these findings highlight that 365 

Zhangzhou mangrove surface sediments are characterized by a carbon and nitrogen 366 

imbalance coupled with a richness of reduced sulfur compounds. 367 

Diversity, distribution and activity of nitrogen-fixing genes across sediment 368 

depths  369 

The nifH gene, encoding an essential nitrogenase enzyme protein, is commonly used 370 

to investigate the diversity and prevalence of diazotrophs across diverse settings90,91. 371 

Annotations of contigs assembled from the 10 metagenomes extracted from the 372 

mangrove sediment samples revealed a total of 154 non-redundant nifH homologs 373 

falling into the nitrogenase superfamily (Fig. 1A; Table S1). Except for nitrogenase-374 

like groups of IV to VI92, these homologs were classified into canonical nitrogenase 375 

sequences (groups I-III)93 and two newly proposed lineages, groups VII and VIII10 376 

(Fig. 1A). Two novel lineages are also considered to be bona fide nifH based on the 377 

analyses of nitrogenase conserved motifs, as detailed below. These results indicate 378 

that the mangrove sediments host more diverse nitrogenase genes than previously 379 

thought34. 380 

The abundances of nifH gene ranged from 20.1 to 34.1 genes per million (GPM) 381 

from the surface to 18 cm, peaking at 47.8 GPM in the 18-20 cm layer (Fig. 1B). At 382 

the phylum level, the most abundant putative diazotrophs in the mangrove sediments 383 
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were Desulfobacterota, Pseudomonadota, and Campylobacterota (Fig. 1B). At the 384 

class level, Gammaproteobacteria, Campylobacteria, and Desulfobacteria were the 385 

most prevalent (Fig. S5A). Despite the absence of transcripts in the 14-16 cm layer, 386 

nifH transcripts were detected throughout the other layers, indicating that nitrogen-387 

fixing activity is present at most sediment depths (Fig. 1C). At the four layers with 388 

high nifH transcripts, Campylobacterota, Nitrospirota, and Pseudomonadota emerged 389 

as the potential predominant nitrogen-fixing groups (Fig. 1C). Specifically, there was 390 

a niche differentiation among these groups. In the 6-8 and 10-12 cm layers, nifH 391 

transcripts values were mainly affiliated with the members of the class 392 

Campylobacteria (Fig. S5B), and in the 12-14 cm layer, nifH transcripts were highly 393 

expressed in the class Thermodesulfovibrionia. In the 16-18 cm layer, higher nifH 394 

transcripts values were found from the classes Gammaproteobacteria and 395 

Campylobacteria (Fig. S5B). 396 

Considering the dominant and transcriptionally active diazotrophs were mainly 397 

belonged to the chemolithoautotrophic Campylobacterota and Nitrospirota, further 398 

exploration was conducted to determine the correlation between nifH and carbon 399 

fixation genes (eg, aclB, rbcL, and acsB), sulfur oxidation genes (eg, sqr and soxB) or 400 

hydrogen oxidation gene (hydB) within mangrove sediments. The results revealed 401 

strong and significant correlations between the transcriptional activity of nifH and the 402 

aforementioned genes (Fig. S6), suggesting a robust link between diazotrophic and 403 

putative chemolithoautotrophic populations in mangrove sediments. Therefore, it is 404 

assumed that these chemolithoautotrophic microorganisms may constitute key active 405 
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groups for in situ nitrogen fixation in mangrove sediments. 406 

Potential nitrogen-fixing microorganisms identified within mangrove sediments 407 

Through metagenomic assembly and binning strategies, we recovered 180 bacterial 408 

(n=172) and archaeal (n=8) population genomes with > 50% completeness and < 10% 409 

contamination, which belonged to 24 phyla based on the GTDB taxonomy (Table 410 

S2). Among these genomes, 36 MAGs (33 bacterial and 3 archaeal MAGs) spanning 411 

twelve phyla were identified as potential nitrogen-fixing microorganisms, including 412 

Desulfobacterota (n=10), Pseudomonadota (n=6), Campylobacterota (n=4), 413 

Chloroflexota (n=3), Halobacteriota (n=3), Myxococcota (n=3), Bacteroidota (n=2), 414 

Methylomirabilota (n=1), Nitrospirota (n=1), Spirochaetota (n=1), Schekmanbacteria 415 

(n=1), and SZUA-182 (n=1) (Fig. 2A; Table S3). Subsequent phylogenetic analyses 416 

revealed that nitrogenases from these 36 MAGs were categorized into groups I, II, 417 

VII, and VIII (Fig. 2B), and all of which were observed to have conserved active sites 418 

among NifH, NifD, and NifK (Fig. S7-9). Furthermore, NifH sequences from the 419 

same taxonomic group did not cluster into a single clade (Fig. 2A, B), which may be 420 

explained by horizontal gene transfer (HGT)94,95.  421 

Among 36 potential nitrogen-fixing MAGs, a majority (21/36) encoded carbon 422 

fixation pathways, with at least 60% of the genes and all the key enzymes96 (Fig. 2B; 423 

S10). The reductive citric acid (rTCA) cycle was encoded by the class 424 

Campylobacteria (n=2) of the phylum Campylobacterota (Fig. 2B; S11). The Calvin-425 

Benson-Bassham (CBB) cycle was encoded by five Pseudomonadota MAGs 426 

including the classes Gammaproteobacteria (n=4) and Zetaproteobacteria (n=1), and 427 
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three Halobacteriota MAGs including the classes Methanosarcinia (n=2) and 428 

Methanomicrobia (n=1) (Fig. 2B; S12). The Wood-Ljungdahl (WL) pathway was 429 

encoded by eight Desulfobacterota MAGs including the classes Desulfobacteria 430 

(n=6) and Desulfobulbia (n=2), one Myxococcota MAG including the class Polyangia 431 

(n=1), one Nitrospirota MAG including the class Thermodesulfovibrionia (n=1), and 432 

one Halobacteriota MAG including the class Methanosarcinia (n=1) (Fig. 2B; S13). 433 

These findings suggest that the microorganisms represented by these MAGs could be 434 

potential chemolithoautotrophic diazotrophs. 435 

Read mapping of the 36 diazotrophs showed that they were widely distributed at 436 

different sediment depths (Fig. 3A; Table S4). When considered individually, the 437 

chemolithoautotrophic taxon Campylobacterota was the most abundant at most 438 

sediment depths except 18-20 cm layer (Fig. 3A), indicating its important role as a 439 

potential nitrogen fixer in mangrove sediments. A previous study indicated that 440 

Campylobacteria was abundant in the surface (0-15 cm) mangrove sediments, 441 

coupling sulfur oxidation and denitrification processes36. Furthermore, 442 

Pseudomonadota and chemolithoautotrophic Nitrospirota also exhibited higher 443 

abundances in the 0-18 cm layer, but demonstrated a consistent decrease in abundance 444 

with sediment depth (Fig. 3A). Whereas in the 18-20 cm layer, members of the phyla 445 

Desulfobacterota, Myxococcota, and Halobacteriota were the most predominant 446 

diazotrophs (Fig. 3A). The high abundances could point to an important role for these 447 

phyla in nitrogen fixation in deeper sediments. A recent study indicated that in deeper 448 

mangrove sediments around 30 cm, members from Desulfobacterota and 449 
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Halobacteriota were dominant37. At the class level, Campylobacteria, followed by 450 

several other classes including Desulfobacteria, Gammaproteobacteria, 451 

Dehalococcoidia, and Thermodesulfovibrionia, were notably predominant in the 0-18 452 

cm layer, whereas in the 18-20 cm layer, the classes such as Desulfobacteria, YA12-453 

FULL-58-9, and Methanomicrobia were the most abundant (Fig. S14A). Therefore, 454 

chemolithoautotrophic organisms consistently emerge as the dominant nitrogen fixers 455 

in the top 0-20 cm of mangrove sediments.  456 

To evaluate the in situ expression of these diazotrophs, ten metatranscriptomes 457 

from different sediment depths were mapped against MAGs encoding nitrogenase 458 

(Table S5). The results showed that nifH gene transcripts in the 0-18 cm layer were 459 

predominantly expressed in ten chemolithoautotrophic MAGs from the phyla 460 

Campylobacterota (n=4), Pseudomonadota (n=5), and Nitrospirota (n=1) (Fig. 3B), 461 

suggesting that they could be the primary nitrogen fixers in mangrove sediments. At 462 

the class level, the nifH genes of Campylobacteria were transcribed from low to high 463 

levels in several layers, up to 1456.38 transcripts per million reads (TPM), and the 464 

transcript values from Thermodesulfovibrionia in the 6-8 and 12-14 cm layers were 465 

412.15 and 1122.25 TPM, respectively (Fig. S14B). Furthermore, nifH transcripts 466 

were expressed in the class Gammaproteobacteria in multiple sediment layers with 467 

higher levels in the surface layers (0-6 cm), whereas this transcription was found in 468 

Zetaproteobacteria in the 10-12 cm and 16-18 cm layers, with 135.17 and 41.94 469 

TPM, respectively (Fig. S14B). This study is the first report indicating that 470 

Zetaproteobacteria and Thermodesulfovibrionia can actively fix nitrogen, implying 471 
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that they may play important roles in the nitrogen cycle in addition to their previously 472 

reported roles96,97. In the deepest layer (18-20 cm), the nifH transcripts were mainly 473 

expressed in the phyla Desulfobacterota and Halobacteriota, but with lower values of 474 

10.05-30.82 and 30.30 TPM, respectively (Fig. 3B), indicating that these taxa may 475 

play elevated roles in nitrogen fixation in deeper layers. Interestingly, no nifH 476 

transcripts from previously reported heterotrophic diazotrophs52,98-99, such as certain 477 

MAGs from the phyla Myxococcota (n=2), Bacteroidota (n=2), or Spirochaetota 478 

(n=1), were expressed (Fig. 3B). Overall, our results further confirm that 479 

chemolithoautotrophs dominate dark nitrogen fixation in mangrove sediments. 480 

Energy production pathways of dominant chemolithoautotrophic diazotrophs 481 

To predict the functional capabilities of dominant chemolithoautotrophic diazotrophs, 482 

the metabolic potentials of MAGs were determined based on marker genes and 483 

pathways (Fig. 4A; Table S6-8). For sulfur metabolism, all Campylobacterota MAGs 484 

(D5_bin.8, D8_bin.38, D8_bin.28, and D10_bin.20) harbored multiple copies of 485 

genes encoding sulfide:quinone oxidoreductase (Sqr) (Fig. 4A; S15), which catalyzes 486 

the oxidation of sulfide to elemental sulfur100. A nearly complete Sox system 487 

(SoxACDXYZ) was identified in D10_bin.20, indicating that it has the genetic 488 

potential to oxidize thiosulfate101. D5_bin.8 and D8_bin.28 contained partial Sox 489 

systems (Fig. 4A; S16), potentially due to the low MAG completeness. Moreover, 490 

D5_bin.8 and D10_bin.20 contained genes encoding sulfite dehydrogenase (SorAB), 491 

indicating that they can oxidize sulfite to sulfate101. For hydrogen metabolism, all four 492 

MAGs contained Group 1 [NiFe]-hydrogenases (Hyd and Hya), and only D10_bin.20 493 
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contained Group 2 [NiFe]-hydrogenases (Hup) (Fig. 4A; S17), which may endow 494 

them the potential to use hydrogen as an energy source102. Regarding electron 495 

acceptors, D5_bin.8, D8_bin.38, and D10_bin.20 contained oxygen-utilizing genes 496 

encoding cbb3-type cytochrome c oxidases (CcoNOPQ) and caa3-type cytochrome c 497 

oxidases (CoxAB) (Fig. 4A). In comparison with the low-oxygen-affinity caa3-type 498 

oxidase induced under oxic conditions, cbb3-type oxidase is a high-affinity terminal 499 

oxygen reductase capable of functioning under microoxic to anoxic conditions103,104. 500 

The presence of cytochromes could also function as residual O2 scavengers for the 501 

detoxification of O2/reactive oxygen species (ROS) to protect O2-sensitive 502 

proteins105,106. Additionally, polysulfide reductase (Psr), which is involved in 503 

elemental sulfur reduction, was encoded by four MAGs, indicating their potential 504 

ability to perform sulfur reduction under anoxic conditions100. These results show that 505 

these Campylobacteria can use reduced sulfur compounds and hydrogen as electron 506 

donors, and oxygen and elemental sulfur as terminal electron acceptors to generate 507 

ATP for nitrogen fixation.  508 

Within the phylum Pseudomonadota, four MAGs (D5_bin.11, D6_bin.23, 509 

D9_bin.7, D10_bin.17) belonged to the class Gammaproteobacteria, and one MAG 510 

(D4_bin.11) belonged to the class Zetaproteobacteria (Table S3). For sulfur 511 

metabolism, all MAGs harbored different copies of sqr for sulfide oxidation and 512 

lacked SorAB for sulfite oxidation (Fig. 4B; S15). D5_bin.11 and D10_bin.17 513 

encoded an incomplete Sox system (SoxABXYZ), and D6_bin.23 only contained the 514 

subunits of SoxAXYZ (Fig. 4B; S16). For hydrogen metabolism, all MAGs encoded 515 
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Group 1 [NiFe]-hydrogenase (Hdy and/or Hya) and lacked Group 2 [NiFe]-516 

hydrogenase (Hup) (Fig. 4B; S17). The gene encoding cytochrome c-porin (Cyc2), 517 

which is involved in iron oxidation, was found in D4_bin.11. Zetaproteobacteria are 518 

known to be obligate chemolithoautotrophic iron-oxidizing bacteria that oxidize Fe at 519 

a circumneutral pH97. With respect to electron acceptors, D5_bin.11, D6_bin.23, and 520 

D10_bin.17 contained the genes encoding CcoNOPQ, CoxAB, and a cytochrome bd 521 

ubiquinol oxidase (CydAB) for oxygen respiration, which has a high affinity for 522 

oxygen and allows growth under microoxic conditions102. D9_bin.7 encoded genes for 523 

CcoNOPQ and CydA, and D4_bin.11 encoded genes for CcoNOPQ and CoxAB. 524 

Furthermore, D6_bin.23 and D10_bin.17 contained NapAB for nitrate reduction to 525 

nitrite, and only NorBC and NosZ were found in D5_bin.11 (Fig. 4B). Furthermore, 526 

Psr involved in elemental sulfur reduction was encoded by most 527 

Gammaproteobacteria MAGs. These results show that Gammaproteobacteria and 528 

Zetaproteobacteria can use sulfide, thiosulfate, iron, or hydrogen as electron donors, 529 

and oxygen, nitrate, and elemental sulfur as terminal electron acceptors to generate 530 

ATP for nitrogen fixation. 531 

One MAG (D4_bin.8) belonged to the class Thermodesulfovibrionia from the 532 

phylum Nitrospirota (Table S4). For sulfur metabolism, D4_bin.8 lacked all genes 533 

encoding sulfur oxidation such as Sqr, Sox, and Sor (Fig. 4C). Furthermore, D4_bin.8 534 

encoded Group 1 [NiFe]-hydrogenase (Hyd and Hya) and NAD-reducing 535 

hydrogenase (HoxHYU) for hydrogen oxidation (Fig. 4C; S17). With respect to 536 

electron acceptors, D4_bin.8 contained all genes encoding the sulfate reduction 537 
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pathway, including dissimilatory sulfite reductase (DsrABC) and adenylylsulfate 538 

reductase (AprAB) (Fig. 4C). D4_bin.8 also contained the enzymes CcoNOPQ and 539 

CoxAB for oxygen respiration and NapAB for nitrate reduction to nitrite. The Psr for 540 

elemental sulfur reduction was absent in D4_bin.8. These results show that 541 

Thermodesulfovibrionia can couple hydrogen oxidation with sulfate reduction, 542 

denitrification, or aerobic respiration to obtain energy for nitrogen fixation, which is 543 

in agreement with other studies of this class96,107,108.  544 

Isolation of potential dominant diazotrophs from chemolithoautotrophic 545 

Campylobacterota  546 

Ten strains named HSL-C5, HSL1-2, HSL1-6, HSL3-1, HSL3-2, HSL3-7, HSL-3221, 547 

HSL-1716, HSL-1656, and HSL1-3 were successfully isolated from mangrove 548 

sediments (Fig. 5A). They shared the highest 16S rRNA gene sequence similarities 549 

with members from the genera Sulfurimonas and Sulfurovum of the phylum 550 

Campylobacterota (Table S9), which were two predominance genera in in situ 551 

mangrove sediments by 16S rRNA gene from metagenomics and amplicon 552 

sequencing (Fig. S18; S19). Furthermore, phylogenetic tree based on the 16S rRNA 553 

gene sequences of ASVs from the two genera and our isolates showed that strain 554 

HSL1-3 was most closely related to the two most predominant members represented 555 

by ASV7 (up to 6.07% relative abundance) and ASV18 (up to 2.07% abundance) 556 

from the genus Sulfurovum, with 97.14% and 97.03% sequence identity, respectively 557 

(Fig. 5A; Table S10). Strain HSL3-7 formed a cluster with the most dominant ASV3 558 

(up to 2.46% abundance) from the genus Sulfurimonas with 99.03% sequence 559 
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identity. Strain HSL-3221 corresponded to the second most predominant ASV19 (up 560 

to 1.04% abundance) of the genus Sulfurimonas with 98.51% sequence identity (Fig. 561 

5A; Table S10). Thus, these isolates represented the predominant members of the 562 

genera Sulfurimonas and Sulfurovum in in situ mangrove sediments. Additionally, 563 

upon evaluating average amino acid identity (AAI)109 and performing a genome-based 564 

phylogenomic analysis110, these ten strains were assigned to five genera including 565 

three potentially new genera in the family Sulfurimonadaceae (Fig. S20; S21).  566 

All ten isolates harbored a complete nitrogen fixation gene cluster encoding the 567 

nitrogenase designated NifHDKENB (Fig. 5B). Gene neighborhood analyses of these 568 

strains revealed that electron transfer proteins, regulatory proteins, and those 569 

necessary for nitrogenase cofactor biosynthesis were encoded among the nif gene 570 

clusters (Fig. 5B), which was also found in previous reports15,111. Furthermore, 571 

physiological characterization revealed that all ten isolates were obligate 572 

chemolithoautotrophs, and none of the organic compounds tested supported their 573 

growth as carbon and energy sources. Genes involved in the oxidation of sulfur and 574 

hydrogen and the reduction of various terminal acceptors in these ten isolates are 575 

shown in Table S11, which could supply energy for nitrogen fixation. Indeed, 576 

nitrogen fixation is not common in chemolithoautotrophic Campylobacterota and so 577 

far only described for the member of Sulfuricurvum kujiense isolated from 578 

underground crude oil storage112. Thus, Campylobacterota strains containing 579 

nitrogenase genes identified herein may possess a competitive advantage in nitrogen-580 

limited mangrove sediments. Compared with heterotrophic nitrogen-fixing 581 
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bacteria28,113, fewer chemolithoautotrophic diazotrophs have been cultured by far. 582 

Prior to our study, only several bacteria belonging to the phyla Pseudomonadota and 583 

Aquificota have been isolated from freshwater, mine wastes, salt marshes, and hot 584 

springs, which could grow chemolithoautotrophicly using reduced sulfur compounds, 585 

hydrogen, As, or Sb as an energy source to fix N2
19, 114-117. 586 

Nitrogen fixation activity in the isolates and mangrove sediments 587 

The seven active strains that exhibited robust growth were selected to determine their 588 

ability to fix 15N2 intracellularly using the 15N-labeled isotope analyses. The results 589 

showed that these seven strains were capable of fixing 15N2 with N2 as the sole 590 

nitrogen source under a gas mixture of 15N2:CO2 (Fig. 6A, B). As a comparison, 591 

strains Sulfurimonas hydrogeniphila NW10T and Sulfurovum indium ST-419T, which 592 

lacked nitrogen fixation gene clusters, could not perform nitrogen fixation. As for the 593 

energy sources, hydrogen and sulfur compounds such as thiosulfate and elemental 594 

sulfur could be utilized with hydrogen as a preferred energy source, when these 595 

strains utilize oxygen, thiosulfate (only strain HSL1-3), or elemental sulfur as the sole 596 

electron acceptor (Fig. 6A, B). Nitrogen fixation is linked to hydrogen formation118. 597 

Hence, the recovery of energy via hydrogen oxidation could minimize the energy 598 

losses during nitrogen fixation. Combining N fixation with hydrogen oxidation to save 599 

energy has been described for Cyanobacteriota but has also been mentioned for other 600 

members of the phylum Pseudomonadota such as the genera Thermochromatium and 601 

Rhodospirillum119,120. Furthermore, 15N2 fixation was completely inhibited by the 602 

addition of ammonia at both low and high concentrations (1 mM and 40 mM NH4Cl), 603 
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and inhibited to some extent by the addition of 1 mM NaNO3 and NaNO2 in all seven 604 

strains (Fig. S22). In contrast, organic nitrogen compounds such as urea and amino 605 

acids did not inhibit their nitrogen fixation activity (Fig. S22), which is attributed to 606 

these isolates not being able to grow on these compounds as nitrogen sources. 607 

Additionally, these seven strains were able to fix 15N2 at both low and high oxygen 608 

concentrations (4% and 20% O2), which may be due to their antioxidant 609 

systems121,122.  610 

To verify the contribution of chemolithoautotrophs to nitrogen fixation in 611 

mangrove sediments, we carried out activity measurements by acetylene reduction 612 

assay and 15N2 incorporation assay (Fig.6 C, D). Based on the measured redox 613 

potential and the highest transcript expression detected in this study, four sediment 614 

layers (0-2, 6-8, 12-14, and 16-18 cm) were chosen to examine the nitrogen-fixing 615 

activity. The results showed that the autotrophic diazotrophic activities ranged from 616 

0.52 ± 0.07 to 0.79 ± 0.06 nmol g−1 day−1, which were significantly higher than the 617 

heterotrophic diazotrophic activities (0.28 ± 0.04 to 0.46 ± 0.08 nmol g−1 day−1) in 618 

mangrove sediment samples under both microoxic and anoxic conditions (Fig. 6C). 619 

Without supplementation of any carbon or energy source, the nitrogenase activity of 620 

the original sediments was merely 0.19 ± 0.04 to 0.34 ± 0.04 nmol g−1 day−1 (Fig. 621 

6C). In addition, the δ15N values were significantly higher in the cultures amended 622 

with inorganic carbon and energy sources than in the treatments with organics or in 623 

the original sediments after 10 days of incubation (Fig. 6D).  624 

Implications for chemolithoautotrophic diazotrophy in mangrove sediments  625 
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Taken together, our findings imply that chemolithoautotrophic diazotrophy rather than 626 

heterotrophic diazotrophy dominates in organic-rich and nitrogen-limited mangrove 627 

sediment habitats, which may be attributed to the low redox potential and abundant 628 

reduced inorganic compounds such as H2 and H2S in these setting. Generally, in 629 

marine sediments, when Eh < 0 mV, the sediment is strongly reductive, and when the 630 

Eh values range from 0 to 200 mV, the sediment is slightly reductive123,124. In our 631 

study, sediments below 4 cm exhibited highly reduced conditions with Eh < 0 mV 632 

(Fig. S3 J). The negative redox potential in deeper sediments except surface 633 

sediments indicates that the mangrove sediments are mostly water-logged without 634 

much periodical aeration, which is consistent with the microbiological data. 635 

Moreover, aerobic microorganisms consume oxygen during the decomposition of 636 

organic matter125, which also leads to oxygen depletion with depth increase. However, 637 

considering the interference of mangrove root extension and the burrowing activity of 638 

polychaetes and crabs126, the redox gradients in anoxic sediments may be dynamic. 639 

Besides the low redox potential, abundant reduced inorganic compounds such as H2 640 

and H2S in this settings are also essential factors for nitrogen fixation by 641 

chemolithoautotrophs, and they are derived from the anaerobic fermentation of 642 

organic matter and sulfate reduction in sediments, respectively. 643 

Potential chemolithoautotrophic diazotrophs may fill an essential ecological 644 

niche, contributing to the initial accumulation of organic carbon and nitrogen in 645 

mangrove sediments and facilitating ecosystem productivity, which is similar to their 646 

roles in oligotrophic habitats such as tailings or glacier forefields19,20. A conceptual 647 
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model of depth and redox-related microbial nitrogen fixation by different energy 648 

sources was constructed (Fig. 7). In the upper 0-18 cm sediment layer (Eh = ~ -117 649 

mV), chemolithoautotrophs are the most predominant and active diazotrophs, which 650 

utilize hydrogen, reduced sulfur species, and iron as the electron donors, with oxygen, 651 

nitrate, and sulfur as terminal electron acceptors. Moreover, carbon dioxide is used by 652 

these chemolithoautotrophs to form new organic carbon that feeds heterotrophs within 653 

the microbial assemblages. In the deeper sediments around 18-20 cm (Eh = -120 mV), 654 

diazotrophs involved in dissimilatory sulfate reduction and methanogenesis are 655 

strongly enriched. A large amount of sulfide is produced from sulfate-reducing 656 

bacteria via organic matter mineralization or H2 oxidation, and then diffuses upward, 657 

where it is further utilized by chemolithoautotrophic sulfur-oxidizing bacteria in upper 658 

sediments to form thiosulfate and even sulfate. Small molecule compounds such as 659 

formate, acetate, propionate, butyrate, H2, and CO2 originate from the anaerobic 660 

fermentation of macromolecules in deeper layers of mangrove sediments36. 661 

Conclusions 662 

The findings from this research significantly enhance our understanding of biological 663 

nitrogen fixation within coastal eutrophic sediments, shedding light on the ecological 664 

significance of chemolithoautotrophic organisms in nitrogen metabolism. Our results 665 

showed that an unexpectedly diverse assemblage of chemolithoautotrophs including 666 

Campylobacterota, Pseudomonadota, and Nitrospirota are the predominant and active 667 

nitrogen fixers in the surface sediments of mangroves. They play a pivotal role in 668 

carbon and sulfur elemental cycling by mitigating nitrogen shortages in mangrove 669 
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sediments that are rich in carbon and sulfur. From a metabolic standpoint, reduced 670 

sulfur, hydrogen, and iron serve as the principal energy sources for microbial 671 

chemosynthesis. These chemolithoautotrophic diazotrophs are deemed crucial not 672 

only in mangrove sediments but also in other habitats where there is a disparity 673 

between carbon and nitrogen and a richness in reduced inorganic compounds. Future 674 

studies are needed to quantify the contribution of these chemolithoautotrophs to the 675 

total amount of nitrogen fixation in situ. 676 

Data availability 677 

All metagenomic and metatranscriptomic raw reads used in this study are available in 678 

NCBI under accessions SAMN37418899‑37418908 (BioProject PRJNA1017975) and 679 

SAMN37429165‑37429174 (BioProject PRJNA1018229), respectively. The 680 

sequences from 16S rRNA gene and genome in ten strains are available in NCBI with 681 

the accession numbers shown in Table S9. The assemblies, reference gene catalog, all 682 

MAGs, and phylogenetic trees could be found in figshare 683 

(https://doi.org/10.6084/m9.figshare.24331438). 684 
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Figure legends 1062 

 1063 

Fig. 1. Summary of 154 non-redundant homologs of the nitrogenase subunit NifH 1064 

from mangrove sediments. A, Maximum-likelihood phylogenetic tree of NifH 1065 

amino acid sequences. nifH homologs were classified into canonical groups I to III, 1066 

nitrogen fixation-like groups IV to VI, and newly assigned groups VII and VIII. The 1067 

NifH sequences obtained in this study are highlighted in blue, and sequences from 1068 

diazotrophic MAGs are marked by stars. The scale bar indicates the mean number of 1069 

substitutions per site. B, Relative abundances of nifH genes affiliated with different 1070 

taxonomic groups (left) and the total values of gene abundance (right) in different 1071 

mangrove sediment samples. C, Relative transcript abundances of nifH genes 1072 

affiliated with different taxonomic groups (left) and the total values of transcript 1073 

expression (right) in different sediment samples. Different taxonomic groups are 1074 

represented by different colors. The “others” category represents unassigned 1075 

sequences. 1076 
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 1077 

Fig. 2. Phylogenetic trees of nitrogen-fixing MAGs and their NifH protein 1078 

sequences. A, Maximum-likelihood phylogenetic tree of 36 MAGs containing 1079 

nitrogen fixation genes based on the concatenation of 43 conserved protein sequences. 1080 

MAGs are color-coded according to their NifH homolog groups at the phylum level. 1081 

B, Maximum-likelihood phylogenetic tree of identified NifH protein sequences within 1082 

36 MAGs. Stars of different colors indicate different carbon fixation pathways, with 1083 

red for rTCA, blue for CBB, and yellow for WL. For both trees, bootstrap values 1084 

greater than 50% are denoted at the nodes, and scale bars represent the average 1085 

number of substitutions per site. 1086 

 1087 
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 1088 

Fig. 3. Relative abundance and expression of transcripts for 36 nitrogen-fixing 1089 

MAGs at different mangrove sediment depths. A, The relative abundance of each 1090 

MAG was estimated using CoverM. B, The expression of transcripts for each MAG is 1091 

represented in units of transcripts per million (TPM). The detailed information is 1092 

given in Table S4 and Table S5.  1093 
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 1094 

Fig. 4. Metabolic pathway reconstructions for MAGs of dominant nitrogen-fixing 1095 

chemolithoautotrophs. Metabolic pathways are inferred for Campylobacterota (A), 1096 

Pseudomonadota (B), and Nitrospirota (C), with the carbon fixation pathways of 1097 

rTCA, CBB, and WL, respectively. Steps with more than one arrow indicate that 1098 

several operons encoding different enzymes and catalyzing that reaction are present in 1099 

the genome. Enzymes that are absent within these reconstructions are highlighted in 1100 

red. Comprehensive enzyme annotations are provided in Tables S6-S8. 1101 

 1102 

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ej/advance-article/doi/10.1093/ism
ejo/w

rae119/7698266 by Ifrem
er user on 28 June 2024



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

 53 

 1103 

Fig. 5. Phylogenetic analysis and nitrogen fixation gene clusters of ten isolates 1104 

from Campylobacterota. A, Phylogenetic tree based on 16S rRNA gene sequences 1105 

from the representative ASVs of the genera Sulfurimonas and Sulfurovum and the 1106 

isolates in this study. Only ASVs representing > 1% of the communities in at least one 1107 

sample are shown. The scale bar represents 1.0 nucleotide replacements per site. B, 1108 

Gene neighborhoods of nifHDK include nitrogenase metal cofactor biosynthesis 1109 

genes, regulatory nitrogen fixation genes, transcriptional regulator genes, electron 1110 

transfer genes and transporter genes.  1111 
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 1112 

 1113 

Fig. 6. Nitrogen fixation activities in Campylobacterota representative strains and 1114 

mangrove sediments. A, 15N abundance based on the 15N2 incorporation assay for 1115 

seven Campylobacterota strains incubated with different reduced sulfur compounds as 1116 

the energy source. B, 15N abundance based on the 15N2 incorporation assay for seven 1117 

Campylobacterota strains incubated with H2 as the sole energy source coupled with 1118 

different electron acceptors. The related type strains lacking the nif gene cluster are 1119 

used as controls. C, Acetylene reduction assay of nitrogenase activity in four sediment 1120 

layers incubated under chemolithoautotrophic and heterotrophic conditions. D, 15N 1121 

abundance based on the 15N2 incorporation assay for four sediments incubated under 1122 

chemolithoautotrophic and heterotrophic conditions. Standard deviations are indicated 1123 

by error bars. The letters above the columns indicate statistically significant 1124 

differences by Student’s t-test (P < 0.05). 1125 
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 1127 

Fig. 7. Conceptual model of depth-related microbial nitrogen fixation in 1128 

mangrove sediments. Upper sediments (0-18 cm): The model highlights the 1129 

significance of chemolithoautotrophy, a previously overlooked energy source driving 1130 

dark nitrogen fixation. These chemolithoautotrophic diazotrophs utilize inorganic 1131 

compounds such as hydrogen, reduced sulfur, and iron as energy sources, with 1132 

oxygen, nitrate, and sulfur as terminal electron acceptors. H2 and H2S are produced by 1133 

the degradation of organic matter and sulfate reduction, respectively. Deeper 1134 

sediments (18-20 cm): The diazotrophs involved in dissimilatory sulfate reduction and 1135 

methanogenesis are strongly enriched. Sulfate reduction is carried out utilizing the 1136 

small molecule compounds produced from deeper sediments and resulting in 1137 

abundant sulfide production. 1138 
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