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Abstract: 13 

The Indian Ocean Tuna Commission (IOTC) expresses concern over the overfished state and 14 

susceptibility to the overfishing of yellowfin tuna (Thunnus albacares). Acknowledging the challenges 15 

of increased fishing effort in a profitable fishery, our study aims to understand factors influencing 16 

French purse seine fishing vessel dynamics. Our primary goal is to assess purse seine vessel utilisation 17 

with recent catch limits and compliance with the European Union Common Fisheries Policy (CFP), 18 

which mandates measures to align fishing capacity with opportunities to sustain fish stocks at maximum 19 

sustainable yield (MSY). Using Data Envelopment Analysis, we evaluate the relationship between 20 

vessel fishing capacity to catch limits and the MSY reference point for yellowfin tuna. Random Utility 21 

Models identify key drivers influencing the fleets' strategic decisions, rigorously assessed with a 22 

machine-learning algorithm. Findings indicate that the French fleet could meet catch limits with 23 

approximately 21% fewer vessels if fully utilised and 26% fewer if reduced to meet their equivalent 24 

MSY share. Key influencing factors include catch revenue, vessel age, biomass levels, and interest 25 

rates. The predictive model achieves a 93% accuracy rate, essential for effectively implementing 26 

regional conservation policies that balance economic stakes with sustainable fishing practices. Aligning 27 

capacity with fishing opportunities is crucial for the profitability and preservation of these essential tuna 28 

populations, resulting in more sustainable and economically viable fisheries. 29 
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1. Introduction 89 

Since the early 1990s, excessive fishing capacity has surged due to a decade of fleet expansion and 90 

technological advancements in the high seas (Newton and Greboval 1999, Watson and Tidd 2018), 91 

impacting fisheries globally (Rousseau et al. 2019). This phenomenon is attributed to inadequate 92 

management (Ye and Gutierrez 2017), subsidies (Sumaila et al. 2021), and high-seas access to foreign 93 

fisheries (Tickler et al. 2018). According to Hilborn et al. (2020), excess fishing pressure results in 94 

about a 3-5% loss in potential yields from 50% of the world's potential catch, leading to overfishing in 95 

many fish stocks (FAO 2018). A highly efficient fleet facing catch limits (i.e., quotas) may also result 96 

in endogenous overcapacity, representing an economic waste of financing resources that could be 97 

invested more usefully in other fisheries or other sectors (Rust et al. 2016). Technical efficiency comes 98 

from the optimal use of inputs to produce a given quantity of output moving along the production 99 

frontier (the maximum level that can be produced using the available inputs), while technical change 100 

corresponds to a shift of the production frontier itself (higher output level with the same amount of 101 

inputs). The mixture of both, particularly present in high seas fisheries where the digital detection power 102 

of fish by larger vessels has increased tremendously, may result in excessive capacity (Tidd et al. 103 

2023a). The excessive capacity can appear even more clearly when a total allowable catch is introduced 104 

in the fishery (Felthoven 2002). Conversely, well-managed stocks can show significant improvements, 105 

highlighting the potential for recovery and thus solving the overcapacity problem (Hilborn et al. 2020).  106 

 107 

Managing tuna fisheries is complex due to the migratory behaviour of tunas which is influenced by 108 

environmental conditions, making it accessible to different fishing fleets and countries (Erauskin-109 

Extramiana et al. 2023). This complexity poses political challenges, involving multiple participants with 110 

access rights across EEZ frontiers and the high seas, creating intricate interactions among coastal 111 

countries and distant water fishing nations (Sinan and Bailey 2020, Sinan et al. 2021). This is 112 

particularly true in the Indian Ocean, where a significant proportion of tuna is caught in the high seas 113 

by the purse-seine fleet, potentially affecting the available biomass for other fisheries. The Indian Ocean 114 

(IO) stands out as a significant tuna fishery, contributing around 20% of global tuna catches and 30% 115 

of the world's yellowfin tuna catch (Lecomte et al. 2017), valued at $US16 billion in 2018 (Pew 2020). 116 

This fishery primarily targets skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and 117 

bigeye (Thunnus obesus) tuna in tropical and subtropical waters near the equator. The IO industrial 118 

purse seine (PS) fleet, dominated by around forty-six vessels, mainly from the European Union (EU, 119 

Spain and France), Seychelles, Mauritius, and South Korea, plays a pivotal role. These vessels, 120 

averaging around 90m in length and over 2,800t in gross tonnage (IOTC 2022) (Figure 1), collectively 121 

account for one-third of the IO's tuna catch (Lecomte et al. 2017), 27% of the total yellowfin catch, and 122 

40% of the total skipjack catch in 2020 (IOTC.org, accessed 11/01/24 link). Specifically, the French PS 123 

fleet, a significant contributor, focuses on skipjack (53% of its catch) and yellowfin (43% on average 124 

https://iotc.org/data/datasets/latest/NC/SCI


 

 

over the past decade) using both free-school and drifting fish aggregation devices (DFAD) fishing 125 

strategies, with bigeye making up a smaller proportion (4%) (Floch et al. 2021). This underscores the 126 

fleet's crucial role in the IO tuna fishery and the global tuna market. 127 

 128 

Tuna fisheries management uses Maximum Sustainable Yield (MSY) indicators, SBMSY and FMSY, as 129 

policy targets, where FMSY is the fishing mortality that provides MSY and SBMSY the reference point of 130 

the spawning biomass to achieve MSY. Within the Indian Ocean (IO) tuna fishery, one particularly 131 

pressing issue is the decline in yellowfin tuna stock biomass levels (ISSF 2023). In 2023, yellowfin 132 

tuna was considered overfished (SB < SBMSY) and subject to overfishing (F > FMSY) (Ibid.) with a 68% 133 

probability. Responding to these concerns and failed attempts to limit effort and maintain stocks at 134 

target levels (Aranda et al. 2012, the Indian Ocean Tuna Commission (IOTC) implemented an interim 135 

rebuilding plan for yellowfin tuna in 2016. This plan aimed for a twenty per cent reduction in yellowfin 136 

catches compared to the 2014 levels (IOTC Resolution 16/01, superseded by Res. 17/01, then by Res. 137 

18/01, 19/01 and 21/01). The overarching objective was to facilitate the recovery of stocks, ensuring 138 

they surpass interim target reference points by 2024 with a fifty per cent probability (IOTC 2015). 139 

Scientists consider the catch level at MSY to be 349 kilo-tonnes but the current catch level exceeds 430 140 

kilo-tonnes because the same limits do not bind several countries. Those contracting parties harvesting 141 

less than 5,000t or having objected to resolution 21/01 (e.g., India, Oman, Somalia, Indonesia, Iran, 142 

Madagascar) are no longer bound to it but refer to previous resolutions. 143 

 144 

The status of yellowfin tuna stocks remains a cause for significant concern, characterised by both 145 

overfishing F / FMSY=1.32 and being overfished SB / SBMSY=0.87 (www.iotc.org, accessed 11/01/24 146 

link). This heightened concern has engaged various stakeholders (Sinan et al. 2021), amplifying the 147 

urgency for collective efforts and strategic management. The primary apprehensions stem from DFADs 148 

and the high efficiency of purse seine (PS) vessels, particularly in capturing the juvenile segment of the 149 

yellowfin population (Fonteneau et al. 2013). Recent studies have highlighted shifts in efficiency within 150 

the tuna PS fleet, demonstrating how input controls such as a reduction in the number of DFAD sets 151 

and a DFAD seasonal closure can positively impact future spawning stock biomass and catch levels 152 

(Tidd et al. 2023a and 2023b, Guillotreau et al. 2024).  153 

 154 

The absence of regulatory measures, such as limits on vessel number/power and size adjustments for 155 

efficiency, threatens stock sustainability. The distinct status of other tuna species within the same 156 

fishery, like skipjack tuna, is not yet subject to overfishing (www.IOTC.org, accessed 11/01/24). This 157 

complicates capacity management due to quota limits implemented on yellowfin and bigeye tunas only. 158 

Sustaining an efficient management program without constraining capacity is challenging, as the lack 159 

of more stringent measures could lead to reduced catch per vessel, economic pressures, and excess 160 

http://www.iotc.org/
https://iotc.org/sites/default/files/content/Stock_status/2022/Yellowfin2022E.pdf
http://www.iotc.org/


 

 

fishing capacity. Excess capacity, defined as anything beyond the inputs required to catch a desired 161 

quantity of fish, results in economic waste and increases overfishing risks. While excess fishing capacity 162 

does not always result in overexploitation, overfishing is more likely to occur when limitations are not 163 

well-adjusted or unprofitable. Fishing capacity can become underutilised, making excess capacity more 164 

of an economic problem than a resource conservation issue (Pascoe and Gréboval 2003). 165 

 166 

This study employs Data Envelopment Analysis (DEA) to evaluate the technical efficiency of the fleet, 167 

which is a well-known and robust approach in fisheries economics (Kirkley et al. 2001, Felthoven 2002, 168 

Pascoe and Greboval 2003, Vázquez-Rowe and Tyedmers 2013, Tidd et al. 2023a). Our original 169 

contribution lies first in estimating the relationship between vessel fishing capacity, the recent catch 170 

limit introduced in the Indian Ocean tuna fishery, and the estimated allowable catch if the fleet were to 171 

fish at MSY. In line with EU member states' commitment to end overfishing by 2020 (EU 2013), the 172 

Common Fisheries Policy (CFP) mandates measures to ensure that fishing capacity corresponds to 173 

opportunities, with a legally binding objective to maintain fish stocks at MSY levels. Our analysis 174 

explicitly examines the link between the French fleet's fishing capacity and MSY, emphasising the 175 

alignment between capacity management and sustainable yield goals applicable to EU and third-country 176 

waters. Our approach compares the performance of each vessel against others within a given year based 177 

on the catch of yellowfin and skipjack tuna relative to the potential output if all vessels operated 178 

optimally. The evaluated ratio represents the average level of capacity utilisation for the fleet and a 179 

specified set of inputs. The process above accounts for changes in stock productivity, fishing strategies, 180 

innovations and fisheries management policies.  181 

 182 

Another original dimension of this study combines technical efficiency and capacity utilisation results 183 

with the dynamics (i.e., entry/exit strategic behaviour) of the French PS fleet through a random utility 184 

model. We hypothesise that vessels’ exit strategies are more likely to occur after phases of declining 185 

efficiency and capacity utilisation. Such evidence would provide valuable insights for regional 186 

stakeholders to shape long-term policies that balance capacity with fishing opportunities. As various 187 

authors emphasised (Hilborn and Walters 1992, Fulton et al. 2011), successful fisheries management 188 

necessitates a comprehensive understanding of economic expectations, fish stock size, landing values, 189 

license availability, and some external factors. In that regard, predictive models of vessels’ strategic 190 

behaviour are useful to fisheries managers to anticipate the dynamics of fishing capacity and effort. To 191 

ensure the accuracy of such predictions, we cross-validate our strategic behavioural model using a 192 

machine-learning approach. 193 

 194 

2. Methods 195 

2.1 The dataset 196 



 

 

The annual data for the French PS fleet operating in the IO between 1992 and 2019 was obtained from 197 

the French Observatory of Exploited Tropical Pelagic Ecosystems (Ob7) fleet registry. This registry 198 

provides comprehensive information on various vessel characteristics, including age, gross registered 199 

tonnage (t), overall vessel length (m), and engine power (kW). The dataset includes logbook details on 200 

catches of yellowfin and skipjack tunas and the total number of sets/days at sea per year for each vessel.  201 

 202 

To complement vessel-specific information, ex-vessel price data per metric tonne ($US) for the main 203 

target species, skipjack and yellowfin tuna, were obtained from Sovetco, the French trading company 204 

selling most of the French-caught frozen tuna and inflation-adjusted to 2015 by the OECD production 205 

price index. Additionally, fuel prices as price per barrel ($US) inflation-adjusted to 2015 from the 206 

Seypec (Seychelles Petroleum Company) (Dollars per Barrel). Furthermore, information on interest 207 

rates from the Organisation for Economic Co-operation and Development (OECD) was obtained 208 

(Interest Rates - Long-term Interest Rates - OECD Data.” The OECD, accessed 17/12/23 link). Total 209 

spawning stock biomass for skipjack/yellowfin tuna in tonnes was acquired from the Indian Ocean Tuna 210 

Commission (IOTC - www.iotc.org). These diverse datasets were amalgamated by year, creating a 211 

comprehensive database for subsequent analysis and exploration. 212 

2.2 Data Envelopment Analysis 213 

Data Envelopment Analysis (DEA) stands as a non-parametric technique (Farrell 1957, Charnes et al. 214 

1978), applicable for gauging the potential output of a Decision-making unit (DMU) for a given set of 215 

inputs, DMU being a fishing vessel in this context. The methodology assumes that the production 216 

function, delineating how outputs vary with inputs, is unknown. It systematically compares each DMU 217 

against all others (Cooper et al. 2000). The fundamental objective is identifying the "frontier" or 218 

envelope, which signifies the most efficient combination of inputs to produce the highest output level 219 

for the specific DMU (Greene 1993). DMUs with similar characteristics are supposed to achieve an 220 

identical output level in a scenario where all else is equal. A DMU positioned on the frontier is assigned 221 

a score of one, denoting efficiency. Conversely, a DMU with equivalent characteristics but a lower 222 

output is deemed inefficient and gives a score of less than one, indicating inefficiency. The process is 223 

deterministic, generating an efficiency score for each DMU. 224 

 225 

In the case of fisheries, DMU's inputs are a combination of fixed and variable effort features. Fixed 226 

inputs encompass vessel engine power, gross tonnage, and overall length, representing vessel capital 227 

stock (only one was selected due to their positive correlation). Variable inputs may include factors like 228 

the number of days fished and the number of sets on DFADs and free schools within a year. The two 229 

outputs in focus correspond to each vessel's annual catches of yellowfin and skipjack tuna summed 230 

separately, measured in tonnes. DEA efficiency scores are computed annually for each vessel within 231 

the French purse seine (PS) fleet at that specific time. Therefore, it is unnecessary to include stock 232 

https://data.oecd.org/interest/long-term-interest-rates.htm
http://www.iotc.org/


 

 

biomass or a metric of technological change, as each vessel is essentially fishing on the same biomass 233 

using equivalent technology.  234 

 235 

2.3 Technical efficiency (TE)  236 

Technical efficiency refers to the relative effectiveness of a fisher or vessel in utilising and combining 237 

its inputs to produce an output, considering the production frontier, which represents the most efficient 238 

vessels (i.e., benchmarks) in the fleet. We evaluated the technical efficiency score scalar, 𝜃1,  describing 239 

the extent to which the catch (production) of each vessel (𝑗) can increase for a given specific quantity 240 

of inputs (𝑥𝑗,𝑛 ). These inputs (n) include both fixed factors (such as vessel overall length in meters) and 241 

variable factors (number of fishing days). The outputs for each species (𝑚) (yellowfin and skipjack), 242 𝑦𝑗,𝑚 for each vessel 𝑗, referred to as the decision-making unit - DMU, are measured in terms of the 243 

efficient combination leading to a maximum output level (catch by species). Here, J denotes the total 244 

number of vessels.  The calculation of relative efficiency employs an output-oriented distance function 245 

(Färe et al. 1993, Tingley and Pascoe 2005): 246 

Max 𝜃1 247 

subject to, 248 𝜃1𝑦𝑗,𝑚  ≤  ∑ 𝑧𝑗𝑦𝑗,𝑚𝐽𝑗=1             ∀ 𝑚                                                            249 

 ∑ 𝑧𝑗𝑥𝑗,𝑛 ≤ 𝑥𝑗,𝑛𝐽𝑗=1                    ∀ 𝑛, 250 

∑ 𝑧𝑗 𝐽𝑗=1 = 1 251 

                                                  𝑧𝑗 ≥ 0                                  ∀ 𝑗,                                              (1) 252 

 253 

The variable 𝑧𝑗 is a weighting factor for vessel j, the right-hand side of the first line in Eq. (1), 254 

representing a weighted sum of all vessel outputs within the year, including the vessel itself. This factor 255 

quantifies the optimal linear combination of frontier observations, determining the optimal performance 256 

of the specific decision-making unit (DMU) under consideration or the distance to the frontier. Each 257 

vessel is individually assessed for the value of 𝜃1, where the DMU 𝜃1𝑦𝑗,𝑚 outputs, and inputs are 258 

denoted by 𝑥𝑗,𝑛.  259 

The technically efficient output is determined by the production (observed catch of each tuna species) 260 

multiplied by a scalar, 𝜃1𝑚, signifying the extent to which each output of the DMU can be increased 261 

relative to the efficient frontier of a group of DMUs within a year.   262 

When determining technical efficiency in the context of Data Envelopment Analysis (DEA), certain 263 

assumptions regarding 'returns to scale' —whether constant (CRS) or variable (VRS)— are crucial, as 264 

they directly impact the efficiency score. CRS implies that an increase in input results in a proportional 265 



 

 

increase in output. 266 

On the other hand, VRS assumes that vessels operate within a framework of variable returns, which is 267 

particularly relevant when all DMUs are not functioning at their optimal size.  In our analysis, we adopt 268 

the assumption of variable returns to scale (VRS) ∑ 𝑧𝑗 𝐽𝑗=1  = 1, acknowledging that the change in output 269 

may be more significant than, equal to, or less than the change in input—a perspective widely embraced 270 

in fisheries economics, denoting non-constant returns to scale (Cooper et al. 2000).   271 

The calculation of technical efficiency (Eq. 1) for each PS vessel during a given year follows this 272 

formulation: 273 

                                                                 TE =  1𝜃1                                                                               (2)                            274 

The vessels that exhibit the highest level of technical efficiency operate precisely along the frontier 275 

boundary (TE =  1).  Conversely, less efficient vessels operate within this boundary. As a result, they 276 

possess a technical efficiency (TE) score value of less than 1. 277 

2.4 Capacity Utilisation (CU) and Unbiased Capacity utilisation (UCU) 278 

Capacity utilisation (CU) measures how effectively vessels utilise their fixed inputs in terms of actual 279 

output compared to the maximum output achievable with those fixed inputs, I.e., capacity. This metric 280 

is valuable for understanding vessels' operational efficiency concerning their fixed production factors 281 

in the short run. When estimating TE in (Eq.2), the assumption is that the variable inputs (days fished) 282 

remain constant at their observed levels. Conversely, when calculating the Capacity utilisation CU 283 

(Eq.3), the assumption is that a vessel can adjust its variable inputs, such as the number of days engaged 284 

in its activities, to enhance its outputs. 285 

This adjustment allows variable inputs to be fully utilised while keeping outputs constrained by the 286 

fixed inputs (𝑛 ∈ 𝛼) (see Eq.3), such as the vessel length. In this scenario, the fixed input and vessel 287 

length remain constant, and the model calculates the capacity utilisation by employing a structure 288 

similar to Eq 1.  However, in Eq 3, the bounds of the sub-vector of variable inputs 𝑛 ∈ 𝛼̂ are relaxed, 289 

allowing these inputs to vary freely. Here, 𝜆𝑗,𝑛 represents the input utilisation rate by vessel j of fixed 290 

input n. The underlying assumption is that the capacity output (catch level) 𝜃2𝑦𝑗,𝑚 remains constant. 291 

However, the capacity level can increase through various applications of the variable inputs (Tingley 292 

and Pascoe 2005) (see Eq.3): 293 

Max 𝜃2 294 

subject to, 295 

         𝜃2𝑦𝑗,𝑚  ≤  ∑ 𝑧𝑗𝑦𝑗,𝑚            𝐽𝑗=1 ∀ 𝑚                                                           296 



 

 

      ∑ 𝑧𝑗𝑥𝑗,𝑛 𝐽𝑗=1 ≤ 𝑥𝑗,𝑛      𝑛 ∈ 𝛼,    297 

            ∑ 𝑧𝑗𝑥𝑗,𝑛 𝐽𝑗=1 ≤ 𝜆𝑗,𝑛𝑥𝑗,𝑛     𝑛 ∈ 𝛼̂ ,    298 

              ∑ 𝑧𝑗  = 1𝐽𝑗=1  299 

                                                                𝑧𝑗 ≥ 0           𝜆𝑗,𝑛 ≥ 0            𝑛 ∈  𝛼̂     300 

        (3) 301 

 The scalar 𝜃2 ≥ 1 represents the extent to which each Decision-Making Unit's (DMU) output can be 302 

augmented concerning the efficient frontier of a group of DMUs within a year.  The calculation of 303 

Capacity Utilisation (CU) in Eq 4 for each PS vessel during a given year is expressed as follows: 304 

  CU =  1𝜃2                                                                                 (4) 305 

Similar to TE, CU also ranges between 0 and 1. However, the CU measure may exhibit a negative bias 306 

because the observed output might not necessarily be produced in a technically efficient manner, as 307 

indicated by TE in Eq 1. Deviations between TE and fishing capacity may occur due to inefficiency or 308 

underutilisation. Consequently, it becomes imperative to disentangle these effects and estimate 309 

Unbiased Capacity Utilisation (UCU). Correcting this bias involves combining results from the 310 

technical efficiency metric (Eq 1 and 2) and the capacity utilisation metric (Eq 3 and 4) to give Eq 5.  311 

 UCU = CU/TE      (5) 312 

The DEA linear programming analysis, created and executed using the R software benchmarking tool 313 

(Bogetoft 2005), was employed to conduct the analysis above.  314 

 315 

The DEA analysis calculates the relative performance of vessels compared to the 'optimally performing' 316 

vessel within a given year. Recognising that vessels phased out over time are likely to be the least 317 

efficient, and that newer vessels potentially exhibit better performance, the overall fleet should become 318 

closer to its optimal level. The UCU outputs of the DEA were then used to estimate the potential output 319 

for a fleet comprised entirely of highly effective vessels, i.e., the ones with the highest unbiased capacity 320 

utilisation, thereby pinpointing potential capacity levels concerning the yellowfin catch limit. For each 321 

year between 2013 and 2019, we utilise UCU to analyse the annual fleet sizes of French purse seiners 322 

(PS) and estimate the corresponding species catch that an 'optimally performing' fleet would attain 323 

concerning the yellowfin national catch limit set at 29,501 tonnes which was implemented in 2017 and 324 

the equivalent French PS catch share of fishing at MSY ~ 23,943. To illustrate, we examine years before 325 

2017 when no catch limit existed and note that before 2013, the stock remained within safe biological 326 

limits (SB > SBMSY and F < FMSY). Post-2012 marked the onset of overfishing. A vessel's skipjack and 327 

yellowfin catch in a given year is arranged in descending order based on its UCU. The potential catch 328 

is calculated as the ratio of yellowfin catch to UCU and skipjack catch to UCU. We track the sequential 329 



 

 

cumulative catch of yellowfin until it reaches the catch limit 2017 to 2019 and 2013 to 2019, the catch 330 

at MSY share for the French fleet, summing up the individual vessels identified in the process. This 331 

methodology aids in determining the number of optimally performing vessels within the fleet. 332 

 333 

2.5 Entry-exit variable choice 334 

The economic literature suggests that fishers base their strategic decisions on various factors, including 335 

expectations about changing stock biomass levels (Asche et al. 2008), regulatory frameworks, market 336 

fish prices (Ibid.), interest rates influencing investment and disinvestment (Anderson 2007, Nøstbakken 337 

et al. 2011, Jensen et al. 2012), or fuel costs (Abernethy et al. 2010). While individual vessel cost data 338 

would be ideal for a comprehensive investment model, such detailed data is often unavailable. 339 

Consequently, several surrogate variables were utilised, with value as a proxy for economic viability 340 

and fuel costs representing a proxy for variable costs.  341 

 342 

Additionally, the vessel's age was included in the analysis, as older vessels may exit the fleet due to 343 

higher maintenance and operational costs, while newer vessels may enter. Interest rates were 344 

incorporated into the database to capture the discount rate used for investment and financing decisions.  345 

Fishers would not enter or exit the fishery immediately in response to a change in interest rates because 346 

of delivery time after a new vessel order but as a strategic decision based on the average annual rate in 347 

the previous year, considering that a change in interest rates could affect investment strategies within 348 

the fleet (Jensen et al. 2012). For example, if interest rates are low, having capital in the fishery is 349 

cheaper, so they stay. Likewise, the stock status for yellowfin and skipjack was lagged. Low spawning 350 

stock biomass was assumed to correlate with exit decisions, primarily as the yellowfin catch limit is 351 

based on the previous year's catch. Collectively, these variables provide a framework for understanding 352 

the complex decision-making process of fishers in response to diverse ecological, economic and market 353 

dynamics. 354 

 355 

2.6 Entry-exit model description  356 

In the model, the capacity of the fishing fleet is directly influenced by the decisions of individual vessels 357 

to enter, stay or exit the fleet. This decision-making process is modelled using the random utility 358 

methodology, following the approach outlined in previous studies (e.g., Prellezo et al. 2009, Tidd et al. 359 

2011). Random Utility Models (RUMs), which underlie this methodology, are distinctive in their ability 360 

to model discrete decisions without necessitating the assumption of homogeneity among individuals. 361 

 362 

RUMs work on the premise that utility, representing the perceived satisfaction or desirability of a 363 

choice, drives individual decision-making. This utility comprises deterministic and stochastic 364 

components, introducing randomness into the model. The stochastic element acknowledges individual 365 

decision processes' inherent variability and unpredictability, hence the term "random" utility model. By 366 



 

 

incorporating these features, RUMs provide a flexible and nuanced framework for capturing the 367 

complex choices made within the fishing fleet. The utility (𝑈) of alternative i is defined as a linear 368 

combination of a set of explanatory variables (wi) representing observed individual characteristics, 369 

where for a given individual time-event, i, such as vessel exit decisions, a choice j (1 or 0) is 370 

made. Where 𝛽𝑗 is a vector of parameters for choices j. These characteristics collectively constitute the 371 

non-random components of the utility alongside a stochastic error component 𝜀𝑖𝑗. Mathematically 372 

expressed as (Eq 6): 373 

 374 𝑈𝑖𝑗 = 𝛽𝑗 𝑤𝑖 +  𝜀𝑖𝑗        375 

                                                                                                                                                               (6)                         376 
 377 

The probability that an individual i makes choice j; 378 

 379 

 380 𝑃𝑟𝑜𝑏𝑖 (𝑗) =  𝑒𝑥𝑝 (𝑤𝑖𝛽𝑗)∑ 𝑒𝑥𝑝 (𝑤𝑖𝛽𝑗)𝐽𝑗=1        381 

                                                                                                                                                               (7) 382 

The discrete choice dependent variable j is a polytomous variable parametrised yearly. It takes on 383 

unique values of 'entry,' 'exit,' or 'stay' in the PS fishery. Below is an explanation of the choice variables: 384 

 385 

i. 'Entry': A French PS vessel is considered to have 'entered' the IO fishery if it joins for the first time 386 

during the study period. The vessel can re-enter in another year if it temporarily exits under the 387 

French flag for operational reasons. Note that an entry may correspond to a newly built vessel 388 

joining the fleet for the first time or an existing vessel from other oceans purchased or moved by a 389 

French-flagged company. 390 

 391 

ii. 'Exit': A French PS vessel marked with 'exit' is currently part of the fleet but can permanently or 392 

temporarily leave during the study period for various reasons (it can be sold, moved to another 393 

ocean or decommissioned). However, it may re-enter the fishery in subsequent years. Note that a 394 

vessel may have exited from the French flagship but sold or re-flagged and still operate in the IO 395 

— these vessels are not further tracked in the analysis. 396 

 397 

iii. 'Stay': A French PS vessel designated as 'stay' refers to the period between entering and exiting 398 

years. The first year (1992) and the last year (2019) are categorised as 'stay' due to the unavailability 399 

of information from the pre- or post-study years. 400 

 401 



 

 

These categories comprehensively represent the dynamic choices made by individual vessels within the 402 

purse seine fishery over the specified study period. 403 

 404 

2.7 Entry-exit model selection 405 

Model selection was performed by systematically fitting all possible combinations of available 406 

uncorrelated model predictor variables from the full RUM model specification using the R package 407 

‘glmulti’ to arrive at the five best models (Calcagno et al. 2010). The selection of the candidate model 408 

having the lowest ranked Akaike's Information Criterion (AIC) score in this study was guided by the 409 

availability of economic data, prior knowledge of the system, and insights from previous investigations, 410 

particularly as outlined in Tidd et al. (2011) and  411 

 412 

2.8 Entry-exit model performance 413 

We used a machine learning algorithm to evaluate the ‘true’ error or misclassification of the best-fit 414 

model. A Leave One Out Cross-Validation (LOOCV) was employed, following the principles outlined 415 

by Kohavi (1995). The data was divided into two subsets: a training set (65%) used to build the model 416 

and a test set (35%) used to assess the model's performance by computing the mean square error. This 417 

process is iterated k times (in our case, 10) by randomly partitioning the data and predicting the test set 418 

k times. Each model is then evaluated on the various subsets of the data it predicts, comparing the 419 

average proportion predicted with the observed data from each test set. A final confusion matrix, 420 

comparing observed versus predicted values for all partitioned models, was created to evaluate the 421 

overall model performance. Additionally, a weighted kappa score for data anomalies, such as class 422 

skew in specificity and sensitivity, comprehensively assessed the model's overall performance. The 423 

values of kappa range from -1 to 1 and provide an index to determine that the results are not due to 424 

chance alone (Cohen 1960). A value of less than 0 is equal to no agreement.  425 

 426 

3. Results 427 

3.1 DEA efficiency estimates and optimal capacity analysis           428 

The efficiency scores, including UCU, TE, and CU, across all vessels over the study period reveal 429 

patterns aligned with the number of vessels exiting the fishery (see Figure 2A/2B). Notably, exit-heavy 430 

years like 2001, 2008, 2009, and 2012 exhibit wider dispersions in vessel performance (CU and TE) 431 

compared to years with no exit. Despite anomalies like 2018 (no exit with widely dispersed CU) and 432 

1997 (exits with less dispersed CU), TE remains high during exit-heavy years, indicating a consistently 433 

high catch per unit effort. In the earlier years (1992-2009), TE scores show wide variations. UCU is 434 

highly variable in some exit years (e.g., 2009 and 2012). However, throughout the time series, UCU 435 

remains high while overall CU is low and TE is high, suggesting underutilised capacity due to factors 436 

other than technical inefficiency. Conversely, in the earlier years (1992-1996), TE was low, CU was 437 



 

 

low, and UCU was high, suggesting potential inefficiencies and mismatches between actual and 438 

potential resource use. 439 

 440 

Figure 3 illustrates the cumulative potential catches of yellowfin and skipjack given total UCU, showing 441 

a steeper trajectory for skipjack than yellowfin during the catch limit years 2017-2019. This suggests 442 

that catch limit regulations influenced changes in fisher targeting behaviour. While only the year 2019 443 

indicates that the catch limit could be achieved with three fewer vessels (about 21% of vessels), years 444 

2017/2018 display low-capacity utilisation (Figure 2A) due to operational challenges hindering full 445 

realisation of available capacity. The potential catch share for MSY could have been achieved with 446 

about 26% fewer vessels on average if capacity were fully utilised. 447 

            448 

3.2 Entry-exit model selection 449 

The results from the Random Utility Model (RUM) model selection are in Table 1. The best model 450 

(model 6) demonstrated a McFadden’s pseudo-R2 of 0.51 (model 6), indicating an excellent fit; likewise, 451 

the likelihood ratio of 167.6 is highly significant (P<2.22e-16), supporting this result. The Durbin-452 

Watson test statistic (1.81) fell between the critical values of 1.5 < d < 2.5, suggesting the absence of 453 

first-order linear autocorrelation in the data. The Variance Inflation Factor (VIF) to determine 454 

multicollinearity resulted in values < 2, indicating minimal collinearity.  The estimated parameters and 455 

significance are presented in Table 2. 456 

 457 

Several variables significantly influence the probability of entry 'versus' stay and exit 'versus' stay 458 

choices, as presented in Table 2. These influential variables included yellowfin revenue (rev_yft), 459 

skipjack revenue (rev_skj), vessel age (age), past interest rates (int_rates), and the previous year's 460 

estimated spawning biomass of yellowfin (ssbyft). Below are some key insights derived from the 461 

results: 462 

 463 

a. Vessel Age (age): The model intuitively indicates that younger vessels are more likely to enter the 464 

fishery. Conversely, meanwhile older vessels tend to exit more over the study period. 465 

b. Interest Rates (int_rates): Interest rates influence the decision to exit versus stay. Increased 466 

interest rates suggest that vessels are marginally more likely to exit the fishery than when interest 467 

rates are lower. It is intuitive that if interest rates are low, investing in the fishery is cheaper and 468 

the opportunity cost of capital is lower, so vessels prefer to stay. 469 

c. Yellowfin Spawning Biomass (ssbyft): The stock status of yellowfin plays an essential role in 470 

decision-making, although the difference between the entry/exit coefficients is marginal. However, 471 

fishers were more likely to stay when the stock biomass was higher than when choosing to enter 472 

or exit. 473 



 

 

d. Skipjack and Yellowfin Revenue (rev_skj, rev_yft): Skipjack revenue significantly influences 474 

the fleet's decisions. Despite negative coefficients for both entry and exit in skipjack revenue, the 475 

prominently significant exit coefficient indicates a preferential tendency to exit when the revenue 476 

is low. However, fishers are more inclined to stay in the fishery with increased revenues rather 477 

than opt to exit. 478 

 479 

These findings provide valuable insights into the complex decision-making process of shipowners, 480 

where economic factors, vessel characteristics, and stock biomass collectively contribute to their 481 

choices regarding entry, exit, or continuation in the fishery. 482 

 483 

3.3 Model performance 484 

The LOOCV results demonstrated high accuracy, with an average accuracy score of 0.93. Additionally, 485 

the kappa score, a metric considering the agreement between observed and predicted values while 486 

accounting for chance, was 0.60, indicating moderate bordering substantial agreement. 487 

 488 

4. Discussion 489 

In this investigation, we delved into the fishing capacity of the French Indian Ocean PS fleet. Our first 490 

research objective was to understand the evolution of technical efficiency and capacity utilisation of the 491 

fleet, particularly after the implementation of catch limits for yellowfin tuna since 2017. A second 492 

objective was to analyse the dynamic behaviour of this fleet concerning this evolution and other 493 

independent variables to predict the entry-exit behaviours responding to fishing opportunities.  494 

 495 

Since the yellowfin catch limit was introduced in 2017 (IOTC Res. 2016/01), our results indicate that 496 

the fleet could attain the national catch limit and share associated with fishing at MSY with, on average, 497 

three fewer vessels (i.e., between 21% and 26% less capacity), signalling an underutilisation of the 498 

existing capacity jeopardising the profitability of the fleet. Additionally, our RUM model, which 499 

characterises the fleet's behaviour regarding entry-stay or exit decisions, demonstrated the influence of 500 

under-utilised capacity and lower efficiency on the exit behaviour of vessels. Moreover, the model 501 

revealed a significant influence of capital ageing, catch revenue from the two main target species, past 502 

levels of spawning biomass and interest rates. McFadden’s pseudo-R2 of 0.51 suggests a very good fit 503 

(McFadden 1979), along with a high prediction accuracy (93%), which is essential to reliably evaluate 504 

the potential consequences of future management policies on fleet dynamics. 505 

 506 

The two combined analyses corroborate our observations regarding the behaviour and capacity 507 

utilisation of the fleet. For instance, notable changes in PS operations have occurred since implementing 508 

the catch limit on yellowfin tuna. To circumvent the catch limit, the fleet has refrained from targeting 509 



 

 

yellowfin catches (Figure 3) by fishing more intensively on FADs where skipjack prevails (Tidd et al. 510 

2023a, Guillotreau et al. 2024). An analogous behavioural response was observed in the Spanish PS 511 

operating in the Indian Ocean (Báez and Ramos 2019). However, in the present study, this avoidance 512 

strategy has resulted in highly variable CU levels within the fleet, as depicted in Figure 3. This 513 

variability underscores that the same catch could be achieved with fewer vessels operating optimally at 514 

full capacity. 515 

 516 

A noteworthy year exhibiting substantial CU variation was 2012. During 2011-12, there was a 517 

significant increase in yellowfin biomass (Tidd et al. 2023a), accompanied by a more than 2.5-fold rise 518 

in the Bangkok price per tonne, exceeding the annual average trend of approximately $US1500. 519 

Simultaneously, skipjack prices doubled from approximately $US750 to $US1500 (Williams and Ruaia 520 

2021). Regarding fishing strategies, there were substantial increases in yellowfin catches using 521 

relatively more FSC sets and fewer FAD sets in 2012, after the entry of two new vessels targeting high-522 

value tunas for the fresh fish market (Figure 2) (“Sapmer to Target U.S., China with High-end Tuna.” 523 

IntraFish.com | Latest Seafood, Aquaculture and Fisheries News, 21 Dec. 2011, accessed 15/01/24). 524 

Nevertheless, there was a decline in catch and biomass for skipjack during this period, as documented 525 

by Tidd et al. (2023a). This decline coincided with a significant increase in fuel prices per barrel due to 526 

the Arab Spring (Hsiao et al. 2016). Two decades earlier (1992-1996), there were no exit of vessels 527 

from the fishery although both CU and TE were low, reflecting inefficiencies in the production process, 528 

e.g., outdated technology, poor skipper practices and market-related issues such as demand and 529 

competition that affect CU. Improvements in TE and overall CU were made possible through addressing 530 

operational issues and aligning resource availability with vessel capacity. In 1997, three vessels exited, 531 

and one entered, thus improving both TE and CU efficiencies. This latter sequence demonstrates that 532 

the relationship between efficiency and entry/exit strategies is dual: lower fishing opportunities induced 533 

by catch limits increase inefficiency and trigger exit strategy for vessels, but the lower capacity resulting 534 

from exit decisions upgrades mechanically TE and CU (Felthoven 2002, Rust et al. 2016). 535 

 536 

In 2008, high interest rates, fuel costs, and the financial crash likely contributed to several vessels 537 

leaving in 2009 amid piracy events (Chassot et al. 2012), falling fish prices, and capital risks. Exiting 538 

vessels had a median age of 18 years, contrasting with the 12 years of those that stayed. Newer and 539 

larger vessels entered the scene by 2010. Our investigation found a correlation between low interest 540 

rates and decisions to remain in the fishery. Elevated interest rates in the preceding year likely 541 

influenced financial decisions and contributed to exits. Jensen et al. (2012) observed similar influences 542 

on investment decisions for Danish seiners and trawlers and concluded that investments in machinery 543 

electronics and vessels are explained using one-year lagged variables. We can also admit that the 544 

opportunity cost of capital increases with higher interest rates, shipowners finding then a timely 545 

opportunity to sell off their vessels and increase their bank deposits. Additionally, our study identified 546 



 

 

low skipjack revenue as the primary factor influencing vessels’ exits, as shown in Table 2. Yellowfin 547 

revenue and biomass had marginal impacts at lower values, with a higher likelihood of vessels 548 

remaining when both metrics were elevated.  549 

 550 

Given the already enforced reductions in catch limits outlined in Resolution 21/01, affecting sales 551 

revenues, current fishing activities are estimated to exceed further the F/FMSY estimate of 1.32 (accessed 552 

11/01/24 link). Considering the French fleet's average age has reached approximately 17 years (Figure 553 

1), any future reduction in the fleet coupled with increasing operating costs and the identified excess 554 

capacity in this study is likely to increase efficiency and capacity use. The trend towards exit strategies 555 

is evident as two French PS companies, Via Ocean and Sapmer, opted to sell off some of their vessels 556 

and permanently exit the Indian Ocean fishery in 2023 (www.seafoodsource.com, accessed 11/11/23). 557 

The concern extends to where the capacity is transferred and whether it is replaced in the Indian Ocean 558 

by newly registered vessels, re-flagging or involvement in illegal, unreported, and unregulated fishing 559 

(IUU) (Aranda et al. 2012). With the apparent larger size and tonnage of the entire PS fleet compared 560 

to the French fleet (Figure 1), there is still a possibility of over-capitalisation, particularly when 561 

extrapolating our results to the entire fleet. Moreover, it is crucial to extend the examination beyond the 562 

PS fleet to encompass all other fleets, especially those artisanal fleets engaged in uncapped catch 563 

activities which represent half of the yellowfin tuna catch (IOTC, supporting information collated from 564 

reports of the working party tropical tuna meeting, updated July 2021). The convergence of these factors 565 

emphasises the critical need for implementing adaptive measures to navigate the ever-changing 566 

dynamics of tuna fisheries and ensure the long-term viability of tuna stocks (Heidrich et al. 2023). 567 

 568 

These limitations also highlight the need for improved data accessibility and transparency within the 569 

fishing industry, particularly concerning the socio-economic aspects of the fishery. In that regard, a 570 

socioeconomic working group is planned to collect economic data and support the IOTC management 571 

decisions. Addressing these data constraints would contribute to a more comprehensive understanding 572 

of the factors influencing fleet behaviour and facilitate more informed policy recommendations for 573 

sustainable fisheries management.  574 

 575 

Future research will focus on developing a streamlined age-structured biological operating model for 576 

skipjack and yellowfin, integrating the discrete choice fleet model from this study with biological 577 

models (e.g., Tidd et al. 2023b). This integrated model will provide insights into the fleet's composition, 578 

precisely the number of vessels representing fishing effort. The approach considers the interplay 579 

between effort, fishing mortality, and endogenous model parameters governing the simulated fleet's 580 

capacity. The fleet size dynamically responds to variations in the operational environment, constrained 581 

by its carrying capacity, with endogenous model parameters shaping capacity dynamics. This 582 

comprehensive approach enhances our understanding of how the fleet adapts to external changes and 583 

https://iotc.org/sites/default/files/content/Stock_status/2022/Yellowfin2022E.pdf


 

 

the implications for fishing effort and capacity. 584 

 585 

5. Conclusion 586 

Maintaining the existing fishing capacity while setting catch limits in tuna fisheries not only leads to 587 

under-utilisation of the fleet capacity and waste of economic resources, but also jeopardises the 588 

conservation of other species (e.g., skipjack and bycatch species caught with DFADs). In the present 589 

study, we described the evolution of technical efficiency and capacity utilisation throughout the last 590 

three decades and put it in regard to the fleet dynamics. 591 

 592 

More specifically, we demonstrated that the fishing capacity of the PS fleet operating in the Indian 593 

Ocean was exceeded by 25% the optimal level required to meet the MSY reference point. We also 594 

highlight the dual nature of the relationship between efficiency, capacity utilisation and entry/exit 595 

strategies. CU may decrease while efficiency remains high during some exit periods, calling for other 596 

drivers than the mere efficiency performance to explain investment/disinvestment strategies. In 597 

particular, higher interest rates, vessel ageing and poor market conditions tend to favour exit decisions 598 

amid other external factors, like the piracy events in 2008-09. Whenever the net balance of registered 599 

vessels remains negative for several years (i.e., more exits than entries), TE and CU are more likely to 600 

improve again. Having a model able to explain and predict accurately the strategic behaviour of vessels 601 

after management decisions represents a useful tool for decision-makers and a potential input for future 602 

stock assessment operating models. Aligning capacity with fishing opportunities is crucial for the 603 

profitability and preservation of these essential tuna populations, resulting in more sustainable and 604 

economically viable fisheries. 605 

 606 
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Table 1. In the RUM model, the predictor variables were yellowfin tuna revenue (rev_yft), skipjack 804 

revenue (rev_skj), vessel age (age), the past interest rates (int_rates), and the past spawning biomass of 805 

yellowfin (ssbyft). 806 

No. model  AIC ΔAIC 

6 choice~age+rev_yft+ssbyft+rev_skj+int_rates 186.14  0.00  

5 choice~age+rev_yft+ssbyft+rev_skj 193.68  -7.54  

4 choice~age+rev_yft+ssbyft 221.03  -34.88  

3 choice~age+rev_yft 224.71  -38.56  

2 choice~age 291.79  -105.64  

1 choice~1 335.59  -149.45  

 807 

 808 

Table 2. Multinomial (logged covariates) model estimates resulting from fitting the decisions to 809 

‘enter’ or ‘exit’ versus ‘stay’.  810 

 Variable Estimate Std. Error z-value Pr(>|z|)   

(Intercept):enter 90.58 23.06 3.92 8.61E-05 *** 

(Intercept):exit 143.08 28.35 5.04 4.51E-07 *** 

log(age):enter -1.56 0.31 -5.01 5.18E-07 *** 

log(age):exit 2.058 1.10 1.84 0.064 . 

log(ssbyft):enter -3.55 1.32 -2.68 0.007 ** 

log(ssbyft):exit -6.50 1.61 -4.02 5.77E-05 *** 

log(rev_yft):enter -2.08 0.45 -4.520 6.16E-06 *** 

log(rev_yft):exit -1.66 0.57 -2.89 0.003 ** 

log(rev_skj):enter -0.71 0.49 -1.45 0.14   

log(rev_skj):exit -2.70 0.64 -4.16 3.09E-05 *** 

log(int_rates):enter 0.79 0.65 1.20 0.22   

log(int_rates):exit 2.60 1.00 2.59 0.009404 ** 

 811 

 McFadden’s pseudo R2 = 0.51. Statistical significance at ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. 812 

 Likelihood ratio test: chisq = 167.6 (p = <0.001). Durbin-Watson d = 1.81. 813 

 814 

 815 



 

 

 816 

Figure 1 Box and whisker plot of capacity characteristics (A) length overall (m), (B) gross tonnage 817 

(gt), (C) age (years) of the IO PS fleet versus the French PS - the horizontal bar at the 50th percentile, 818 

the top of the box at the 75th percentile, and the base of the box at the 25th percentile. Whiskers 819 

represent the range of data, and the black dots represent the outliers. 820 
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 835 

Figure 2 (A) Box and whisker plot of the results of the DEA analysis - the horizontal bar at the 50th 836 

percentile, the top of the box at the 75th percentile, and the box base at the 25th percentile: UCU = 837 

Unbiased capacity utilisation; CU = Capacity utilisation; TE = Technical efficiency. Whiskers 838 

represent the range of data, and the black dots represent the outliers. (B) Representation of the French-839 

flagged fleet size in the IO and the choices of entry, exit, or stay in the fishery. 840 
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 842 

Figure 3 Each facet represents a year from when yellowfin was deemed overfished and subject to 843 

overfishing: A) 2013, B) 2014, C) 2015, D) 2016, E) 2017, F) 2018, G) 2019. The points represent 844 

the cumulative catch of yellowfin (black spheres) and skipjack (white spheres) by vessel (the point) 845 

ranked from 1 (most efficient) to the total number of vessels in those years. The orange horizontal line 846 

is the yellowfin catch limit of 29,501 tonnes (E to G) (target, 2017 onwards), and the orange vertical 847 

line is the theoretical number of vessels to achieve the catch limit. The green dashed lines would 848 

represent the estimated theoretical catch share (23,943 tonnes) and the optimal number of vessels if 849 

vessels were to fish at MSY. 850 
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