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SUMMARY 

 

Abundance indices for yellowfin tuna (Thunnus albacares) in the Atlantic Ocean were derived 

from the European purse seine CPUE series (2010-2022) for fishing operations made on floating 

objects. We used three modelling approaches for CPUE standardization: generalized linear 

mixed model (GLMM), generalized additive model (GAMst), and a spatiotemporal model (ST). 

Moreover, we implemented a hurdle method, which separates the probability of a positive set, 

and the catch (kg) per set in different models. These three CPUE series were compared to the 

nominal CPUE. To account for effort creep, several candidate variables were tested to be 

included as explanatory variables. We did not observe a temporal trend, but a high temporal 

variability in the standardized CPUE by all models. Also, all models predicted similar 

standardized CPUE series. 

 

RÉSUMÉ 

 

Les indices d'abondance de l'albacore (Thunnus albacares) dans l'océan Atlantique ont été 

calculés à partir de la série de CPUE des senneurs européens (2010-2022) pour les opérations 

de pêche effectuées sous des objets flottants. Nous avons utilisé trois approches de modélisation 

pour la standardisation des CPUE : un modèle linéaire mixte généralisé (GLMM), un modèle 

additif généralisé (GAMst) et un modèle spatio-temporel (ST). En outre, une méthode de type 

« haie», séparant la probabilité d'une opération positive de la prise (kg) par opération dans 

différents modèles, a été appliquée. Ces trois séries de CPUE ont été comparées à la CPUE 

nominale. Pour tenir compte de la progression de l'effort, plusieurs variables potentielles ont été 

testées afin de les inclure en tant que variables explicatives. Nous n'avons pas observé de 

tendance temporelle, mais une grande variabilité temporelle de la CPUE standardisée par tous 

les modèles. De plus, tous les modèles ont prédit des séries de CPUE standardisées similaires. 

 

RESUMEN 

 

Los índices de abundancia del rabil (Thunnus albacares) en el océano Atlántico se obtuvieron a 

partir de las series de CPUE de cerco europeo (2010-2022) para las operaciones de pesca 

realizadas sobre objetos flotantes. Utilizamos tres enfoques de modelación para la 

estandarización de la CPUE: modelo mixto lineal generalizado (GLMM), modelo aditivo 

generalizado (GAMst) y un modelo espaciotemporal (ST). Además, implementamos un método 

"hurdle", que separa la probabilidad de un lance positivo y la captura (kg) por lance en diferentes 

modelos. Estas tres series de CPUE se compararon con la CPUE nominal. Para tener en cuenta 

el incremento del esfuerzo, se probaron varias variables candidatas para ser incluidas como 

variables explicativas. No observamos una tendencia temporal, pero sí una gran variabilidad 

temporal en la CPUE estandarizada por todos los modelos. Además, todos los modelos 

predijeron series de CPUE estandarizadas similares. 
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1. Introduction 

 

An abundance index is a key data input in stock assessment models that can inform fluctuations in population 

abundance or biomass (Magnusson and Hilborn, 2007). Typically, an abundance index is obtained from fishery-

independent (e.g., scientific surveys) and dependent sources. For highly migratory and large pelagic fishes (e.g., 

tunas), performing a scientific survey is impractical given the large extent of their distribution, therefore fishery-

dependent abundance indices such as catch per unit effort (CPUE) are primarily used (Hoyle et al., 2024). 

 

Using nominal CPUE is inappropriate since it is normally biased due to the spatial heterogeneity of fish 

populations, environmental factors, behavior of fishers, and features of fishing vessels (Wilberg et al., 2009). These 

factors may produce a disparity between the nominal CPUE and true population abundance trends. For this reason, 

a CPUE standardization process needs to be performed to remove the influence of external factors that can 

influence catch rates (Maunder and Punt, 2004). 

 

The European (EU) tuna purse seine fishery operating in the Atlantic Ocean has experienced significant 

technological developments during the last years, which has increased their efficiency in finding and catching 

tunas (Torres-Irineo et al., 2014). The EU purse seine fleet is divided into two categories: 1) targeting free-

swimming schools (FS), and 2) fishing around floating objects (LS). The latter category initially used natural 

objects (e.g., logs) that occurred naturally in the ocean; however, they now use artificial buoys known as fishing 

aggregating devices (a.k.a. FADs) with incorporated technology (e.g., satellite tracks, echo-sounders) (Lopez et 

al., 2014). 

 

The EU purse seine fleet principally targets three tuna species: yellowfin (Thunnus albacares), bigeye (Thunnus 

obesus), and skipjack (Katsuwonus pelamis). Yellowfin tuna (YFT) is a fast-growing species widely distributed 

in the Atlantic Ocean, where the largest production zone is centered in equatorial waters off Africa in the Gulf of 

Guinea (Rooker et al., 2023). Based on the last stock assessment, YFT is not considered overfished (ICCAT, 

2019a), although a continuous decline in YFT biomass has been observed since 1975. The purse seine fishery is 

the main fishing gear operating on this stock, contributing to more than 75% of the total YFT annual catch. The 

purse seine LS type catches mostly juveniles while the purse seine FS does mostly on adults (ICCAT, 2019a). 

 

Three assessment platforms were used in the last assessment of the YFT stock in 2019 (ICCAT, 2019b): mpb (Kell 

et al., 2007), JABBA (Winker et al., 2018), and Stock Synthesis (Methot and Wetzel, 2013), which employed three 

different indices of abundance to inform biomass trend over time. One of these indices was developed using 

information from the EU purse seine operating on free schools (Guery et al., 2020), which principally informed 

variations in YFT adult abundance. The other indices were the joint index derived from the main longline fleets 

(Hoyle et al., 2019) and the Buoy-derived Abundance Index (Santiago et al., 2019). In this study, we use data from 

the EU purse seine operating on floating objects (LS) and diverse statistical techniques to derive standardized 

CPUE indices that can inform juvenile abundance in the assessment process and help to improve the stock 

assessment model estimates. 

 

 

2. Methods 

 

2.1 Data 

 

We used logbook data from the EU purse seine fleet (Spain and France) targeting tropical tunas and operating on 

floating objects in the Atlantic Ocean from 2010 to 2022. The logbook data sets are managed by the Tuna 

Observatory (Ob7) and the Spanish Institute of Oceanography (IEO) for the French and Spanish fleets, 

respectively. The raw logbook data (Level 0) produced by the skippers were corrected in terms of total catch per 

set to account for the difference between reported catch at sea and landed catch. Likewise, the species composition 

per set was corrected based on port size sampling and the T3 methodology (Pallarés and Hallier, 1997) to generate 

Level 1 logbook data set. 

 

We excluded observations from fishing sets that operated in areas (1∘ × 1∘) that were not fished for less than 5 

years during the studied period in order to retain areas constantly sampled. Figure 2 shows all the fishing sets used 

in the CPUE standardization process and Figure 4 the yearly variation in the number of sets in the data. Figure 1 

shows the histogram of all the catch per set values, both in the original and log-transformed scale. 
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2.2 Spatial indicators 

 

We used six indicators to summarize the spatial behavior of the fleet during the studied period. Diverse spatial 

indicators have previously been used for fishery-dependent (Russo et al., 2013; Sosa-López and Manzo-Monroy, 

2002) and independent (Woillez et al., 2009; Woillez et al., 2007) sources to increase the probability of picking 

up changes in critical fleet-related factors over time. We calculated the following spatial indicators, which were 

calculated by year-quarter: 

 

1. Clark-Evans: It is an index of point spatial aggregation (Clark and Evans, 1954), here represented by 

fishing sets, and provides information on how spatially aggregated the fishing sets took place. Smaller 

values indicate higher spatial aggregation of fishing sets. 

2. Covered area (𝑘𝑚2): Represents the spatial expansion of the fishing sets. It was calculated assuming that 

each fishing set has an area of influence of 1 𝑘𝑚2, and then calculating the spatial union of those areas. 

3. Center of gravity (lon): Indicates the longitude where the YFT catches per set were centered. 

4. Center of gravity (lat): Indicates the latitude where the YFT catches per set were centered. 

5. Moran’s autocorrelation coefficient: It is a measure of spatial autocorrelation (Gittleman and Kot, 1990), 

which considers the YFT catch information per fishing set. 

6. Gini coefficient: It is a measure of inequality (Cowell, 2011) among YFT catch per fishing set values. 

 

2.3 Statistical models 

 

We used three modelling approaches to standardize the observed catch rates. We used the two-part delta or hurdle 

approach (Aitchison, 1955), which models two processes: 1) probability of a positive set (catch > 0), modelled as 

a binomial response, and 2) catch per set, which was log-transformed and assumed a normal response. 

 

2.3.1  Generalized linear mixed model (GLMM) 

 

The GLMM approach is widely used for CPUE standardization. It extends the generalized linear model (GLM) 

approach by including random variables in the linear predictor, allowing the modelling of fixed and random effects 

simultaneously (Zuur et al., 2009). Scientists usually model the interaction between time and space as random 

effects. 

 

The studied area was stratified by using a spatial cluster approach to identify strata that best match the population 

structure (Ono et al., 2015). To find the strata, we applied a k-medoids algorithm (Kaufman and Rousseeuw, 1990) 

using the 1∘ × 1∘ catch information averaged over time (i.e., mean CPUE). We then calculated the Euclidean 

distance between pairs of grids, considering the mean CPUE values but also the longitude and latitude information 

of the grids, and then ran the cluster analysis. Finally, we found the optimal number of clusters by using the average 

silhouette width method (Rousseeuw, 1987). The identified clusters were used as the cluster variable in the GLMM 

(see Table 1). 

 

The model can be represented as: 

𝜂 = 𝑔(𝜇) = 𝐗𝛃 + 𝛼 + 𝜖  (1) 
 

Where 𝜂 is the linear predictor. 𝜇 is either the expected probability of presence with a logit link function (𝑔) for 

the first model component, or log-transformed YFT catch (kg) per set for positive CPUE values with an identity 

link function for the second model component. 𝐗 is the design matrix of fixed effects, and 𝛃 is a vector of estimated 

parameters. 𝛼 is the interaction between year, quarter, and cluster, which was treated as random effects (𝛼 ∼
𝑁(0, 𝜎𝛼

2)), and only included for the second model component. 𝜖 represents the random error. We implemented 

the GLMM model (Equation 1) in R using the package glmmTMB (Brooks et al., 2017). 

 

We tested different candidate variables (see Table 1) to include them as fixed effects for each model component. 

To do so, we ran an automated model selection in R using the package MuMIn (Barton, 2023), which runs different 

combinations of fixed effect terms, based on the Akaike information criterion (AIC). 

 

Once we obtain the best model (smallest AIC), we then used the DHARMa R package (Hartig, 2022) to evaluate 

the model residuals. Standard raw residuals are not always appropriate when using GLMM, and other types of 

residuals (e.g., Pearson, deviance residuals) are commonly used instead. DHARMa uses a simulation-based 

approach to create readily interpretable scaled (quantile) residuals for generalized linear mixed models. We 

analyzed two plots produced by DHARMa: 1) the QQ plot residuals, which detects overall deviations from the 

expected distribution, and 2) the residual vs. predicted plot, which detects trends in residuals along model 

predictions and simulation outliers.  
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2.3.2  Generalized additive model (GAMst) 

 

Generalized additive models (GAMs) is an extension of a linear model that allows the inclusion of nonlinear terms 

(Wood, 2017). GAMs are commonly used to standardize CPUE by modelling the interaction between longitude 

and latitude through a smooth function to account for spatial structure at a broad scale (Grüss et al., 2018). 

Therefore, clustering methods or other techniques to define areas are not required. In our study, we allowed the 

interaction between latitude and longitude to vary per year and modelled as random effect (GAMst). 

 

The model can be represented as: 

 

𝜂 = 𝑔(𝜇) = 𝐗𝛃 + 𝑠(𝑙𝑜𝑛, 𝑙𝑎𝑡) + 𝑡𝑖(𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑡𝑖𝑚𝑒) + 𝜖  (2) 
 

Where 𝑠(𝑙𝑜𝑛, 𝑙𝑎𝑡) is product smooth fitted to longitude and latitude information, which accounts for spatial 

autocorrelation, and 𝑠(𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑡𝑖𝑚𝑒) is the interaction between space and time modelled using a tensor product 

spline. 

 

We implemented the GAMst model (Equation 2) in R using the package mgcv (Wood, 2017). We used the mgcViz 

R package (Fasiolo et al., 2020) to analyze the model results, MuMIn to do the model selection, and the DHARMa 

package to evaluate the model residuals. 

 

2.3.3  Spatiotemporal model (ST) 

 

Geostatistical generalized linear mixed effects models can account for unmeasured variables (e.g., population 

biomass) that cause observations (e.g., catch) to be correlated over space and time through random effects 

(Anderson et al., 2024). A Gaussian random field (GRF) is multidimensional spatial process, where the random 

effects that describe the spatial pattern follow a multinomial distribution with mean 𝜇 = [𝜇(𝑠1), . . . , 𝜇(𝑠𝑛)] and 

spatially structured covariance matrix 𝛴 (Blangiardo and Cameletti, 2015). 

 

For CPUE standardization, the VAST (Thorson, 2019) and R-INLA (Lindgren and Rue, 2015) R packages have 

been used in previous studies for distinct fish stocks (Grüss et al., 2019; e.g., Zhou et al., 2019). Recently, Anderson 

et al. (2024) developed the sdmTMB R package that implements geostatistical spatial and spatiotemporal GLMMs 

in TMB (Kristensen et al., 2016) for model fitting such as done in VAST, but also provides a user-friendly interface, 

especially for users familiar with the glmmTMB package. For this reason, we decided to use sdmTMB to implement 

a spatiotemporal model for CPUE standardization. 

 

sdmTMB approximates the GRF by relying on the Stochastic Partial Differential Equation (SPDE) approach using 

the Integrated Nested Laplace Approximation in R-INLA to reduce computational costs. The first step to using the 

SPDE approach is to construct the mesh, which was composed of triangles covering the studied area with a 

minimum allowed triangle edge length of 60 km (Figure 17). We assumed the spatial correlation is Matérn and 

bilinearly interpolated over the prediction grid using the values at the mesh vertices. Following Anderson et al. 

(2024), our model can be mathematically represented as: 
 

𝜂 = 𝑔(𝜇) = 𝐗𝛃 + 𝜔𝑠 + 𝜀𝑠,𝑡  (3) 
𝜔 ∼ 𝑀𝑉𝑁(0, 𝛴𝜔) 
𝜀𝑡=1 ∼ 𝑀𝑉𝑁(0, 𝛴𝜀) 

𝜀𝑡>1 ∼ 𝜌𝜀𝑡−1 + √1 − 𝜌2𝛿𝑡 , 𝛿𝑡 ∼ 𝑀𝑉𝑁(0, 𝛴𝜀) 
 

Where 𝜔 is the spatial random field (i.e., constant across time), which represents the effect of latent spatial 

variables that are not otherwise accounted for in the model. 𝜀𝑡 represents the latent spatiotemporal effects. 𝜌 is the 

autoregressive parameter to allow temporal autocorrelation of the spatial random field with deviations created by 

𝛿, and 𝛴 is the covariance matrix of the multivariate normal (MVN) distribution. 

 

2.4 Standardized CPUE calculation 

 

We calculated three standardized CPUE indices by year and quarter for each optimal model (Equation 1, 

Equation 2, Equation 3). To do so, we made predictions (.)̂ on the response scale for each model component for all 

combinations of years 𝑦, quarters 𝑞, and areas 𝑎. For other covariates, we assumed the mean value of the 

continuous covariates, or the level with the largest sample size for discrete covariates. The area 𝑎 represents a 

cluster for the GLMM or a 1∘ × 1∘ prediction grid for the GAMst and ST models (Figure 3). For the second model 

component, we back-transformed the predicted values using 𝑑̂ = 𝑒𝑥𝑝(𝜂̂ + 0.5𝜎̂2), where 𝜎̂2 is the estimated 

variance of residuals.  
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Then, the predicted values of both model components were multiplied to produce the CPUE per year, quarter, and 

area (𝐶𝑃𝑈𝐸̂𝑦,𝑞,𝑎 = 𝑝̂𝑦,𝑞,𝑎𝑑̂𝑦,𝑞,𝑎). Finally, we calculated the area-weighted CPUE by year and quarter: 

 

𝐶𝑃𝑈𝐸̂𝑦,𝑞 =∑𝐴𝑎
𝑎

× 𝐶𝑃𝑈𝐸̂𝑦,𝑞,𝑎  (4) 

Where 𝐴𝑎 is the area (𝑘𝑚2) of 𝑎, excluding the area on land. 

 

2.5 Uncertainty calculation 

 

The standard error (𝑆𝐸(. )) of predictions was approximated based on Taylor expansion for each model component. 

For the first model component: 

𝑆𝐸(𝑝̂) ≈
𝑒𝑥𝑝(−𝜂̂)

(1 + 𝑒𝑥𝑝(−𝜂̂))
2 𝑆𝐸(𝜂̂) 

 

Where 𝜂̂ represents the predictions in the linear predictor scale (logit). For the second model component, we used: 

𝑆𝐸(𝑑̂) ≈ 𝑒𝑥𝑝(𝜂̂)𝑆𝐸(𝜂̂) 
 

Where 𝜂̂ represents the predictions in linear predictor scale (identity). 

 

Then, we applied the delta-method (Lo et al., 1992) to calculate the standard error of the predicted CPUE (𝐶𝑃𝑈𝐸̂): 

 

𝑆𝐸(𝐶𝑃𝑈𝐸̂) = √𝑆𝐸(𝑝̂)2𝑑̂2 + 𝑆𝐸(𝑑̂)
2
𝑝̂2 + 𝑆𝐸(𝑝̂)2𝑆𝐸(𝑑̂)

2
 

 

3. Results 

 

We observed that the number of sets in the data increased from 2010 to 2017, and decreased since then (Figure 4). 

The values of catch per set were skewed to the left, with values generally smaller than 10 kg and rarely above 50 

kg. In log-scale, we did not notice a clear temporal trend. Moreover, the proportion of null sets fluctuated around 

5% over time. 

 

The fishing sets were more frequent along the equator and in coastal areas off Gabon and Senegal (Figure 6). On 

the other hand, catches were larger in coastal areas in the southern hemisphere (Figure 7). We did not observe a 

clear spatial pattern of areas with high proportion of null sets (Figure 8). 

 

3.1 Spatial indicators 

We noticed that the covered area expanded progressively over the years and the fishing set locations tended to be 

more aggregated (Figure 5). The center of gravity fluctuated around 5∘W (longitude) and 0∘ (latitude). The Moran 

index indicated that the catch per set values increased their spatial autocorrelation from 2010 to 2012, and 

displayed a slight decrease in the recent years. Moreover, the Gini index indicated that the catch per set values 

tended to be more heterogeneous over the years, especially after 2018. 

 

3.2  GLMM 

 

We found an optimal number of clusters of three (Figure 9), which was used as an explanatory variable in the 

GLMM model. The optimal model based on AIC showed different explanatory variables for each model 

component (Table 2). Also, the residual check for the first model component did not detect overall deviations 

from the expected distribution nor outliers (Figure 10). On the other side, the second model component showed 

evidence of dispersion, but not for outliers (Figure 11). Predictions are shown in Figure 12. 

 

3.3 GAMst 

 

The optimal model based on AIC showed different explanatory variables for each model component (Table 3). 

Also, the residual check for the first model component did not detect overall deviations from the expected 

distribution or outliers (Figure 13). On the other side, the second model component showed evidence of 

dispersion, but not for outliers (Figure 14). Predictions are shown in Figure 16. 
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We showed the predicted CPUE over time in Figure 18. 

 

3.4 ST 

 

Due to time constraints, we did not show results for this model. We expect to add these results in a future version 

of this working document. 

  



 

7 

References 

 

Aitchison, J., 1955. On the Distribution of a Positive Random Variable Having a Discrete Probability Mass at the 

Origin. Journal of the American Statistical Association 50, 901. https://doi.org/10.2307/2281175 

 

Anderson, S.C., Ward, E.J., English, P.A., Barnett, L.A.K., Thorson, J.T., 2024. sdmTMB: An R package for fast, 

flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random 

fields. bioRxiv : the preprint server for biology. https://doi.org/10.1101/2022.03.24.485545 

 

Barton, K., 2023. MuMIn: Multi-Model Inference. 

 

Blangiardo, M., Cameletti, M., 2015. Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley and 

Sons, Inc, Chichester, West Sussex. 

 

Brooks, M., E., Kristensen, K., Benthem, van, J., Magnusson, A., Berg, C., W., Nielsen, A., Skaug, H., J., Mächler, 

M., Bolker, B., M., 2017. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated 

Generalized Linear Mixed Modeling. The R Journal 9, 378. https://doi.org/10.32614/RJ-2017-066 

 

Clark, P.J., Evans, F.C., 1954. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. 

Ecology 35, 445–453. https://doi.org/10.2307/1931034 

 

Cowell, F., 2011. Measuring Inequality. Oxford University Press. 

https://doi.org/10.1093/acprof:osobl/9780199594030.001.0001 

 

Fasiolo, M., Nedellec, R., Goude, Y., Wood, S.N., 2020. Scalable Visualization Methods for Modern Generalized 

Additive Models. Journal of Computational and Graphical Statistics 29, 78–86. 

https://doi.org/10.1080/10618600.2019.1629942 

 

Gittleman, J.L., Kot, M., 1990. Adaptation: Statistics and a Null Model for Estimating Phylogenetic Effects. 

Systematic Zoology 39, 227. https://doi.org/10.2307/2992183 

 

Grüss, A., Chagaris, D.D., Babcock, E.A., Tarnecki, J.H., 2018. Assisting Ecosystem-Based Fisheries 

Management Efforts Using a Comprehensive Survey Database, a Large Environmental Database, and 

Generalized Additive Models. Marine and Coastal Fisheries 10, 40–70. https://doi.org/10.1002/mcf2.10002 

 

Grüss, A., Walter, J.F., Babcock, E.A., Forrestal, F.C., Thorson, J.T., Lauretta, M.V., Schirripa, M.J., 2019. 

Evaluation of the impacts of different treatments of spatio-temporal variation in catch-per-unit-effort 

standardization models. Fisheries Research 213, 75–93. https://doi.org/10.1016/j.fishres.2019.01.008 

 

Guery, L., Kaplan, D., Deslias, C., Marsac, F., Abascal, F., Pascual, P., Gaertner, D., 2020. Accounting For Fishing 

Days Without A Fishing Set In The Cpue Standardisation Of Yellowfin Tuna In Free Schools For The Eu 

Purse Seine Fleet Operating In The Eastern Atlantic Ocean During The 1993-2018 Period (No. 

SCRS/2019/066). ICCAT (International Commission for the Conservation of Atlantic Tunas), Madrid, Spain. 

 

Hartig, F., 2022. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. 

 

Hoyle, S.D., Campbell, R.A., Ducharme-Barth, N.D., Grüss, A., Moore, B.R., Thorson, J.T., Tremblay-Boyer, L., 

Winker, H., Zhou, S., Maunder, M.N., 2024. Catch per unit effort modelling for stock assessment: A 

summary of good practices. Fisheries Research 269, 106860. https://doi.org/10.1016/j.fishres.2023.106860 

 

Hoyle, S.D., Lauretta, M.V., Lee, M.K., Matsumoto, K., Sant’Ana, R., Yokoi, H., 2019. Collaborative study of 

yellowfin tuna CPUE from multiple Atlantic Ocean longline fleets in 2019 (No. SCRS/2019/081). ICCAT 

(International Commission for the Conservation of Atlantic Tunas). 

 

ICCAT, 2019b. REPORT OF THE 2019 ICCAT YELLOWFIN TUNA STOCK ASSESSMENT MEETING. 

ICCAT (International Commission for the Conservation of Atlantic Tunas), Grand-Bassam, Cote d’Ivoire. 

 

ICCAT, 2019a. Report of the 2019 Standing Committee on Research and Statistics (SCRS). ICCAT Report for 

Biennial Period ({{ICCAT Report}} for {{Biennial Period}}, 2018-2019 No. 2). ICCAT (International 

Commission for the Conservation of Atlantic Tunas), Madrid, Spain. 

https://doi.org/10.2307/2281175
https://doi.org/10.1101/2022.03.24.485545
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.2307/1931034
https://doi.org/10.1093/acprof:osobl/9780199594030.001.0001
https://doi.org/10.1080/10618600.2019.1629942
https://doi.org/10.2307/2992183
https://doi.org/10.1002/mcf2.10002
https://doi.org/10.1016/j.fishres.2019.01.008
https://doi.org/10.1016/j.fishres.2023.106860


 

8 

Kaufman, L., Rousseeuw, P.J., 1990. Finding groups in data: An introduction to cluster analysis, Wiley series in 

probability and mathematical statistics. Wiley, New York. 

 

Kell, L.T., Mosqueira, I., Grosjean, P., Fromentin, J.-M., Garcia, D., Hillary, R., Jardim, E., Mardle, S., Pastoors, 

M.A., Poos, J.J., Scott, F., Scott, R.D., 2007. FLR: An open-source framework for the evaluation and 

development of management strategies. ICES Journal of Marine Science 64, 640–646. 

https://doi.org/10.1093/icesjms/fsm012 

 

Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., Bell, B.M., 2016. TMB: Automatic Differentiation and Laplace 

Approximation. Journal of Statistical Software 70. https://doi.org/10.18637/jss.v070.i05 

 

Lindgren, F., Rue, H., 2015. Bayesian Spatial Modelling with R - INLA. Journal of Statistical Software 63. 

https://doi.org/10.18637/jss.v063.i19 

 

Lo, N.C., Jacobson, L.D., Squire, J.L., 1992. Indices of Relative Abundance from Fish Spotter Data based on 

Delta-Lognormal Models. Canadian Journal of Fisheries and Aquatic Sciences 49. 

https://doi.org/10.1139/f92-278 

 

Lopez, J., Moreno, G., Sancristobal, I., Murua, J., 2014. Evolution and current state of the technology of echo-

sounder buoys used by Spanish tropical tuna purse seiners in the Atlantic, Indian and Pacific Oceans. 

Fisheries Research 155, 127–137. https://doi.org/10.1016/j.fishres.2014.02.033 

 

Magnusson, A., Hilborn, R., 2007. What makes fisheries data informative? Fish and Fisheries 8, 337–358. 

https://doi.org/10.1111/j.1467-2979.2007.00258.x 

 

Maunder, M.N., Punt, A.E., 2004. Standardizing catch and effort data: A review of recent approaches. Fisheries 

Research 70, 141–159. https://doi.org/10.1016/j.fishres.2004.08.002 

 

Methot, R.D., Wetzel, C.R., 2013. Stock synthesis: A biological and statistical framework for fish stock assessment 

and fishery management. Fisheries Research 142, 86–99. https://doi.org/10.1016/j.fishres.2012.10.012 

 

Ono, K., Punt, A.E., Hilborn, R., 2015. Think outside the grids: An objective approach to define spatial strata for 

catch and effort analysis. Fisheries Research 170, 89–101. https://doi.org/10.1016/j.fishres.2015.05.021 

 

Pallarés, P., Hallier, J.P., 1997. Analyse du schéma d’échantillonnage multispécifique des thonidés tropicaux 

(Rapport Scientifique No. OEP/ORSTOM, Programme n∘ 95/37 réalisé avec le soutien financier de la 

Commission des Communautés Européennes). Madrid, Spain. 

 

Rooker, J.R., Sluis, M.Z., Kitchens, L.L., Dance, M.A., Falterman, B., Lee, J.M., Liu, H., Miller, N., Murua, H., 

Rooker, A.M., Saillant, E., Walter, J., David Wells, R.J., 2023. Nursery origin of yellowfin tuna in the western 

Atlantic Ocean: Significance of Caribbean Sea and trans-Atlantic migrants. Scientific Reports 13, 16277. 

https://doi.org/10.1038/s41598-023-43163-1 

 

Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal 

of Computational and Applied Mathematics 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7 

  

https://doi.org/10.1093/icesjms/fsm012
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.1139/f92-278
https://doi.org/10.1016/j.fishres.2014.02.033
https://doi.org/10.1111/j.1467-2979.2007.00258.x
https://doi.org/10.1016/j.fishres.2004.08.002
https://doi.org/10.1016/j.fishres.2012.10.012
https://doi.org/10.1016/j.fishres.2015.05.021
https://doi.org/10.1038/s41598-023-43163-1
https://doi.org/10.1016/0377-0427(87)90125-7


 

9 

Russo, T., Parisi, A., Cataudella, S., 2013. Spatial indicators of fishing pressure: Preliminary analyses and possible 

developments. Ecological Indicators 26, 141–153. https://doi.org/10.1016/j.ecolind.2012.11.002 

 

Santiago, J., Uranga, J., Quincoes, I., Orue, B., Grande, M., Murua, H., Merino, G., Boyra, G., 2019. A novel 

index of abundance of juvenile yellowfin tuna in the Atlantic Ocean derived from echosounder buoys (No. 

SCRS/2019/075). ICCAT (International Commission for the Conservation of Atlantic Tunas), Madrid, Spain. 

 

Sosa-López, A., Manzo-Monroy, H., 2002. Spatial patterns of the yellowfin tuna (Thunnus albacares) in the 

Eastern Pacific Ocean: An exploration of concentration profiles. Ciencias Marinas 28, 331–346. 

https://doi.org/10.7773/cm.v28i4.241 

 

Thorson, J.T., 2019. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package 

in stock, ecosystem, habitat and climate assessments. Fisheries Research 210, 143–161. 

https://doi.org/10.1016/j.fishres.2018.10.013 

 

Torres-Irineo, E., Gaertner, D., Chassot, E., Dreyfus-León, M., 2014. Changes in fishing power and fishing 

strategies driven by new technologies: The case of tropical tuna purse seiners in the eastern Atlantic Ocean. 

Fisheries Research 155, 10–19. https://doi.org/10.1016/j.fishres.2014.02.017 

 

Wilberg, M.J., Thorson, J.T., Linton, B.C., Berkson, J., 2009. Incorporating Time-Varying Catchability into 

Population Dynamic Stock Assessment Models. Reviews in Fisheries Science 18, 7–24. 

https://doi.org/10.1080/10641260903294647 

 

Winker, H., Carvalho, F., Kapur, M., 2018. JABBA: Just Another Bayesian Biomass Assessment. Fisheries 

Research 204, 275–288. https://doi.org/10.1016/j.fishres.2018.03.010 

 

Woillez, M., Poulard, J.-C., Rivoirard, J., Petitgas, P., Bez, N., 2007. Indices for capturing spatial patterns and 

their evolution in time, with application to European hake (Merluccius merluccius) in the Bay of Biscay. 

ICES Journal of Marine Science 64, 537–550. https://doi.org/10.1093/icesjms/fsm025 

 

Woillez, M., Rivoirard, J., Petitgas, P., 2009. Notes on survey-based spatial indicators for monitoring fish 

populations. Aquatic Living Resources 22, 155–164. https://doi.org/10.1051/alr/2009017 

 

Wood, S.N., 2017. Generalized additive models: An introduction with R, Second edition. ed, Chapman & 

Hall/CRC texts in statistical science. CRC Press/Taylor & Francis Group, Boca Raton. 

 

Zhou, S., Campbell, R.A., Hoyle, S.D., 2019. Catch per unit effort standardization using spatio-temporal models 

for Australia’s Eastern Tuna and Billfish Fishery. ICES Journal of Marine Science 76, 1489–1504. 

https://doi.org/10.1093/icesjms/fsz034 

 

Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed effects models and extensions in 

ecology with R, Statistics for Biology and Health. Springer New York, New York, NY. 

https://doi.org/10.1007/978-0-387-87458-6 

  

https://doi.org/10.1016/j.ecolind.2012.11.002
https://doi.org/10.7773/cm.v28i4.241
https://doi.org/10.1016/j.fishres.2018.10.013
https://doi.org/10.1016/j.fishres.2014.02.017
https://doi.org/10.1080/10641260903294647
https://doi.org/10.1016/j.fishres.2018.03.010
https://doi.org/10.1093/icesjms/fsm025
https://doi.org/10.1051/alr/2009017
https://doi.org/10.1093/icesjms/fsz034
https://doi.org/10.1007/978-0-387-87458-6


 

10 

Table 1. Candidate explanatory variables for the tested CPUE standardization models. 

Variable 

code 
Variable description Variable type 

year Year Factor (levels: 2010,…,2022) 

quarter Quarter of the year Factor (levels: 1,2,3,4) 

cluster Clustered area (only for GLMM) Factor (levels: 1,2,3) 

lon Longitude Numeric 

lat Latitude Numeric 

time Time as continuous (calculated from year and quarter 

values) 

Numeric 

country Fleet country Factor (levels: France, Spain) 

hold_cap Vessel hold capacity Numeric 

vessel_op Age of vessel Numeric 

follow Followed a FAD with echosounder capacity? Factor (levels: No, Yes_No-Echo, 

Yes_Echo) 

num_buoys

_20nm 

Number of buoys within 20 nm Numeric 

num_buoys

_250km 

Number of buoys within 250 km Numeric 

avg_densit

y 

Monthly average density of buoys in a 1x1 grid Numeric 

 

 

 

Table 2. Summary of the GLMM model. 

Model Term Est Std.err p.val 

Component 1 (Intercept) 2.4497 0.2417 <0.01 

 countrySpain 0.3515 0.0660 <0.01 

 vessel_op 0.0123 0.0029 <0.01 

 num_buoys_250

km 

-0.0027 0.0005 <0.01 

 avg_density 0.0225 0.0047 <0.01 

 followYes_No-

echo 

-0.2784 0.2263 0.22 

 followYes_Echo 0.1458 0.0676 0.03 

Component 2 (Intercept) -0.0452 0.2982 0.88 

 countrySpain 0.0458 0.0156 <0.01 

 hold_cap 0.0003 0.0000 <0.01 

 vessel_op -0.0042 0.0007 <0.01 

 num_buoys_20n

m 

0.0024 0.0010 0.02 

 num_buoys_250

km 

-0.0011 0.0001 <0.01 

 followYes_No-

echo 

-0.1734 0.0650 0.01 

 followYes_Echo -0.0578 0.0151 <0.01 

 sd__(Intercept) 0.4774   

 sd__Observation 1.0310   
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Table 3. Summary of the GAMst model. 

Model Term Est Std.err p.val 

Component 1 (Intercept) 2.4497 0.2417 <0.01 

 countrySpain 0.3515 0.0660 <0.01 

 vessel_op 0.0123 0.0029 <0.01 

 num_buoys_250

km 

-0.0027 0.0005 <0.01 

 avg_density 0.0225 0.0047 <0.01 

 followYes_No-

echo 

-0.2784 0.2263 0.22 

 followYes_Echo 0.1458 0.0676 0.03 

Component 2 (Intercept) -0.0452 0.2982 0.88 

 countrySpain 0.0458 0.0156 <0.01 

 hold_cap 0.0003 0.0000 <0.01 

 vessel_op -0.0042 0.0007 <0.01 

 num_buoys_20n

m 

0.0024 0.0010 0.02 

 num_buoys_250

km 

-0.0011 0.0001 <0.01 

 followYes_No-

echo 

-0.1734 0.0650 0.01 

 followYes_Echo -0.0578 0.0151 <0.01 

 sd__(Intercept) 0.4774   

 sd__Observation 1.0310   
 

  



 

12 

Table 4. Predicted CPUE, 95% confidence interval, and coefficient of variation (CV) by the GLMM model by 

year and quarter (Time column). 

Time Est Lower Upper CV 

2010.00 0.64 0.52 0.75 0.09 

2010.25 1.05 0.94 1.16 0.05 

2010.50 1.28 1.11 1.45 0.07 

2010.75 1.03 0.92 1.14 0.05 

2011.00 1.09 0.94 1.24 0.07 

2011.25 1.12 0.98 1.26 0.06 

2011.50 0.97 0.84 1.10 0.07 

2011.75 0.82 0.73 0.91 0.06 

2012.00 0.81 0.72 0.91 0.06 

2012.25 1.08 0.92 1.24 0.07 

2012.50 0.68 0.59 0.78 0.07 

2012.75 1.43 1.27 1.58 0.06 

2013.00 0.89 0.78 1.00 0.06 

2013.25 0.98 0.87 1.09 0.06 

2013.50 1.11 0.99 1.24 0.06 

2013.75 1.02 0.91 1.13 0.06 

2014.00 0.66 0.57 0.75 0.07 

2014.25 1.18 1.05 1.31 0.06 

2014.50 1.14 1.04 1.24 0.04 

2014.75 1.02 0.92 1.11 0.05 

2015.00 0.64 0.58 0.71 0.05 

2015.25 1.02 0.92 1.11 0.05 

2015.50 1.38 1.15 1.61 0.08 

2015.75 0.96 0.88 1.04 0.04 

2016.00 0.48 0.41 0.54 0.07 

2016.25 1.35 1.20 1.51 0.06 

2016.50 1.08 0.98 1.18 0.05 

2016.75 1.09 1.01 1.18 0.04 

2017.00 0.79 0.70 0.89 0.06 

2017.25 0.93 0.83 1.02 0.05 

2017.50 1.01 0.90 1.11 0.05 

2017.75 1.27 1.16 1.38 0.04 

2018.00 1.00 0.90 1.11 0.05 

2018.25 0.97 0.83 1.10 0.07 

2018.50 0.89 0.79 1.00 0.06 

2018.75 1.14 1.01 1.26 0.06 

2019.00 1.09 0.93 1.26 0.08 

2019.25 1.26 1.13 1.39 0.05 

2019.50 0.81 0.67 0.95 0.09 

2019.75 0.84 0.75 0.92 0.05 

2020.00 0.94 0.79 1.09 0.08 

2020.25 1.08 0.95 1.22 0.06 

2020.50 0.92 0.81 1.02 0.06 

2020.75 1.06 0.97 1.14 0.04 

2021.00 0.66 0.13 1.20 0.41 

2021.25 1.32 1.16 1.48 0.06 

2021.50 1.03 0.92 1.13 0.05 

2021.75 0.99 0.92 1.07 0.04 

2022.00 0.91 0.71 1.12 0.11 

2022.25 1.03 0.93 1.12 0.05 

2022.50 0.78 0.70 0.86 0.05 

2022.75 1.27 1.18 1.37 0.04 
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Table 5. Predicted CPUE, 95% confidence interval, and coefficient of variation (CV) by the GAMst model by 

year and quarter (Time column). 

Time Est Lower Upper CV 

2010.00 0.69 0.55 0.84 0.11 

2010.25 1.00 0.81 1.18 0.09 

2010.50 1.11 0.92 1.31 0.09 

2010.75 1.19 1.01 1.37 0.08 

2011.00 1.08 0.92 1.24 0.07 

2011.25 1.09 0.94 1.25 0.07 

2011.50 0.88 0.76 0.99 0.07 

2011.75 0.95 0.83 1.07 0.06 

2012.00 0.97 0.85 1.09 0.06 

2012.25 0.96 0.84 1.07 0.06 

2012.50 0.81 0.71 0.92 0.07 

2012.75 1.26 1.10 1.42 0.06 

2013.00 0.95 0.83 1.06 0.06 

2013.25 0.89 0.78 1.00 0.06 

2013.50 1.10 0.96 1.25 0.07 

2013.75 1.06 0.93 1.18 0.06 

2014.00 0.57 0.50 0.64 0.06 

2014.25 1.09 0.96 1.21 0.06 

2014.50 1.34 1.20 1.48 0.05 

2014.75 1.00 0.90 1.10 0.05 

2015.00 0.64 0.57 0.70 0.05 

2015.25 1.02 0.92 1.12 0.05 

2015.50 1.38 1.23 1.52 0.05 

2015.75 0.97 0.87 1.06 0.05 

2016.00 0.53 0.47 0.59 0.06 

2016.25 1.39 1.23 1.55 0.06 

2016.50 1.06 0.95 1.17 0.05 

2016.75 1.02 0.92 1.12 0.05 

2017.00 0.65 0.59 0.72 0.05 

2017.25 1.05 0.94 1.15 0.05 

2017.50 1.09 0.98 1.19 0.05 

2017.75 1.21 1.10 1.32 0.05 

2018.00 0.92 0.83 1.00 0.05 

2018.25 0.96 0.87 1.06 0.05 

2018.50 1.11 1.00 1.22 0.05 

2018.75 1.02 0.91 1.12 0.05 

2019.00 0.86 0.75 0.96 0.06 

2019.25 1.17 1.04 1.29 0.06 

2019.50 0.97 0.86 1.08 0.06 

2019.75 1.01 0.90 1.12 0.05 

2020.00 0.93 0.82 1.05 0.06 

2020.25 1.26 1.12 1.41 0.06 

2020.50 0.84 0.75 0.93 0.05 

2020.75 0.96 0.87 1.06 0.05 

2021.00 0.76 0.65 0.87 0.07 

2021.25 1.14 1.03 1.25 0.05 

2021.50 1.07 0.96 1.19 0.06 

2021.75 1.03 0.92 1.13 0.05 

2022.00 0.87 0.74 0.99 0.07 

2022.25 0.91 0.80 1.03 0.07 

2022.50 0.97 0.83 1.11 0.07 

2022.75 1.25 1.06 1.44 0.08 
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Figure 1. Distribution of observed catch per set values (only positive fishing sets). 

 

 
Figure 2. Fishing sets included in the standardization process. 
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Figure 3. Prediction grid used for the GAMst and ST models. 
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Figure 4. Distribution of catch per set, number of sets, and proportion of null sets in the data per year. 

 

 
Figure 5. Spatial indicators calculated by quarter. 
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Figure 6. Aggregated number of fishing sets (effort) per grid. 
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Figure 7. Average catch per grid. 
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Figure 8. Proportion of null sets per grid. 
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Figure 9. Strata identified by the clustering method and used in the GLMM. 
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Figure 10. QQ-plot (left) and residual plot (right) for the first component of the GLMM model. 

 

 

 

 
Figure 11. QQ-plot (left) and residual plot (right) for the second component of the GLMM model. 
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Figure 12. Predicted CPUE for each year-quarter-cluster combination by the GLMM model. 
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Figure 13. QQ-plot (left) and residual plot (right) for the first component of the GAMst model. 

 

 

 
Figure 14. QQ-plot (left) and residual plot (right) for the second component of the GAMst model. 
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Figure 15. Product smooth terms for longitude and latitude interaction in the second component of the 

GAMst model. 
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Figure 16. Predicted CPUE for each year-quarter-cluster combination by the GAMst model. 
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Figure 17. Mesh used in the spatiotemporal model. 

 

 
Figure 18. Predicted CPUE for year-quarter combination by the GLMM and GAMst models. Nominal CPUE 

is also shown in black points. 

 


