

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Baleen whale navigation in astronomically referenced magnetic coordinates

Travis Horton

travis.horton@canterbury.ac.nz

University of Canterbury https://orcid.org/0000-0003-0558-2970

Nan Daeschler Hauser

Cook Islands Whale Research

Alexandre Zerbini

U.S. National Marine Mammal Laboratory

Daniel Palacios

Marine Mammal Institute, Oregon State University https://orcid.org/0000-0001-7069-7913

Audun Rikardsen

The Arctic University of Tromsø - UiT

Christian Lydersen

Norwegian Polar Insttute

Kit Kovacs

Norwegian Polar Institute

Mónica Silva

Universidade dos Açores https://orcid.org/0000-0002-2683-309X

Rui Prieto

University of the Azores

Rochelle Constantine

University of Auckland https://orcid.org/0000-0003-3260-539X

Leena Riekkola

Te Kura Mātauranga Koiora | School of Biological Sciences, Te Whare Takiura Mātai Pūtaiao Moana | Institute of Marine Science, Waipapa Taumata Rau | University of Auckland

Claire Garrigue

UMR ENTROPIE I- RD https://orcid.org/0000-0002-8117-3370

Solène Derville

UMR ENTROPIE (IRD, IFREMER, CNRS, Université de Nouvelle-Calédonie, Université de La Réunion)

Mads Peter Heide-Jørgensen

Greenland Institute of Natural Resources https://orcid.org/0000-0003-4846-7622

Michael C. Double

Australian Antarctic Division

Virginia Andrews-Goff Australian Antarctic Division https://orcid.org/0000-0002-4609-7317 Nick Gales Australian Antarctic Division Yulia Ivashchenko Seastar Scientific Phillip Clapham Seastar Scientific Bruce Mate Marine Mammal Institute, Oregon State University, Hatfield Marine Science Center

Biological Sciences - Article

Keywords:

Posted Date: July 1st, 2024

DOI: https://doi.org/10.21203/rs.3.rs-4613940/v1

License: © (i) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: There is NO Competing Interest.

1	Baleen whale navigation in astronomically referenced
2	magnetic coordinates
3	
4 5 6 7 8 9	Travis W. Horton ¹ , Nan Hauser ² , Alexandre N. Zerbini ³ , Daniel M. Palacios ^{4*} , Audun H. Rikardsen ⁵ , Christian Lydersen ⁶ , Kit M. Kovacs ⁶ , Mónica A. Silva ⁷ , Rui Prieto ⁷ , Rochelle Constantine ⁸ , Leena Riekkola ⁸ , Claire Garrigue ⁹ , Solène Derville ⁹ , Mads P. Heide-Jorgensen ¹⁰ , Michael C. Double ¹¹ , Virginia Andrews-Goff ¹¹ , Nicholas J. Gales ¹¹ , Yula V. Ivashchenko ¹² , Phillip J. Clapham ¹² , Bruce R. Mate ⁴
11	Affiliations:
12 13 14 15	1-Te Kura Aronukurangi School of Earth and Environment, University of Canterbury, Private Box 4800, Christchurch 8041, New Zealand (<u>travis.horton@canterbury.ac.nz</u>)
15 16 17 18	2 – Cook Islands Whale Research, Center for Cetacean Research and Conservation, P.O. Box 3069, Avarua, Rarotonga, Cook Islands, South Pacific (<u>nan@whaleresearch.org</u>)
19 20 21	3 - Cooperative Institute for Climate, Ocean, & Ecosystem Studies, John M. Wallace Hall, 3737 Brooklyn Ave NE, Seattle, WA 98105 (<u>alex.zerbini@noaa.gov</u>)
22 23 24 25	4- Marine Mammal Institute, Oregon State University, <u>Hatfield Marine Science Center</u> , 2030 SE Marine Science Dr, Newport, Oregon 97365, USA (<u>daniel.palacios@oregonstate.edu;</u> <u>bruce.mate@oregonstate.edu;</u> bruce.mate@oregonastate.edu)
26 27 28	5 – UiT The Arctic University of Norway, Faculty of Bioscience, Fisheries and Economics, 9037 Tromsø, Norway (audun.rikardsen@uit.no)
28 29 30	6 - Norwegian Polar Institute, Fram Center, Tromsø, Norway (<u>christian.lydersen@npolar.no</u> ; kit.kovacs@npolar.no)
31 32 33	7 - Okeanos – Instituto de Investigação em Ciências do Mar, University of the Azores, Rua Prof Frederico Machado, 4, 9901-862 Horta Portugal (<u>monica.silva.imar@gmail.com;</u> <u>rcabprieto@gmail.com</u>)
34 35 36 37	8 - Te Kura Mātauranga Koiora School of Biological Sciences, Te Whare Takiura Mātai Pūtaiao Moana Institute of Marine Science, Waipapa Taumata Rau University of Auckland, Tāmaki Makaurau Auckland, Aotearoa New Zealand (<u>r.constantine@auckland.ac.nz;</u> <u>Irie003@aucklanduni.ac.nz</u>)
38 39 40	9 – UMR ENTROPIE (IRD, IFREMER, CNRS, Université de Nouvelle-Calédonie, Université de La Réunion), Nouméa 98800, New Caledonia (<u>Claire.garrigue@ird.fr</u> ; solene.derville@ird.fr)

41	
42	10 – Greenland Institute of Natural Resources, Box 570, Nuuk, DK-3900, Greenland
43	(<u>mhj@ghsdk.dk</u>)
44	
45	11 – Australian Marine Mammal Centre, Australian Antarctic Division, 203 Channel Highway,
46	Kingston, TAS 7050, Australia
47	
48	12 - Seastar Scientific, Vashon, WA, USA (<u>phillip.clapham@gmail.com</u>)
49 50	* - Current affiliation: Center for Coastal Studies, 5 Holway Avenue, Provincetown,
51	Massachusetts, 02657, USA
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	

80 Abstract

81 How animals navigate during long-distance migration remains a mystery. Many theories have 82 been proposed¹ (Keeton, 1979), with the Earth's magnetic field emerging as a clear potential 83 source of orientational information for navigational decision-making across diverse taxa² 84 (Putman, 2022). Yet, the mechanics involved in magnetic navigation remain unknown³ 85 (Schneider et al., 2023). Globally distributed records available from historic whaling⁴⁻⁵ 86 (AOWLD, 2023; Yablokov et al., 1998) in combination with modern satellite-tracking datasets⁶ 87 (Horton et al., 2022) for baleen whales create a unique opportunity to illuminate the 88 mechanics of cetacean navigation. Here, we show that baleen whale migratory destinations 89 over the last >200 years are systematically distributed in horizontal plane magnetic 90 coordinates. Specifically, blue (Balaenoptera musculus), bowhead (Balaena mysticetus), fin 91 (Balaenoptera physalus), gray (Eschrichtius robustus), humpback (Megaptera novaeangliae), 92 and right (Eubalaena spp.) whales non-randomly inhabit areas where magnetic declination 93 (MD) closely approximates integer and half-integer multiples of the Earth's 23.44° axial tilt. 94 Our findings, which are highly reproducible through both space and time, demonstrate that 95 baleen whale navigation between seasonal habitats occurs via the integration of magnetic and astronomic orientation cues³. By referencing MD values to the rise and set azimuths of 96 97 the Sun, baleen whale movements define mechanistic horizontal plane heliomagnetic 98 coordinate trajectories across all ocean basins. 99 100

101

102

- 104 **Main**
- 105

106 The migratory behaviour of baleen whales has fascinated people for centuries, and we have 107 learned a considerable amount about their remarkable journeys around the planet through dedicated observation, acoustic monitoring and tracking⁶ (Horton et al., 2022). Traditional 108 109 Māori knowledge describes trans-oceanic ancestral human migrations that were guided by 110 whales⁷ (Lythberg and Ngata, 2022), and modern satellite-tracking confirms that migratory corridors of some species have been stable over prolonged periods⁸ (Horton et al., 2020). In 111 112 addition, many whales unerringly return year after year to highly specific locations on feeding grounds⁹ (Clapham et al., 1993). However, we now also know that baleen whale movements 113 exhibit notable variability¹⁰⁻¹¹ (Kennedy et al., 2014a; Reisinger et al., 2021), including large 114 differences in seasonal habitat selection despite using the same migratory corridors¹²⁻¹³ (Bailey 115 et al., 2009; Riekkola et al., 2019), and surprising examples of apparent vagrancy¹⁴ (Hoelzel et 116 117 al., 2021), as well as recolonization¹⁵ (Herr et al., 2022) of former habitats following recoveries 118 from whaling. Centuries of experience and observation provide a reasonable understanding of 119 when and where many baleen whale species go during their long-distance migrations, and 120 global datasets are now large enough to turn our attention to illuminating mechanistically how baleen whales navigate between seasonal habitats with such remarkable fidelity¹⁶ (Horton et 121 122 al., 2017).

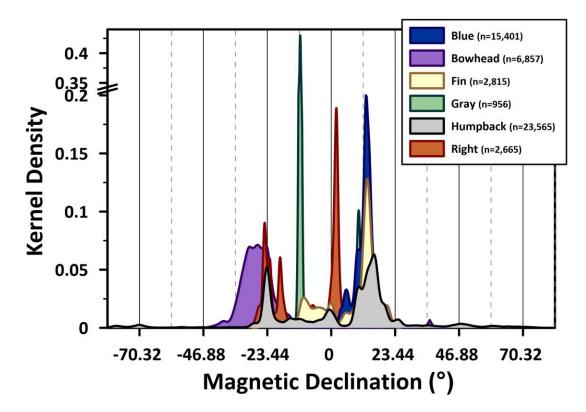
Over two-hundred years of digitized historic whaling-ship logbooks⁴⁻⁵ (AOWLD, 2023; Yablakov
et al., 1998) make baleen whales one of the few clades where multi-centennial analyses of

126 distribution possible at the global scale. The widespread deployment of satellite tags on a wide 127 variety of baleen whale species⁶ (Horton et al., 2022) in combination with the whaling-ship 128 archives creates an unprecedented opportunity to identify recurrent and reproducible non-129 random patterns in baleen whale distributions from a variety of orientational perspectives. In 130 parallel, recent advances in magnetic modeling enable analyses of both main field and bedrock parameters over the past 1,000 years anywhere on the planet¹⁷ (Schanner et al., 2023). As a 131 132 consequence, the magnetic cues experienced by individual whales on specific dates and 133 locations can now be quantified. Recognising these opportunities, we pursued the integration of American⁴ (AOWLD, 2023) and Soviet^{5,18} (Yablakov et al., 1998; Tormosov, pers. comm.) 134 whaling-ship logbook archives and satellite-tracking locations using modern magnetic^{17,19-20} 135 (NCEI, 2017; Chulliat et al., 2020; Schanner et al., 2023) and astronomical models²¹ (Meeus, 136 137 1991) to determine whether or not baleen whale distribution data from the past ~240 years 138 follow mechanistic patterns across Earth's magnetic field.

139

140 Using published geographic coordinate Gregorian calendar location data derived from baleen whale satellite-monitored platform transmitting terminal (PTT) data^{6,8,10-13,22-52}, we determined 141 142 the magnetic declinations experienced by 280 blue whales, 80 fin whales, 12 gray whales, 666 143 humpback whales, 49 right whales and 68 bowhead whales (Table 1; Extended Data Table 1). To 144 quantify the most commonly experienced magnetic declination (MD) values, we analysed these 145 data using kernel density estimation (KDE). MD distributions were non-random (G test; 146 p<<0.05) and multimodal, reflecting the widely distributed seasonal habitats deliberately 147 selected by these migratory whales (Table 1).

	Baleen	Baleen Whale				М	odern Era Sate	llite Tracking			
Genus	Species	Common Name	Ocean Basin(s)	Number of Whales	Years (CE)	Number of Days	Major Mode: Magnetic Declination (°)	1 st Minor Mode: Magnetic Declination (°)	2 nd Minor Mode: Magnetic Declination (°)	3 rd Minor Mode: Magnetic Declination (°)	References
			North Pacific	262	1995 to 2020	6852	16.04	9.75	24.72	1.23	22-24
			South Pacific	154	2003 to 2018	7487	13.55	47.51	35.35	-0.41	8, 16, 25-2
	novaeangliae		North Atlantic	11	2005 to 2019	886	-14.88	-12.34	10.67	17.72	30-31
Aeaantera		Humpback Whale	South Atlantic	162	2002 to 2019	5130	-23.59	-15.36	-11.44	-4.99	8, 32-33
reguptera	noracangnac	nampback marc	Indian	77	2014 to 2017	3210	-0.66	-23.86	-28.02	-70.24	11
					1995 to 2019	23565	15.70	-23.68	9.97	-0.77	
			All	666	Correspond	ing Locations :	Northwestern U.S.A.; Antarctic Peninsula	Abrolhos Bank, Brazil; Western South Africa	Hawai'i; Baja California Sur	Western Australia; Western South America	8, 11, 16, 2 33
			North Pacific	254	1993 to 2018	14530	12.81	10.12	5.71	3.50	12, 34-37
			South Pacific	11	2013 to 2016	488	8.98	4.84	11.61	1.13	38
			North Atlantic	15	2009 to 2016	383	-9.90	-11.94	-14.17	-16.21	39
alaenoptera	musculus	Blue Whale	South Atlantic	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
		brac whate	Indian	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
					1993 to 2018	15401	12.75	9.59	5.38	-9.93	
			All	280	Correspond	ing Locations:	Offshore California; Offshore Chile	Offshore Mexico; Golfo de Corcovado, Chile	Costa Rica Dome; Svalbard	Azores; Jan Mayen	12, 34-39
			North Pacific	32	2002 to 2018	1559	13.41	18.20	20.77	n.a.	36, 40
			South Pacific	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
	a physalus	Fin Whale	North Atlantic	48	2003 to 2019	1256	-10.61	0.06	-8.82	8.76	39, 41-43
alaenoptera			South Atlantic	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
			Indian	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
					2002 to 2019	2815	13.23	-10.16	-0.06	-4.74	
			All	80	Correspondin	ng Location(s):	Offshore California; Svalbard	Azores; Jan Mayen	Northwestern Mediterranean Sea	Northeastern Atlantic	36, 39-43
					2010 to 2013	956	-11.39	10.04	14.93	-6.28	
Eschrichtius	robustus	Gray Whale	North Pacific	12	Correspondin	ng Location(s):	Northeastern Sakhalin Island, Sea of Okhotsk	Baja California Coast; Bering & Chukchi Seas	California Coast; Gulf of Alaska	Southeastern Kamchatka Peninsula	44-45
	japonica	North Pacific Right Whale	North Pacific	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
	australis	Southern Right Whale	South Pacific	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
	glacialis	North Atlantic Right Whale	North Atlantic	16	1989 to 2000	356	-18.75	-14.16	-5.52	-10.87	46-48
Eubalaena	australis	Southern Right Whale	South Atlantic	33	2001 to 2017	2309	1.84	-24.41	-22.56	-6.81	49-50
	australis	Southern Right Whale	Indian	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
					1989 to 2017	2665	1.84	-24.41	-22.56	-18.71	
		Right Whale	All	49	Correspond	ing Locations :	Golfo Nuevo; Golfo San Matias; Coastal Argentina	Coastal South Africa; Eastern South Atlantic	West Coast South Africa; Central South Atlantic	Gulf of Maine; Central North Atlantic	46-50
					1992 to 2017	6857	-23.95	-39.48	36.16	n.a.	
Balaena	mysticetus	Bowhead Whale	Arctic Ocean	68	Correspondin	ng Location(s):	Foxe Basin ; Gulf of Boothia	Northern Baffin Island Coast	Southern Beaufort Sea		51-52
			Total:	1155	1989 to 2019	52,259					


Initially, we considered the MD distributions of humpback whales satellite-tagged in different
ocean basins, including the North Atlantic, South Atlantic, North Pacific, South Pacific and
Indian Oceans (Table 1; Extended Data Figure 1). Our goal in this step was to develop a databased hypothesis using modern satellite tracking data for the most widely studied species.

154	We discovered that humpback whales disproportionately inhabited sites where MD values
155	consistently reflected integer and half-integer multiples of Earth's axial tilt (i.e., 23.44°)
156	irrespective of which ocean basin they used (Table 1; Extended Data Figure 1). Of the 20 major
157	and minor modes identified in the compiled Atlantic, Indian and Pacific Ocean humpback whale
158	satellite-tracking datasets (Table 1; Extended Data Figure 1), 70% occurred within $\pm 2^\circ$ of an
159	integer or half-integer multiple of Earth's axial tilt (p=0.00092; Binomial Probability) and 50%
160	occurred within ±1°(p=0.0006; Binomial Probability). For example, humpback whales satellite-
161	tagged in the South Atlantic most commonly occurred at -23.59°, while the highest density MD
162	value for Indian Ocean humpbacks was -0.66° (Table 1; Extended Data Figure 1). In total, three
163	of five major modes, and 11 of 15 minor modes, in tagged humpback whale MD distributions,
164	analysed at the ocean basin scale, are within $\pm 2^\circ$ of integer or half-integer multiples of the
165	Earth's 23.44° axial tilt (Table 1; Extended Data Figure 1).
166	
167	From a geographic perspective, the major and minor modes identified for humpback whale MD
168	distributions correspond with well known breeding grounds, feeding areas, or stop-over
169	locations (Table 1). Based on this initial empirical analysis, we hypothesized that other species
170	of baleen whale would also disproportionately inhabit sites where MD values are within $\pm 2.00^\circ$
171	of integer and half-integer multiples of Earth's 23.44° axial tilt.

Our analyses on additional species support this hypothesis. Specifically, 17 of 34 major and
minor modes in MD distributions for satellite-tagged blue, fin, gray, right and bowhead whales,

identified using KDE, occur within ±2.00° of an integer or half-integer multiple of Earth's 23.44°

axial tilt (p=0.0223, Binomial Probability; Table 1; Fig. 1; Extended Data Figure 2). These sites

177

178 Fig. 1. Magnetic declination data distributions, determined by kernel density estimation, for

179 satellite-tagged baleen whales. Colours, and the total number of once-daily platform

180 transmitting terminal locations, as indicated in the legend.

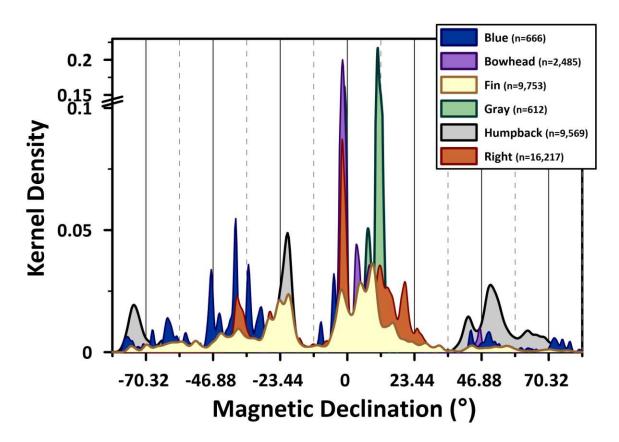
181

```
182 correspond with seasonal baleen whale hot-spots, including the western North American coast,
```

183 the Azores, Sea of Okhotsk, Foxe Basin, coastal Argentina, western Australia and the Antarctic

- 184 Peninsula. Blue whales, fin whales and gray whales, satellite-tagged in the North Atlantic and
- 185 North Pacific Oceans, non-randomly concentrated in areas where MD was within ±2° of 11.72°
- 186 or -11.72°, while southern right whales (Eubalaena australis) disproportionately used areas

where magnetic declination was within ±2.00° of 0° (e.g., coastal Argentina) or -23.44° (e.g.,
west coast South Africa). Despite their proximity to the northern hemisphere's magnetic pole,
and their close association with sea ice, satellite-tagged bowhead whales also concentrated in
areas where MD was within ±2.00° of -23.44° (e.g., Foxe Basin and Gulf of Boothia) and 35.16°
(e.g., southern Beaufort Sea).


192

193 In total, 31 of 54 major and minor modes in satellite-tagged baleen whale MD distributions 194 occur within ±2.00° of integer and half-integer multiples of 23.44° (Table 1; Fig. 1; Extended 195 Data Figure 2). Binomial probability demonstrates that this recurrent pattern is extremely 196 unlikely to have occurred due to random chance (p=0.00025, Binomial Probability). However, 197 the magnetic field changes via secular variation, raising questions regarding whether or not such patterned distributions persist through time⁵³ (Alerstam, 2006). For example, secular 198 199 variation causes MD values to change by <0.2° per year in most places and as much as 20° per 200 year near the magnetic poles.

201

Analysis of >39,000 baleen whale locations, recorded in American and Soviet whaling-ship
logbooks between 1784 and 1975 (Table 2; Fig. 2; Extended Data Table 2; Extended Data Figure
3), reinforces the pattern observed in the satellite-tracking dataset (Table 1; Fig. 1). Major and
minor modes in logbook MD data distributions occur within ±2.00° of 0°, ±11.72°, ±23.44°, 35.16°, or ±46.88° for: 1) humpback whales and blue whales in all but the South Pacific Ocean;
fin whales in all but the Indian Ocean; 3) gray whales in the North Pacific Ocean; 4) right

whales in the Pacific, Atlantic and Indian Oceans; 5) bowhead whales in the Arctic Ocean (Table209 2).

210

Fig. 2. Magnetic declination data distributions, determined by kernel density estimation, for
historic American and Soviet whaleship logbook entries for baleen whales (colours as indicated
in the legend). The total number of 'sights and strikes' for each species are indicated in the
legend.

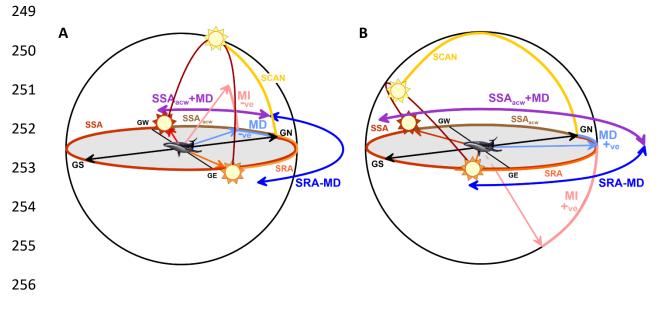
215

216 In total, 36 of 87 major and minor modes indentified in American and Soviet whale ship logbook

- 217 MD data distributions occurred within ±2.00° of integer and half-integer multiples of Earth's
- 218 23.44° axial tilt (p=0.0322, Binomial Probability; Table 2). The slightly higher, but still significant,
- 219 probability that whale- shiplogbook MD modes approximate integer and half-integer multiples

- 220 of Earth's axial tilt likely reflects the lower precision of whale ship logbook latitude and
- 221 longitude entries in comparison to satellite-tracking location data and greater uncertainty in
- 222 palaeomagnetic models across large ocean basins like the South Pacific.
- 223

	Baleen	Whale				Historic American	& Soviet Whaling	3		
Genus	Species	Common Name	Ocean Basin(s)	Years (CE)	Number of Strikes & Sightings	Major Mode: Magnetic Declination (°)	1st Minor Mode: Magnetic Declination (°)	2 nd Minor Mode: Magnetic Declination (°)	3 rd Minor Mode: Magnetic Declination (°)	References
			North Pacific	1819 to 1893	565	10.19	5.33	-0.63	2.35	4
			South Pacific	1818 to 1972	4254	49.45	42.15	17.59	4.76	4-5, 18
			North Atlantic	1792 to 1902	376	-19.24	0.42	-23.23	-12.07	4
Meaantera	novaeangliae	Humpback Whale	South Atlantic	1815 to 1973	2525	-20.73	-23.20	-27.05	13.62	4-5, 18
megaptera	noracangnac	nanipotek whate	Indian	1792 to 1968	1849	-74.92	-64.60	1.34	-48.78	4-5, 18
					9569	-20.87	50.04	-74.52	5.00	
			All	1792 to 1973	Corresponding Location(s):	Southern South Atlantic; Abrolhos Bank	Balleny Islands; Southern Ocean - North of Amundsen Sea	Davis Sea	Equatorial West Coast, South America	4-5, 18
			North Pacific	1844 to 1893	90	-4.69	10.86	-2.46		4
			South Pacific	1844 to 1972	105	43.22	49.58	5.14	14.34	4-5, 18
			North Atlantic	1835 to 1895	21	-19.76	-21.64	-23.80	-11.72	4
Balaenoptera	musculus	Blue Whale	South Atlantic	1838 to 1973	104	-23.80	-20.32	-9.24	-30.11	4-5, 18
			Indian	1844 to 1969	346	-39.10	-34.50	-47.45	-2.21	4-5, 18
					666	-38.97	-2.16	-34.55	-47.57	
			All	1835 to 1973	Corresponding Location(s):	Azores; Crozet Islands	Southwest Coast of Australia; Sea of Japan	Lazarev Sea	Kerguelen Islands	4-5, 18
			North Pacific	1819 to 1893	892	-0.22	-1.74	4.26	-4.77	4
			South Pacific	1819 to 1975	1846	4.28	13.91	15.96	10.28	4-5, 18
	rra physalus	Fin Whale	North Atlantic	1784 to 1916	622	-24.49	-21.80	-19.23	-35.92	4
Balaenontera			South Atlantic	1815 to 1975	4144	9.00	-20.54	-23.84	-27.41	4-5, 18
,			Indian	1792 to 1969	2249	-2.25	-37.83	-44.12	-52.97	4-5, 18
					9753	8.88	4.04	-2.43	-20.50	
			All	1784 to 1975	Corresponding Location(s):	Falkland Islands; Scotia Sea	Galapagos Islands; Tropical Eastern Pacific; Bering Sea	Orkney Islands; Sea of Okhotsk; West Coast of Australia	Southern South Atlantic	4-5
					612	10.63	-1.09	7.23	n.a.	
Eschrichtius	robustus	Gray Whale	North Pacific	1845 to 1885	Corresponding Location(s):	Baja California Sur	Sea of Okhotsk	Chukchi Sea		4
	japonica	North Pacific Right Whale	North Pacific	1822 to 1904	7080	-1.78	11.32	8.86	3.87	4
	australis	Southern Right Whale	South Pacific	1797 to 1907	2495	20.05	24.45	13.97	9.51	4
	glacialis	North Atlantic Right Whale	North Atlantic	1838 to 1897	13	-48.97	-51.28	6.82	-0.18	4
Eubalaena	australis	Southern Right Whale	South Atlantic	1793 to 1968	3620	-27.13	-36.85	15.78	-1.72	4-5,18
	australis	Southern Right Whale	Indian	1792 to 1967	3009	-38.59	-21.15	-23.94	0.98	4-5, 18
					16217	-1.81	11.31	20.12	-38.57	
		Right Whale	All	1792 to 1968	Corresponding Location(s):	Sea of Okhotsk; Sea of Japan; Central South Atlantic	Gulf of Alaska	Coast of Chile; Coast of Argentina; Louisville Ridge	Crozet Islands	4-5, 18
					2485	-1.67	3.12	20.67	46.21	
Balaena	mysticetus	Bowhead Whale	Arctic Ocean	1844 to 1912	Corresponding Location(s):	Sea of Okhotsk	Bering Sea	Barrow, Alaska; Chukchi Sea	Beaufort Sea	4
			Total:	1784 to 1975	39,302					

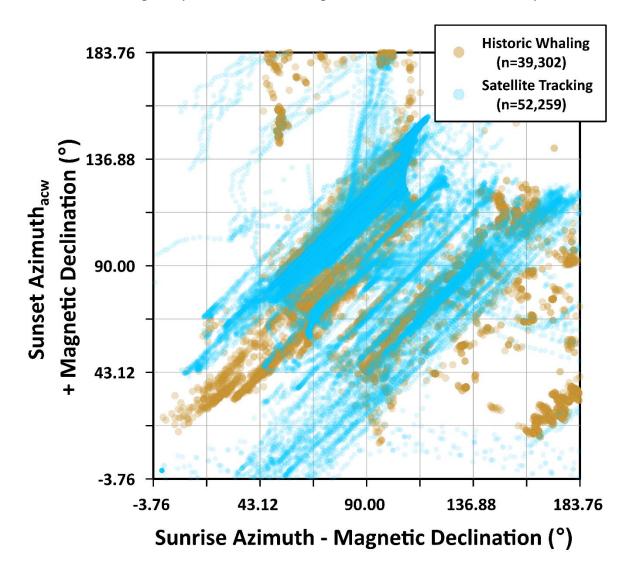

Table 2. Magnetic declination distribution modes for baleen whales struck or sighted during historic whaling.
Baleen Whale
Historic American & Soviet Whalin

Bold-faced numbers indicate modes in magnetic declination data distributions that occur within ±2° of integer, or half-integer, multiples of Earth's 23.44° axial tilt.

- 225 Our analyses reveal that a similar pattern is present in both satellite-tracking and whaling
- archival data when analysed at the global scale (Fig. 1; Fig. 2). Of 141 major and minor modes

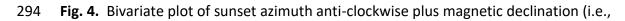
227	identified in globally distributed blue, bowhead, fin, gray, humpback and right whale satellite-
228	tracking and whaling-ship logbook MD data distributions (Table 1; Table 2, Fig. 1; Fig. 2;
229	Extended Data Figure 2; Extended Data Figure 3), 67 (48%) are within ±2.00° of integer and half-
230	integer multiples of 23.44° (p=0.00032, Binomial Probability). This recurrent non-random
231	pattern in baleen whale habitat distribution demonstrates that baleen whales integrate
232	horizontal plane magnetic and astronomic orientation cues during navigation.
233	
234	Horizontal Plane Heliomagnetic Navigation
235	
236	The data distributions we report raise the question: How do they do it? How do diverse whale
237	populations, in all ocean basins across a >240 year period, integrate magnetic and astronomic
238	orientation cues ⁵⁴ (Wiltschko and Wiltschko, 2023)? The most salient answer involves the Sun.
239	
240	The Sun provides potential spatiotemporal orientation cues via light-dark cycles and its position
241	at rise, culmination and set ⁵⁵ (Åkesson et al., 2014). These cues vary systematically and
242	predictably across annual cycles as the Earth moves along its orbit, providing tangible oriential
243	cues such as photoperiod, sunrise azimuth, culmination angle and sunset azimuth across most
244	of the Earth's surface (Fig. 3). By convention, the horizontal plane cues sunrise azimuth, sunset
245	azimuth and MD are quantified relative to a geographic north (i.e., 0°) direction (Fig. 3).
246	However, this geocentric system of measurement does not preclude the possibility that baleen
247	whales reference astronomic orientation cues relative to the position of the local magnetic field

248 (e.g., SSA-MD), or vice versa.



258 Fig. 3. Heliologic, magnetic and heliomagnetic orientation cues available to baleen whales in 259 the southern (A) and northern (B) magnetic hemispheres. Abbreviations and colours are as 260 follows: SRA = sunrise azimuth (orange), positive in the clockwise direction viewed from above; 261 SSA = sunset azimuth (red), positive in the clockwise direction viewed from above; SSA_{acw} = 262 sunset azimuth anti-clockwise (brown), positive in the anti-clockwise direction viewed from 263 above; SCAN = sun culmination angular altitude relative to geographic north horizon (yellow); 264 MD = magnetic declination (light blue), positive to the east of geographic north and negative to 265 the west of geographic north; MI = magnetic inclination (pink), positive below the geographic 266 north horizon and negative above the geographic north horizon. GN, GE, GS, and GW indicate 267 the geographic north, east, south and west directions, respectively. Heliomagnetic coordinates, SRA-MD (blue) and SSA_{acw}+MD (purple), correspond with the angle in the horizontal plane 268 269 between MD and SRA, and SSA_{acw}, respectively.

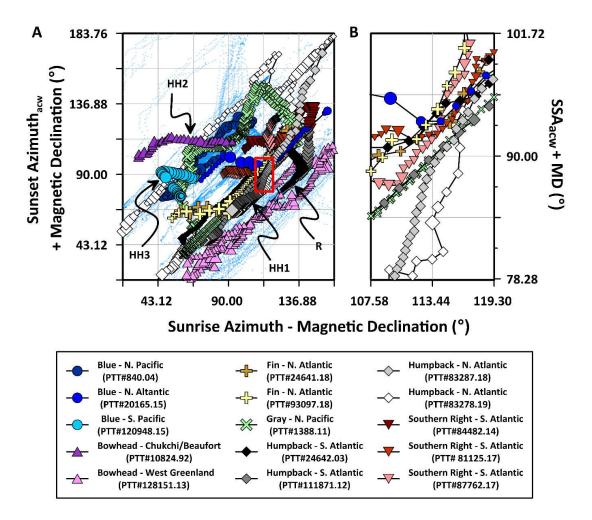
271 Such an integrated system of navigation has distinct advantages. When and where they occur, 272 sunrise and sunset provide obvious light-dark temporal markers and potential orientation 273 information via sun azimuth at sunrise (SRA) and sun azimuth at sunset (SSA). Such astronomic 274 cues are highly structured and cyclical over the Earth's annual orbit. For example, at the 275 equator, SRA and SSA move through a 46.88° (i.e., 2 x 23.44°) range centered on the east-west 276 direction in the horizontal plane during each annual cycle. At the tropics (i.e., ±23.44° latitude) 277 and polar circles (i.e., ±66.56°, or 90° - 23.44°, latitude), SRA and SSA move through 58° to 59° 278 (i.e., ~2.5 x 23.44°) and 162° to 164° (i.e., ~7 x 23.44°) ranges, respectively. These highly 279 patterned spatiotemporal cycles are the consequence of the Earth's 23.44° axial obliquity, the 280 driver of the Earth's seasons. In addition to providing a seasonal - to annual - orientational 281 framework, using the Sun as a reference point removes the organism's need to identify, and 282 potentially remember, the direction of geographic north when sensing MD.


283

Other celestial bodies also follow sub-annual, annual and longer-term astronomic cycles, most
notably the Moon⁵⁶ (Andreatta and Tessmar-Raible, 2020), but for the purposes of our study,
we focus on the rise and set positions of the Sun. Thus, our analysis centers on two horizontal
plane heliomagnetic coordinates: 1) the angle between SRA and MD (i.e., SRA-MD; Fig. 3), and
2) the angle between SSA, measured in an anti-clockwise direction (SSA_{acw}), and MD (i.e.,
SSA_{acw}+MD; Fig. 3).

291 When referenced relative to the rise and set positions of the Sun, the heliomagnetic locations 292 of baleen whale migratory destinations and migration routes demonstrate many similarities

293



295 SSA_{acw}+MD) versus sunrise azimuth minus magnetic declination (i.e., SRA-MD) for historic

296 American and Soviet whaling-ship logbook entries (brown circles) and satellite-tagged baleen

297 whales (light blue circles).

299	irrespective of time, species or geographic location. For example, both historic whaling and
300	modern satellite-tracking datasets include high-density 1:1 covariation trends between SRA-MD
301	and SSA _{acw} +MD (Fig. 3; Fig. 4), corresponding with sites where MD closely approximates integer
302	or half-integer multiples of Earth's axial tilt (Fig.1, Fig. 2, Fig. 4; Extended Data Figure 1). The
303	strong 1:1 covariation between SRA-MD and SSA _{acw} +MD recognized in both the whaling and
304	satellite-tracking datasets is a consequence of baleen whale seasonal residence (R) in areas
305	where the difference between SRA-MD and SSA_{acw} +MD approximates an integer or half-integer
306	multiple of Earth's obliquity through time:
307	
308	$(SRA - MD) - (SSA_{acw} + MD) \approx n \times 23.44^{\circ}$
309	
310	where, <i>n</i> is an integer or half-integer.
311	
312	The satellite-tracking dataset further reveals how individuals migrate between sites where MD
312 313	The satellite-tracking dataset further reveals how individuals migrate between sites where MD approximates integer or half-integer multiples of 23.44° (Fig. 5). Three different navigational
313	approximates integer or half-integer multiples of 23.44° (Fig. 5). Three different navigational
313 314	approximates integer or half-integer multiples of 23.44° (Fig. 5). Three different navigational modes, which we introduce here as horizontal plane heliomagnetic navigation modes 1-3 (i.e.,
313 314 315	approximates integer or half-integer multiples of 23.44° (Fig. 5). Three different navigational modes, which we introduce here as horizontal plane heliomagnetic navigation modes 1-3 (i.e., HH1, HH2, HH3), are apparent. The first heliomagnetic navigation mode, type 1 (i.e., HH1; Fig.
313314315316	approximates integer or half-integer multiples of 23.44° (Fig. 5). Three different navigational modes, which we introduce here as horizontal plane heliomagnetic navigation modes 1-3 (i.e., HH1, HH2, HH3), are apparent. The first heliomagnetic navigation mode, type 1 (i.e., HH1; Fig. 5A) , includes migration along a trajectory that follows an isogonic where MD closely
 313 314 315 316 317 	approximates integer or half-integer multiples of 23.44° (Fig. 5). Three different navigational modes, which we introduce here as horizontal plane heliomagnetic navigation modes 1-3 (i.e., HH1, HH2, HH3), are apparent. The first heliomagnetic navigation mode, type 1 (i.e., HH1; Fig. 5A) , includes migration along a trajectory that follows an isogonic where MD closely

323 Fig. 5. Bivariate plot of sunset azimuth anti-clockwise plus magnetic declination (i.e., 324 SSA_{acw}+MD) versus sunrise azimuth minus magnetic declination (i.e., SRA-MD) for satellite-325 tagged baleen whales. Red inset box in (A) is expanded in (B). Fifteen representative individual 326 whales, tracked via satellite, are shown in (A) and are symbolized as indicated in the legend. 327 Symbol sizes in (A) and (B) correspond with whale movement velocity. Examples of the three 328 heliomagnetic navigation modes (HH1-HH3), and seasonal residence (R), described in the text 329 are indicated via arrows. All other satellite tagging data is shown as small light blue circles in (A). 330

Since SRA and SSA_{acw} are typically within ±2.00° of each other on the same day of the year,
depending on date and latitude, HH1 navigation causes strong 1:1 covariation between SRA-MD
and SSA_{acw}+MD. In both residence (R) and HH1 modes, MD is effectively constant due to the
whale's lack of movement (R) or movement along an isogonic (HH1). Thus, both residence and
HH1 navigation cause strong 1:1 covariation between SRA-MD and SSA_{acw}+MD, with the key
difference being the individual is actively migrating during HH1 navigation rather than
remaining stationary.

338

339 There are many examples of HH1 navigation in the satellite-tracking dataset. For example, 340 South Atlantic humpback whale PTT#111871.12 maintains MD within $\pm 0.69^{\circ}$ ($\pm 1\sigma$) of -23.43°, 341 during the first 22 days, and 2185 km, of its poleward migration in 2012 (Fig. 5A). Like many 342 other whales in the dataset, PTT#111871.12 is able to navigationally maintain a MD value that 343 is not significantly different (two-tailed t-test; p>0.05) than the MD value present in the 344 seasonal habitat where it was satellite-tagged. Similarly, North Atlantic humpback whale 345 PTT#83278.19 maintains MD within $\pm 2.38^{\circ}$ ($\pm 1\sigma$) of -12.07° during the first 61 days, and 7388 346 km, of its poleward migration in 2019 (Fig. 5A). This MD value is not dissimilar (two-tailed t-test; p>0.05) to the MD value at its low latitude seasonable habitat in the Caribbean. By migrating 347 348 along trajectories that maintain a 1:1 relationship between SRA-MD and SSA_{acw}+MD (i.e., HH1 349 navigation; Fig. 5A), baleen whales are able to maintain, during long-distance migration, the MD 350 value present on their seasonal habitats with remarkable precision.

351

352	Type 2 horizontal plane heliomagnetic navigation (HH2) includes migration along trajectories
353	that maintain near-constant integer or half-integer multiples of Earth's obliquity centered on a
354	90° angle. HH2 navigation occurs in either of the heliomagnetic coordinates, SRA-MD (HH2a) or
355	SSA _{acw} +MD (HH2b), according to:
356	
357	$SRA - MD \approx (n \times 23.44^{\circ}) + 90^{\circ}$
358	or,
359	$SSA_{acw} + MD \approx (n \times 23.44^{\circ}) + 90^{\circ}$
360	
361	where, n is an integer or half-integer.
362	
363	The satellite-tracking dataset includes many examples of HH2b navigation, but fewer examples
364	of HH2a navigation. For example, South Pacific blue whale PTT#120948.15 maintains
365	SSA _{acw} +MD within ±1.67° (±1 σ) of 89.72° during the first 17 days, and 1584 km, of its west-
366	soutwestward migration away from the Chilean coast despite ~10° changes in both SSA $_{\sf acw}$ and
367	MD (Fig. 5). Similarly, Bering-Chukchi-Beaufort bowhead whale PTT#10824.92 maintains
368	SSA _{acw} +MD within ±1.12° (±1 σ) of 112.87° during the first 23 days, and 1651 km, of its
369	westward migration across the Beaufort and Chukchi Seas despite experiencing $^{26^\circ}$ changes in
370	both SSA and MD (Fig. 5). North Atlantic fin whale PTT#24641.18's SSA _{acw} +MD location stays
371	within ±2.00° (±1 σ) of 66.57° during the first 7 days, and 759 km, of its southwestward
372	migration away from Svalbard (Fig. 5), despite experiencing 15-20° changes in both MD and SSA
373	over the same period, while South Atlantic southern right whale PTT#81125.17 maintains

SSA_{acw}+MD within $\pm 0.42^{\circ}$ ($\pm 1\sigma$) of 91.88° during the first 25 days, and 1165 km, of its

375 northeastward migration away from Peninsula Valdes (Fig. 5) despite ~12° changes in both SSA
376 and MD.

377

378 Importantly, the satellite-tracking dataset demonstrates that some individuals switch between 379 HH2a and HH2b navigational modes (Fig. 5). For example, South Atlantic southern right whale 380 PTT#87762.17 maintains SSA_{acw}+MD (HH2b) within $\pm 1.06^{\circ}$ ($\pm 1\sigma$) of 89.47° during the first 19 381 days, and 1261 km, of its initial northeasterly migration, followed by a 26 day period when it switched to maintain SRA-MD (HH2a) within $\pm 1.36^{\circ}$ ($\pm 1\sigma$) of 116.33° across a 1174 km 382 383 southwesterly movement, despite ~12° changes in both MD and SRA. Three years earlier, South 384 Atlantic southern right whale PTT#84482.14 maintained a similar pattern with SSA_{acw}+MD being 385 within $\pm 0.90^{\circ}$ ($\pm 1\sigma$) of 111.00° (HH2b) during the first 21 days, and 1394 km, of its initially 386 easterly migration away from Peninsula Valdes, immediately prior to a 4 day period when it switched to maintain SRA-MD within $\pm 0.24^{\circ}$ ($\pm 1\sigma$) of 125.79° (HH2a) across the subsequent 400 387 388 km southerly leg of its migration. In all examples, HH2a-HH2b switching corresponds with 389 prominent changes in geographic coordinate migration paths.

Type 3 horizontal plane heliomagnetic navigation (HH3), the least common in the dataset we
analysed, includes migration along trajectories that maintain a -1:1 negative covariation
between sequential heliomagnetic coordinate locations, according to:

393

394
$$SSA_{acw} + MD \approx -1(SRA - MD) + ((n \times 23.44^{\circ}) + 180^{\circ})$$

396 where, *n* is an integer or half-integer.

397

398	An example of this type of navigation was performed by gray whale PTT#1388.11, that
399	maintained a highly significant -1.09:1 negative covariation between SRA-MD and SSA $_{acw}$ +MD
400	(r ² =0.98; n=29; regression t-test; p<0.05; df=27; s.e.=0.027; m=-1.088) during its rapid 28 day,
401	4545 km, eastward migration across the North Pacific Ocean in December, 2011 (Fig. 5A). In
402	the Southeast Pacific, blue whale PTT#120948.15 similarly maintained a highly significant -
403	1.28:1 negative covariation (r ² =0.99; n=30; regression t-test; p<0.05; df=28, s.e.=0.0195; m=-
404	1.284;) during its May-June, 2015, 4661 km, northward migration (Fig. 5A).
405	
406	Notably, South Atlantic humpback whale PTT#24642.03 switched from HH1 navigation to HH3
407	navigation on 1 January, 2004, approximately 6 days into its southeastward migration. At first,
408	PTT#24642.03 maintained MD within ±0.07° (±1 σ) of -23.04° (i.e., HH1 navigation), during the
409	first six days, and 697 km, of its migration away from Abrolhos Bank. Then the whale switched,
410	doing a pronounced turn to the south-southwest, and shifting into HH3 navigation, whereafter,
411	it maintained a highly significant -1.21:1 negative covariation (r ² =0.97; n=19; regression t-test;
412	p<0.05; df=17, s.e.=0.0541; m=-1.208) during the remaining 34 days, and 3050 km, of its
413	poleward migration (Fig. 5A).
414	
415	The horizontal plane heliomagnetic trajectories followed by baleen whales (Fig. 5) provide
416	insight into how integrated astronomic and magnetic cues facilitate long-distance return

417 migration without compromising the ecological needs of the individual. Incorporation of

astronomic cues, like the rise and set azimuths of the Sun, provide stable and seasonally
structured orientation information, while using the position of the Sun as a reference datum for
horizontal plane magnetic orientation overcomes the challenges associated with determining
the direction of geographic north. Similarly, the potential orientational impacts of magnetic
secular variation are also diminished through utilisation of an orbitally structured, and thus
temporally cyclic, astronomic rather than geocentric reference frame.

424

425 Navigation in a spatiotemporally dynamic, but richly structured and rigidly cyclical, reference 426 frame helps baleen whales locate and re-locate seasonal habitats at ecologically appropriate 427 times of the year. For example, 19 whales converge on heliomagnetic moments when SRA-MD 428 is within ±3° of 113.44° (i.e., 90° + 23.44°) and SSA_{acw}+MD is within ±3° of 90°, irrespective of 429 species, ocean basin, date and navigational mode (Fig. 5B). Specifically, gray whale PTT#1388.11 430 and humpback whale PTT#111871.12 passed through this heliomagnetic waypoint while 431 residing in Sea of Okhotsk and South Atlantic Ocean feeding areas, respectively. In contrast, 432 southern right whales, PTT#81125.17 and PTT#87762.17, converged on this node at the 433 northeastern-most point of their seasonal migrations away from Peninsula Valdes, while fin 434 whale, PTT#24641.18, arrived at this node following ~1000 km of swimming away from 435 Svalbard and immediately prior to a 22-day migratory stop-over near Jan Mayen, ~600 km 436 north of Iceland. In the North Atlantic and South Atlantic, humpback whales, PTT#83728.19 and 437 PTT#24642.03, converged on this node at the start, and end, of their annual long-distance 438 migrations, respectively (Fig. 5B). These examples demonstrate that baleen whales are capable 439 of navigating to, and changing their movement behaviours at, specific nodes, or navigational

waypoints, in heliomagnetic coordinates that are closely associated with the 23.44° obliquity of
Earth's axis of rotation.

442

443	There appear to be many heliomagnetic coordinate waypoints, associated with integer and
444	half-integer multiples of Earth's obliquity, that baleen whales converge on. For example, baleen
445	whales disproportionately converge on any combination of heliomagnetic coordinate moments
446	when and where SRA-MD and SSA _{acw} +MD are within ±3° of 66.56° (i.e., 90.00° - 23.44°), 90.00°
447	and 113.44° (i.e., 90.00°+23.44°; Extended Data Figure 4). Thus, the data we report suggest
448	that, in addition to providing a rigid orbitally-tuned structure, the integration of astronomic and
449	magnetic cues during navigation also provides flexibility via the cyclical symmetry of
450	heliomagnetic waypoints across the annual cycle. Such flexibility not only helps whales
451	successfully navigate between established habitats, but also provides a spatiotemporal system
452	through which habitat can be (re)colonized and explored. Such examples include the return of
453	fin whales to Elephant Island ¹⁵ (Herr et al., 2022) and gray whales to Hawaiian waters ⁵⁰ , and
454	gray whale vagrancy into the Atlantic ¹⁴ (Hoelzel et al., 2021)(Extended Data Figure 4).
455	

456 Summary

457

Using historical American and Soviet whaling-ship archives and modern satellite-tracking
datasets, we demonstrate that baleen whales navigate using horizontal plane magnetic
coordinates referenced relative to astronomic cues, including the rise and set positions of the
sun. This conclusion is supported by several lines of evidence including the non-random

occurrence of major and minor modes in baleen whale magnetic declination data distributions
near integer and half-integer multiples of Earth's axial obliquity. When referenced relative to
the azimuth of the sun at rise and set, these horizontal plane magnetic coordinates are
reframed as heliomagnetic coordinates, and become a function of both space and time.

466

467 Our analyses show that over the past \sim 240 years baleen whales have disproportionately 468 inhabited sites where heliomagnetic coordinates describe highly significant covariant trends 469 that intersect integer and half-integer multiples of Earth's obliquity centered on 90° right 470 angles. We recognise three different recurrent modes of heliomagnetic navigation across 471 species and ocean basins, including migration along specific isogonics, prolonged maintenance 472 of specific heliomagnetic coordinate values, and movements that describe highly significant 473 negative covariation trends in heliomagnetic coordinates through space and time. Furhermore, 474 our analysis reveals that integrated astronomic and magnetic cues serve as spatially and 475 temporally dynamic orientational waypoints for whales migrating between habitats at 476 ecologically favourable times of the year. Such mechanistic understanding of baleen whale 477 navigation and associated movement decisions is important due to increasing human-whale 478 interactions in a rapidly changing global environment impacted by anthropogenic development 479 and climate change. Identifying the drivers of periodicities in baleen whale movements 480 facilitates predictions of when and where humans and whales may come into conflict and how 481 whales will be impacted by environmental change.

482

483 Many questions emerge from this research. Are similar patterns present in vertical plane 484 heliomagnetic coordinates? Do other organismal clades utilise a similar system of navigation? 485 Can the times and locations of seasonal residence and migration be accurately predicted? How 486 are magnetic and astronomic cues sensed, transduced and integrated? Answering these 487 questions requires both analysis of existing animal tracking and experimental orientation 488 datasets as well as future experiments on model organisms specifically designed to elucidate 489 which cues are integrated, and which are not, during different movement behaviours. 490 Methods 491 492 493 Geographic coordinate Gregorian calendar baleen whale satellite-monitored platform 494 transmitting terminal (PTT) locations were compiled from published sources (Table 1). The 495 Argos Data Collection and Location System used for this project (http://www.argos-496 system.org/) is operated by Collecte Localisation Satellites. Argos is an international program 497 that relies on instruments provided by the French Space Agency flown on polar-orbiting 498 satellites operated by the U.S. National Oceanic and Atmospheric Administration, the European 499 Organisation for the Exploitation of Meteorological Satellites, and the Indian Space Research 500 Organization. 501 502 Once-daily whale locations, limited to dates when Argos-derived PTT messages were received, were interpolated from velocity filtered (<20 km h⁻¹) Argos messages using Paleontological 503 Statistics software⁵⁸. American⁴ and Soviet^{5,18} whaleship logbook locations were used as 504

505 reported and were not interpolated. Harvest data associated with Soviet whaling (i.e., species, 506 latitude, longitude, date, time), came from a dataset of 51,746 catches by the factory fleet Yuri 507 Dolgorukiy, which operated in the Southern Hemisphere between 1960 and 1975, and were kindly provided by Dr. Dmitry Tormosov (Kaliningrad, Russia)¹⁸. Magnetic field elements, 508 509 including declination, inclination, and flux density (i.e., field intensity), were determined from latitude, longitude, and decimal year using the World Magnetic Model²⁰, the Enhanced 510 511 Magnetic Model 2017¹⁹, and the HistKalMag¹⁷ models. Rise and set azimuths of the Sun at 512 baleen whale locations were determined using astronomical algorithms²¹. 513 Magnetic declination data distributions were determined using kernel density estimation⁵⁹⁻⁶⁰. 514 515 Binomial probability was used to determine the probability that KDE major and minor modes 516 would occur within ±2° of integer and half-integer multiples of 23.44° based on a 34.13% (i.e., 8 517 ÷ 23.44) chance of success. The probability that observed magnetic declination KDE data 518 distributions would result from random chance alone was determined using the G test, also known as the log likelihood ratio test⁶¹, using oceanic magnetic declination data, determined 519 520 for a 1° latitude/longitude global grid, as the expected random magnetic declination data 521 distribution. Two-tailed regression t-tests were used to determine whether or not significant 522 linear relationships exist between SRA-MD and SSA_{acw}+MD in the satellite-tracking data of 523 individual whales.

524

525 Acknowledgements

individuals, including all of those who contributed to the satellite-tracking and whaling-ship
logbook digitisation. We are immensely grateful for your commitment and contributions.
T.W.H. thanks the University of Canterbury for a 2023 sabbatical grant-in-aid and the Brian
Mason Science and Technical Trust for supporting this research. N.H. thanks the University of
Canterbury for a Sustainable Development Goals Doctoral Scholarship. The original version of
the manuscript was greatly improved by constructive reviews and feedback from anonymous
referees.
Author Contributions
T.W.H. and N.H. conceived the study, performed all original magnetic, astronomical and
statistical data analyses, prepared the table and figures, and drafted the initial manuscript. All
authors compiled the published satellite-tracking datasets and helped revise the manuscript.
Additional Information
Competing interests. The authors declare no competing interests.
Supplementary Information is available for this paper.

548	Correspondence and requests for materials should be addressed to Travis Horton
549	(travis.horton@canterbury.ac.nz).
550	
551	Reprints and permissions information is available at <u>www.nature.com/reprints</u> .
552	
553	How to cite this article: Horton, T.W. et al. Baleen whale navigation in astronomically
554	referenced magnetic coordinates. (2024)
555	
556	
557	Terminology
558	
559	culmination – the time at which the Sun passes the local meridian (syn: meridian transit).
560	
561	heliomagnetic – from the Greek helios (i.e., Sun) and Latin magneta (i.e., relating to
562	magnetism), meaning of, or pertaining to, the association between the Sun and magnetism.
563	
564	isogonic – path connecting points on the surface of the Earth whereat magnetic declination is
565	the same.
566	
567	kernel density estimation – nonparametric model for estimating the probability distribution of
568	a dataset; in this study, the Gaussian kernel function (i.e., $k(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-1}{2}x^2}$ was used.
569	

570	magnetic declination – angle in the horizontal plane between the local magnetic field and
571	geographic north reckoned positive to the east and negative to the west.
572	
573	major mode – highest local maximum in a multimodal data distribution.
574	
575	minor modes – sequentially lower frequency local maxima, following the major mode, in a
576	multimodal data distribution.
577	
578	obliquity – angle between an object's rotational axis and its orbital axis (<i>syn:</i> axial tilt). Earth's
579	obliquity ranges between ~22.1° and ~24.5° across an ~41,000 year cycle and is currently
580	~23.436°.
581	
582	recolonisation – in biology, the repopulation of previously occupied habitat.
583	
584	secular variation (magnetism) – change in the intensity and shape of Earth's magnetic field
585	through time.
586	
587	sunrise azimuth – direction of the Sun, when the upper edge of the Sun's climbing disk passes
588	the horizontal, measured relative to geographic north and reckoned clockwise positive.
589	
590	sunset azimuth – direction of the Sun, when the upper edge of the Sun's falling disk passes the
591	horizontal, measured relative to geographic north and reckoned clockwise positive. In this

592	study, the subscript 'acw' indicates sunset azimuth reckoned anti-clockwise positive (i.e., 360° -
593	sunset azimuth).
594	
595	vagrancy – occurrence of an animal well outside its normal range.
596	
597	waypoint – a set of coordinates that identifies a specific location along a route of travel (<i>syn:</i>
598	node).
599	
600	
601	
602	
603	
604	
605	
606	
607	
608	
609	
610	
611	
612	

613 **References**

614

615 1 - Keeton, W.T., 1979. Avian orientation and navigation. *Annual Review of Physiology*, *41*(1),
616 pp.353-366.

617

- 618 2 Putman, N.F., 2022. Magnetosensation. *Journal of Comparative Physiology A*, *208*(1), pp.1-7.
 619
- 620 3 Schneider, W.T., Packmor, F., Lindecke, O. and Holland, R.A., 2023. Sense of doubt:
- 621 inaccurate and alternate locations of virtual magnetic displacements may give a distorted view
- 622 of animal magnetoreception ability. *Communications Biology*, *6*(1), p.187.

623

- 624 4 American Offshore Whaling Logbook Data, https://whalinghistory.org, Mystic Seaport
- 625 Museum, Inc. and New Bedford Whaling Museum. Accessed [12 January, 2023]

626

- 627 5 Yablokov, A.V., Zemsky, V.A., Mikhalev, Y.A., Tormosov, V.V. and Berzin, A.A., 1998. Data on
- 628 Soviet whaling in the Antarctic in 1947-1972 (population aspects). Russian Journal of Ecology,

629 *29*(1), pp.38-42.

630

631 6 - Horton, T.W., Palacios, D.M., Stafford, K.M. and Zerbini, A.N., 2022. Baleen Whale Migration.

- 632 In Ethology and Behavioral Ecology of Mysticetes (pp. 71-104). Cham: Springer International
- 633 Publishing.

- 635 7 Lythberg, B. and Ngata, W., 2022. Heeding the Call of Paikea. *Across Species and Cultures*,
 636 p.245.
- 637
- 638 8 Horton, T.W., Zerbini, A.N., Andriolo, A., Danilewicz, D. and Sucunza, F., 2020. Multi-decadal
- 639 humpback whale migratory route fidelity despite oceanographic and geomagnetic change.

640 *Frontiers in Marine Science*, p.414.

641

- 642 9 Clapham, P.J., Baraff, L.S., Carlson, C.A., Christian, M.A., Mattila, D.K., Mayo, C.A., Murphy,
- 643 M.A. & Pittman, S. 1993. Seasonal occurrence and annual return of humpback whales in the

644 southern Gulf of Maine. *Canadian Journal of Zoology* 71: 440-443.

645

- 646 10 Kennedy, A.S., Zerbini, A.N., Rone, B.K. and Clapham, P.J., 2014a. Individual variation in
- 647 movements of satellite-tracked humpback whales *Megaptera novaeangliae* in the eastern
- 648 Aleutian Islands and Bering Sea. *Endangered Species Research*, 23(2), pp.187-195.

649

- 650 11 Reisinger, R.R., Friedlaender, A.S., Zerbini, A.N., Palacios, D.M., Andrews-Goff, V., Dalla
- Rosa, L., Double, M., Findlay, K., Garrigue, C., How, J. and Jenner, C., 2021. Combining regional
- habitat selection models for large-scale prediction: Circumpolar habitat selection of Southern
- 653 Ocean humpback whales. *Remote Sensing*, *13*(11), p.2074.

655	12 - Bailey, H., Mate, B.R., Palacios, D.M., Irvine, L., Bograd, S.J. and Costa, D.P., 2009.
656	Behavioural estimation of blue whale movements in the Northeast Pacific from state-space
657	model analysis of satellite tracks. Endangered Species Research, 10, pp.93-106.
658	
659	13 – Riekkola, L., Andrews-Goff, V., Friedlaender, A., Constantine, R. and Zerbini, A.N., 2019.
660	Environmental drivers of humpback whale foraging behavior in the remote Southern Ocean.
661	Journal of experimental marine biology and ecology, 517, pp.1-12.
662	
663	14 - Hoelzel, A.R., Sarigol, F., Gridley, T. and Elwen, S.H., 2021. Natal origin of Namibian grey
664	whale implies new distance record for in-water migration. <i>Biology Letters</i> , 17(6), p.20210136.
665	
666	15 - Herr, H., Viquerat, S., Devas, F., Lees, A., Wells, L., Gregory, B., Giffords, T., Beecham, D. and
667	Meyer, B., 2022. Return of large fin whale feeding aggregations to historical whaling grounds in
668	the Southern Ocean. <i>Scientific Reports, 12</i> (1), p.9458.
669	
670	16 - Horton, T.W., Hauser, N., Zerbini, A.N., Francis, M.P., Domeier, M.L., Andriolo, A., Costa,
671	D.P., Robinson, P.W., Duffy, C.A., Nasby-Lucas, N. and Holdaway, R.N., 2017. Route fidelity
672	during marine megafauna migration. Frontiers in Marine Science, p.422.
673	
674	17 - Schanner, M., Bohsung, L., Fischer, C., Korte, M. and Holschneider, M., 2023. The global

675 geomagnetic field over the historical era: what can we learn from ship-log declinations?. *Earth,*

676 *Planets and Space*, 75(1), p.96.

678 18 – Tormosov, D.D., "SOVALL.xls," personal communication, via P.J. Clapham.

679

- 680 19 NCEI Geomagnetic Modeling Team. 2017: Enhanced Magnetic Model 2017. NOAA National
- 681 Centers for Environmental Information. Accessed [28 January, 2020]
- 682
- 683 20 Chulliat, A., Brown, W., Alken, P., Beggan, C., Nair, M., Cox, G., Woods, A., Macmillan, S.,
- 684 Meyer, B. and Paniccia, M., 2020. The US/UK world magnetic model for 2020-2025.

685

686 21 - Meeus, J.H., 1991. Astronomical algorithms. Willmann-Bell, Incorporated.

687

- 688 22 Mate, B.R., Gisiner, R. and Mobley, J., 1998. Local and migratory movements of Hawaiian
- humpback whales tracked by satellite telemetry. *Canadian Journal of Zoology*, *76*(5), pp.863868.

691

- 692 23 Mate, B., Mesecar, R. and Lagerquist, B., 2007. The evolution of satellite-monitored radio
- tags for large whales: One laboratory's experience. Deep Sea Research Part II: Topical Studies in
- 694 *Oceanography*, *54*(3-4), pp.224-247.

- 696 24 Lagerquist, B.A., Mate, B.R., Ortega-Ortiz, J.G., Winsor, M. and Urbán-Ramirez, J., 2008.
- 697 Migratory movements and surfacing rates of humpback whales (*Megaptera novaeangliae*)
- 698 satellite tagged at Socorro Island, Mexico. *Marine Mammal Science*, 24(4), pp.815-830.

700	25 - Hauser, N., Zerbini, A.N., Geyer, Y., Heide-Jørgensen, M.P. and Clapham, P., 2010.
701	Movements of satellite-monitored humpback whales, Megaptera novaeangliae, from the Cook
702	Islands. Marine Mammal Science, 26(3), pp.679-685.
703	
704	26 - Garrigue, C., Clapham, P.J., Geyer, Y., Kennedy, A.S. and Zerbini, A.N., 2015. Satellite
705	tracking reveals novel migratory patterns and the importance of seamounts for endangered
706	South Pacific humpback whales. Royal Society open science, 2(11), p.150489.
707	
708	27 - Andrews-Goff, V., Bestley, S., Gales, N.J., Laverick, S.M., Paton, D., Polanowski, A.M.,
709	Schmitt, N.T. and Double, M.C., 2018. Humpback whale migrations to Antarctic summer
710	foraging grounds through the southwest Pacific Ocean. <i>Scientific reports</i> , 8(1), p.12333.
711	
712	28 - Riekkola, L., Zerbini, A.N., Andrews, O., Andrews-Goff, V., Baker, C.S., Chandler, D.,
713	Childerhouse, S., Clapham, P., Dodémont, R., Donnelly, D. and Friedlaender, A., 2018.
714	Application of a multi-disciplinary approach to reveal population structure and Southern Ocean
715	feeding grounds of humpback whales. <i>Ecological Indicators, 89,</i> pp.455-465.
716	
717	29 - Modest, M., Irvine, L., Andrews-Goff, V., Gough, W., Johnston, D., Nowacek, D., Pallin, L.,
718	Read, A., Moore, R.T. and Friedlaender, A., 2021. First description of migratory behavior of
719	humpback whales from an Antarctic feeding ground to a tropical calving ground. Animal
720	<i>Biotelemetry, 9</i> (1), pp.1-16.

722	30 - Kennedy, A.S., Zerbini, A.N., Vásquez, O.V., Gandilhon, N., Clapham, P.J. and Adam, O.,
723	2014b. Local and migratory movements of humpback whales (Megaptera novaeangliae)
724	satellite-tracked in the North Atlantic Ocean. Canadian Journal of Zoology, 92(1), pp.9-18.
725	
726	31 - Kettemer, L.E., Rikardsen, A.H., Biuw, M., Broms, F., Mul, E. and Blanchet, M.A., 2022.
727	Round-trip migration and energy budget of a breeding female humpback whale in the
728	Northeast Atlantic. Plos one, 17(5), p.e0268355.
729	
730	32 - Rosenbaum, H.C., Maxwell, S.M., Kershaw, F. and Mate, B., 2014. Long-range movement of
731	humpback whales and their overlap with anthropogenic activity in the South Atlantic Ocean.
732	Conservation Biology, 28(2), pp.604-615.
733	
734	33 - Zerbini, A.N., Andriolo, A., Heide-Jørgensen, M.P., Pizzorno, J.L., Maia, Y.G., VanBlaricom,
735	G.R., DeMaster, D.P., Simões-Lopes, P.C., Moreira, S. and Bethlem, C., 2006. Satellite-monitored
736	movements of humpback whales Megaptera novaeangliae in the Southwest Atlantic Ocean.
737	Marine Ecology Progress Series, 313, pp.295-304.
738	
739	34 - Abrahms, B., Hazen, E.L., Aikens, E.O., Savoca, M.S., Goldbogen, J.A., Bograd, S.J., Jacox,
740	M.G., Irvine, L.M., Palacios, D.M. and Mate, B.R., 2019. Memory and resource tracking drive
741	blue whale migrations. Proceedings of the National Academy of Sciences, 116(12), pp.5582-
742	5587.

744	35 - Irvine LM, Palacios DM, Lagerquist BA, Mate BR, Follett TM. 2019. Data from: Scales of blue
745	and fin whale feeding behavior off California, USA, with implications for prey patchiness.
746	Movebank Data Repository. <u>https://www.doi.org/10.5441/001/1.47h576f2</u>
747	
748	36 - Irvine, L.M., Winsor, M.H., Follett, T.M., Mate, B.R. and Palacios, D.M., 2020. An at-sea
749	assessment of Argos location accuracy for three species of large whales, and the effect of deep-
750	diving behavior on location error. Animal biotelemetry, 8, pp.1-17.
751	
752	37 - Mate BR, Palacios DM, Irvine LM, Follett TM. 2019. Data from: Behavioural estimation of
753	blue whale movements in the Northeast Pacific from state-space model analysis of satellite
754	tracks. Movebank Data Repository. <u>https://www.doi.org/10.5441/001/1.5ph88fk2</u>
755	
756	38 - Hucke-Gaete, R., Bedrinana-Romano, L., Viddi, F.A., Ruiz, J.E., Torres-Florez, J.P. and
757	Zerbini, A.N., 2018. From Chilean Patagonia to Galapagos, Ecuador: novel insights on blue whale
758	migratory pathways along the Eastern South Pacific. PeerJ, 6, p.e4695.
759	
760	39 - Pérez-Jorge, S., Tobeña, M., Prieto, R., Vandeperre, F., Calmettes, B., Lehodey, P. and Silva,
761	M.A., 2020. Environmental drivers of large-scale movements of baleen whales in the mid-North
762	Atlantic Ocean. Diversity and Distributions, 26(6), pp.683-698.
763	

- 40 Block, B.A., Jonsen, I.D., Jorgensen, S.J., Winship, A.J., Shaffer, S.A., Bograd, S.J., Hazen, E.L.,
- 765 Foley, D.G., Breed, G.A., Harrison, A.L. and Ganong, J.E., 2011. Tracking apex marine predator

766 movements in a dynamic ocean. *Nature*, 475(7354), pp.86-90.

and Oceanography, 56(1), pp.219-232.

- 767
- 768 41 Cotté, C., d'Ovidio, F., Chaigneau, A., Lévy, M., Taupier-Letage, I., Mate, B. and Guinet, C.,
- 769 2011. Scale-dependent interactions of Mediterranean whales with marine dynamics. *Limnology*
- 771

770

42 - Lydersen, C., Vacquié-Garcia, J., Heide-Jørgensen, M.P., Øien, N., Guinet, C. and Kovacs,

773 K.M., 2020. Autumn movements of fin whales (Balaenoptera physalus) from Svalbard, Norway,

revealed by satellite tracking. *Scientific reports*, *10*(1), p.16966.

775

43 - Silva, M.A., Prieto, R., Jonsen, I., Baumgartner, M.F. and Santos, R.S., 2013. North Atlantic

blue and fin whales suspend their spring migration to forage in middle latitudes: building up

energy reserves for the journey?. *PloS one*, *8*(10), p.e76507.

779

```
44 - Heide-Jørgensen, M.P., Laidre, K.L., Litovka, D., Villum Jensen, M., Grebmeier, J.M. and
Sirenko, B.I., 2012. Identifying gray whale (Eschrichtius robustus) foraging grounds along the
Chukotka Peninsula, Russia, using satellite telemetry. Polar Biology, 35, pp.1035-1045.
```

784	45 - Mate, B.R., Ilyashenko, V.Y., Bradford, A.L., Vertyankin, V.V., Tsidulko, G.A., Rozhnov, V.V.
785	and Irvine, L.M., 2015. Critically endangered western gray whales migrate to the eastern North
786	Pacific. Biology letters, 11(4), p.20150071.
787	
788	46 - Williamson, J.M., 1998. WhaleNetInteractive Education and Research Utilizing Advanced
789	Technologies. Marine Technology Society. Marine Technology Society Journal, 32(1), p.106.
790	
791	47 - Mate, B.R., Nieukirk, S.L. and Kraus, S.D., 1997. Satellite-monitored movements of the

northern right whale. *The Journal of wildlife management*, pp.1393-1405.

793

48 - Baumgartner, M.F. and Mate, B.R., 2005. Summer and fall habitat of North Atlantic right

795 whales (Eubalaena glacialis) inferred from satellite telemetry. Canadian Journal of Fisheries and

796 Aquatic Sciences, 62(3), pp.527-543.

797

49 - Mate, B.R., Best, P.B., Lagerquist, B.A. and Winsor, M.H., 2011. Coastal, offshore, and

799 migratory movements of South African right whales revealed by satellite telemetry. *Marine*

800 *Mammal Science*, *27*(3), pp.455-476.

801

802 50 - Zerbini, A.N., Fernandez Ajos, A., Andriolo, A., Clapham, P.J., Crespo, E., Gonzalez, R.,

803 Harris, G., Mendez, M., Rosenbaum, H. and Sironi, M., 2018. Satellite tracking of Southern right

804 whales (Eubalaena australis) from Golfo San Matias, Rio Negro Province, Argentina. Scientific

805 Committee of the International Whaling Commission SC67b, Bled, Slovenia, 14.

807	51 - Fortune, S.M., Young, B.G. and Ferguson, S.H., 2020. Age-and sex-specific movement,
808	behaviour and habitat-use patterns of bowhead whales (Balaena mysticetus) in the Eastern
809	Canadian Arctic. Polar Biology, 43, pp.1725-1744.
810	
811	52 - Mate, B.R., Krutzikowsky, G.K. and Winsor, M.H., 2000. Satellite-monitored movements of
812	radio-tagged bowhead whales in the Beaufort and Chukchi seas during the late-summer feeding
813	season and fall migration. Canadian Journal of Zoology, 78(7), pp.1168-1181.
814	
815	53- Alerstam, T., 2006. Conflicting evidence about long-distance animal navigation. Science,
816	<i>313</i> (5788), pp.791-794.
817	
818	54 - Wiltschko, R. and Wiltschko, W., 2023. Animal navigation: how animals use environmental
819	factors to find their way. The European Physical Journal Special Topics, 232(2), pp.237-252.
820	
821	55 - Åkesson, S., Boström, J., Liedvogel, M. and Muheim, R., 2014. Animal navigation. Animal
822	movement across scales, 21, pp.151-178.
823	
824	56 - Andreatta, G. and Tessmar-Raible, K., 2020. The still dark side of the moon: molecular
825	mechanisms of lunar-controlled rhythms and clocks. Journal of molecular biology, 432(12),
826	pp.3525-3546.
827	

828	57 - Baird, R.W., James, J., Mata, C. and Hughes, M., 2022. Two Gray Whale (Eschrichtius
829	robustus) Sightings off Hawai'i Island: The First Records for the Central Tropical Pacific. Aquatic
830	Mammals, 48(5), pp.432-435.
831	
832	58 - Hammer, \emptyset . and Harper, D.A., 2001. Past: paleontological statistics software package for
833	education and data analysis. Palaeontologia electronica, 4(1), p.1.
834	
835	59 - Worton, B.J., 1989. Kernel methods for estimating the utilization distribution in home-
836	range studies. <i>Ecology</i> , <i>70</i> (1), pp.164-168.
837	
838	60 - Wessa, P. (2024), Free Statistics Software, Office for Research Development and Education,
839	version 1.2.1, URL https://www.wessa.net/
840	
841	61 - Woolf, B., 1957. The log likelihood ratio test (the G-test). Annals of human genetics, 21(4),
842	pp.397-409.
843	
844	
845	
846	
847	
848	
849	

850 FIGURE LEGENDS

851

Fig. 1. Magnetic declination data distributions, determined by kernel density estimation, for
satellite-tagged baleen whales. Colours, and the total number of once-daily platform
transmitting terminal locations, as indicated in the legend.

855

Fig. 2. Magnetic declination data distributions, determined by kernel density estimation, for
historic American and Soviet whaleship logbook entries for baleen whales (colours as indicated
in the legend). The total number of 'sights and strikes' for each species are indicated in the
legend.

860

Fig. 3. Heliologic, magnetic and heliomagnetic orientation cues available to baleen whales in 861 862 the southern (A) and northern (B) magnetic hemispheres. Abbreviations and colours are as 863 follows: SRA = sunrise azimuth (orange), positive in the clockwise direction viewed from above; SSA = sunset azimuth (red), positive in the clockwise direction viewed from above; SSA_{acw} = 864 865 sunset azimuth anti-clockwise (brown), positive in the anti-clockwise direction viewed from 866 above; SCAN = sun culmination angular altitude relative to geographic north horizon (yellow); 867 MD = magnetic declination (light blue), positive to the east of geographic north and negative to 868 the west of geographic north; MI = magnetic inclination (pink), positive below the geographic 869 north horizon and negative above the geographic north horizon. GN, GE, GS, and GW indicate 870 the geographic north, east, south and west directions, respectively. Heliomagnetic coordinates,

SRA-MD (blue) and SSA_{acw}+MD (purple), correspond with the angle in the horizontal plane
between MD and SRA, and SSA_{acw}, respectively.

873

874 Fig. 4. Bivariate plot of sunset azimuth anti-clockwise plus magnetic declination (i.e.,

875 SSA_{acw}+MD) versus sunrise azimuth minus magnetic declination (i.e., SRA-MD) for historic

876 American and Soviet whaling-ship logbook entries (brown circles) and satellite-tagged baleen

878

877

whales (light blue circles).

879 Fig. 5. Bivariate plot of sunset azimuth anti-clockwise plus magnetic declination (i.e.,

880 SSA_{acw}+MD) versus sunrise azimuth minus magnetic declination (i.e., SRA-MD) for satellite-

tagged baleen whales. Red inset box in (A) is expanded in (B). Fifteen representative individual

882 whales, tracked via satellite, are shown in (A) and are symbolized as indicated in the legend.

883 Symbol sizes in (A) and (B) correspond with whale movement velocity. Examples of the three

884 heliomagnetic navigation modes (HH1-HH3), and seasonal residence (R), described in the text

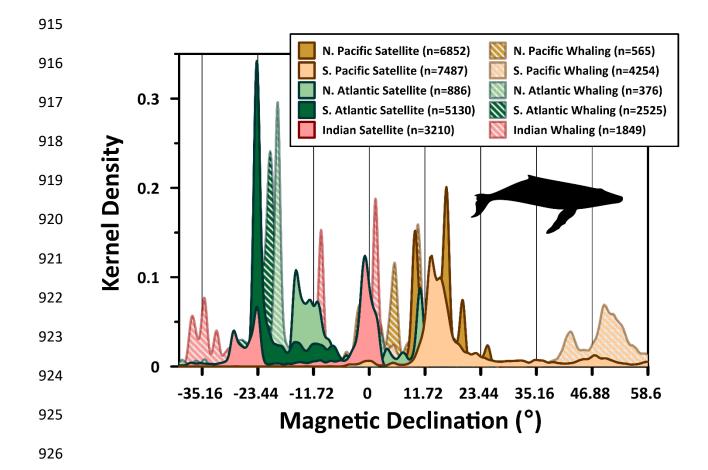
are indicated via arrows. All other satellite tagging data is shown as small light blue circles in

886 (A).

887

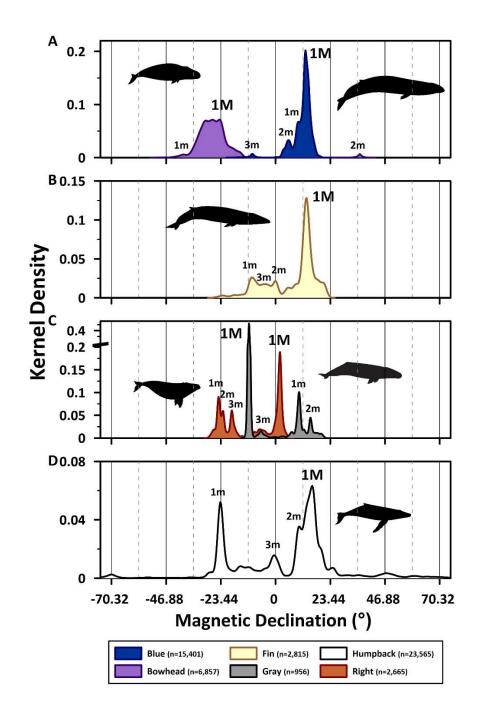
Extended Data Figure 1. Magnetic declination data distributions, determined by kernel density
estimation, for satellite-tagged humpback whales (solid) and historically whaled humpback
whales (striped) in the Atlantic, Pacific and Indian Ocean basins (see legends for colour coding).
Sample sizes indicated in the legend correspond with the total number of once-daily platform

transmitting terminal whale locations (i.e., "Satellite"), and historic whaleship 'sight or strike'
locations (i.e., "Whaling"), in each ocean basin.


894

895 **Extended Data Figure 2.** Magnetic declination data distributions, determined by kernel density 896 estimation, for satellite-tagged humpback whales with major and minor modal locations, 897 reported in Table 1, indicated (e.g., 1M = First Major Mode; 1m = First Minor Mode; 2m = 898 Second Minor Mode; 3m = Third Minor Mode). Sample sizes indicated in the legend correspond 899 with the total number of once-daily platform transmitting terminal whale locations. 900 901 **Extended Data Figure 3.** Magnetic declination data distributions, determined by kernel density 902 estimation, for baleen whales reported in digitised whaling-ship logbooks with major and minor 903 modal locations, reported in Table 1, indicated (e.g., 1M = First Major Mode; 1m = First Minor 904 Mode; 2m = Second Minor Mode; 3m = Third Minor Mode). Sample sizes indicated in the 905 legend correspond with the total number of "sight and strike" locations included in the current 906 study. 907

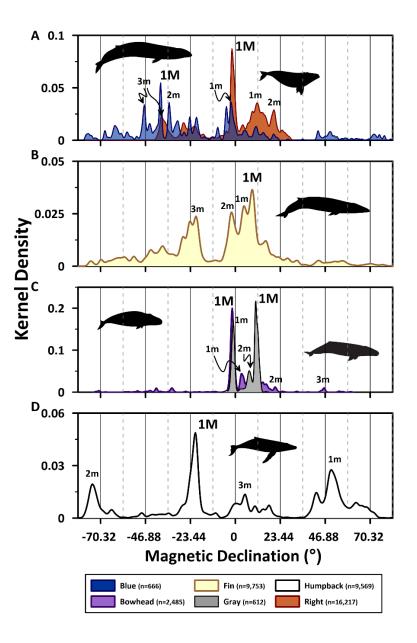
Extended Data Figure 4. Bivariate plots of sunset azimuth anti-clockwise plus magnetic
declination (i.e., SSA_{acw}+MD) versus sunrise azimuth minus magnetic declination (i.e., SRA-MD)
for 17 individual baleen whales tracked via satellite-monitored platform transmitting terminal.
Gray whales, recolonizing Hawai'i (A), fin whales recolonizing Elephant Island (B) and a vagrant
gray whale sighted in the Atlantic Ocean (C), are shown as yellow stars.


913

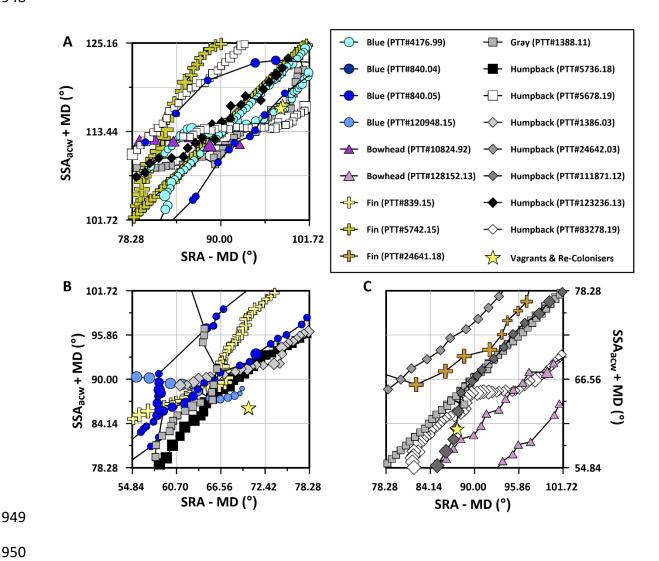
914 Extended Data Figures 1-4

Extended Data Figure 1. Magnetic declination data distributions, determined by kernel density
estimation, for satellite-tagged humpback whales (solid) and historically whaled humpback
whales (striped) in the Atlantic, Pacific and Indian Ocean basins (see legends for colour coding).
Sample sizes indicated in the legend correspond with the total number of once-daily platform
transmitting terminal whale locations (i.e., "Satellite"), and historic whaleship 'sight or strike'
locations (i.e., "Whaling"), in each ocean basin.


933



937 estimation, for satellite-tagged humpback whales with major and minor modal locations,



939 Second Minor Mode; 3m = Third Minor Mode). Sample sizes indicated in the legend correspond

940 with the total number of once-daily platform transmitting terminal whale locations.

Extended Data Figure 3. Magnetic declination data distributions, determined by kernel density
estimation, for baleen whales reported in digitised whaling-ship logbooks with major and minor
modal locations, reported in Table 1, indicated (e.g., 1M = First Major Mode; 1m = First Minor
Mode; 2m = Second Minor Mode; 3m = Third Minor Mode). Sample sizes indicated in the
legend correspond with the total number of "sight and strike" locations included in the current
study.

Extended Data Figure 4. Bivariate plots of sunset azimuth anti-clockwise plus magnetic declination (i.e., SSA_{acw}+MD) versus sunrise azimuth minus magnetic declination (i.e., SRA-MD) for 17 individual baleen whales tracked via satellite-monitored platform transmitting terminal. Gray whales, recolonizing Hawai'i (A), fin whales recolonizing Elephant Island (B) and a vagrant gray whale sighted in the Atlantic Ocean (C), are shown as yellow stars.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TableS1.xlsx
- TableS2.xlsx