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Abstract16

By dissipating energy and generating mixing, internal tides (ITs) play a major role in the climatological17

evolution of the ocean. Our understanding of this class of ocean variability is however hindered by the18

rarity of observations capable of capturing ITs with global coverage. The data provided by the Global19

Drifter Program (GDP) offer high temporal resolution and quasi-global coverage, thus bringing promising20

perspectives. However, due to their inherent drifting nature, these instruments provide a distorted view21

of the IT signal. By theoretically rationalizing this distortion and leveraging a massive synthetic drifter22

numerical simulation, we are able to map semi-diurnal IT energy levels from GDP data and compare it to23

three datasets (two numerical simulations, and a satellite altimetry IT atlas). We find that all numerical24

simulations exhibit biases. Nonetheless, the simulation that benefited from dedicated attention towards ITs25

representation performs best. This supports renewed efforts in the concurrent numerical modeling of ITs26

/ ocean circulation. The substantial deficit of energy in the IT atlas highlights the inability for altimetric27
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estimates to measure incoherent and finer scale ITs and strongly supports the need to isolate ITs signature28

in the data collected by the new wide-swath altimetry mission SWOT.29

1 Introduction30

Internal tides (ITs) are a key component of the ocean circulation, as they cause dissipation and mixing, thereby31

impacting the large scale ocean circulation (Munk and Wunsch, 1998; Ferrari and Wunsch, 2009; Melet et al.,32

2013; Whalen et al., 2020). Their importance has been recognized for decades and their explicit representation in33

ocean general circulation models is possible and has been improving for the last decade (Arbic et al., 2010, 2018).34

Moreover, the surface signature of ITs has been flagged as a major issue for the exploitation of emerging satellite35

sensing – in particular for the Surface Water Ocean Topography (SWOT) mission (Arbic et al., 2015) – as they36

overlap with the signature of non-wave motions at the submesoscale, while temporal filtering is prevented by the37

coarse temporal sampling. Understanding internal tide dynamics and quantifying its energetics are therefore of38

crucial importance and remain insufficient to date.39

ITs can propagate over long distances and, in doing so, interact with the turbulent background ocean40

populated with unsteady jets and eddies. These interactions alter IT propagation and result in a loss of41

coherence (reduction of phase-locking with the generating source – the barotropic tide). Part of the IT signal42

will then be incoherent (non phase-locked), characterized by an incoherent IT variance and an incoherent time43

scale. As a consequence, the ITs estimates based on sea level measurements from satellite altimetry, which rely44

on multi-years long time series to dealias IT high-frequency signals, are limited to their coherent contribution45

and missing part of the IT signal (Zaron et al., 2022; Zhao et al., 2012). Estimates of total (coherent and46

incoherent) semi-diurnal tide variance have been obtained from along-track altimetry data (for mode-1 IT)47

(Zaron, 2017), and using Argo floats measurements (Geoffroy and Nycander, 2022), moorings (Luecke et al.,48

2020) and cruises (Rocha et al., 2016). Estimates of the incoherent tide variance, based on along-track altimetry49

data and Argo floats, were found to reach from 44% to 85% of the total energy (Zaron, 2017; Geoffroy and50

Nycander, 2022). These estimates are however limited to specific areas due to the restrained spatial coverage.51

Numerical models have recently become able to explicitly represent internal tide fields in high resolution52

realistic simulations of order a year long and at basin or global scale (Arbic, 2022). The comparison of numerical53

simulations to other datasets, notably moorings (Luecke et al., 2020) or altimetry (Nelson et al., 2019), supports54

their potential to simulate both coherent and incoherent internal tides. While these simulations provide valuable55

insights on the IT dynamics, it has been shown that numerical aspects such as parameterized wave drag can56

have a strong impact on the simulated IT field (Buijsman et al., 2020). To validate these numerical models, and57

complement satellite altimetry, continuing effort to find appropriate data is called for in order to identify the58

total global IT kinetic energy, i.e., including both coherent and incoherent internal tides for all vertical modes.59

In that regard, the quantification of the IT field through globally deployed surface drifters from the Global60

Drifter Program, GDP, (Elipot et al., 2016) is particularly relevant. Indeed, it provides hourly data of the61
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drifter position, from which currents can be estimated across a wide range of time scales (including motions at62

the typical semi-diurnal tide period of ∼ 12 h) at global scale. Estimates of kinetic energy in the tidal frequency63

bands are thus possible from this dataset (Yu et al., 2019; Arbic et al., 2022). However it has been identified64

that the Lagrangian – i.e. along-flow – perspective can bring some distortion with respect to the Eulerian –65

i.e. fixed-point – one (Zaron and Elipot, 2021; Caspar-Cohen et al., 2022). This distortion, coined ”apparent66

incoherence”, must therefore be addressed if one seeks a reliable estimate of the internal tide energy to compare67

to Eulerian estimates.68

We show here how drifter data may be used to estimate total semi-diurnal internal tides energy levels. We69

propose a method to compensate the Lagrangian bias in drifter diagnostics and map internal tide surface kinetic70

energy from the GDP hourly dataset. Using a state-of-the-art high-resolution numerical simulation of the world71

ocean, the Massachusetts Institute of Technology general circulation model (MITgcm) LLC4320, populated with72

surface Lagrangian particles, we first construct model-based maps of IT surface kinetic energy and identify the73

relationship between Lagrangian and Eulerian diagnostics. We then propose and validate a simple conversion74

accounting for the Lagrangian distortion, that allows us to ”debias” Lagrangian-based kinetic energy estimates.75

These debiased estimates are then compared with estimates from numerical models (MITgcm and the Hybrid76

Coordinate Ocean Model – HYCOM) and from altimetry data (High Resolution Empirical Tide – HRET).77

2 Results78

Quantifying and explaining Lagrangian biases with high resolution simulation and79

theory80

The state-of-the-art global tide resolving numerical simulation LLC4320 (based on the MITgcm model; NASA81

2021) and a synthetic drifter release based on LLC4320 velocity outputs are leveraged to produce a unique82

comparison between Eulerian (fixed-point) and Lagrangian (drifter/along-flow) semi-diurnal internal tide kinetic83

energy (Figure 1, section 4). As, expected, both Lagrangian (Fig. 1a) and Eulerian (Fig. 1b) energy levels84

exhibit maxima at internal tide generation hotspots, near oceanic ridges and islands (e.g., mid-ocean ridges,85

South China Sea, etc.) with values up to ∼0.015 m2 s−2. A global reduction of drifter energy levels is observed86

compared to Eulerian ones, with an average of approximately 75% of the Eulerian energy recovered in the87

Lagrangian framework (Fig 1 and Fig 2 a and b). This could impact our ability to compare drifters observation88

and Eulerian-based estimates and needs to be explained and accounted for.89

The Lagrangian to Eulerian energy ratio is referred to as ”estimated energy ratio” in the rest of the study.90

This ratio varies geographically, ranging from about 0.5 to unity. It is clearly modulated by the intensity of low91

frequency motions with lowest energy ratio observed in low frequency energetic areas, e.g. Equatorial currents,92

Gulf Stream, Kuroshio (Figure 2 a). Caspar-Cohen et al. (2022) provides an explanation for this sensitivity93

of the bias between Lagrangian and Eulerian energy levels to the low-frequency flow magnitude, which relies94
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on the combination between the distortion of ITs temporal signature induced by drifters’ motions relative to95

ITs horizontal structure, on the one hand, and, the filtering of the velocity signal in a fixed frequency band96

on the other hand. The former effect is related to the displacement-induced projection of spatial variability97

into the temporal one, which is a well-known and more general feature associated with Lagrangian observations98

(LaCasce, 2008). The magnitude of this distortion thus depends on the distance traveled by a drifter over an99

IT time period relative to the IT horizontal wavelength, and this distance directly depends on the mean flow100

strength (Figure 3 left panels). Caspar-Cohen et al. (2022) showed that the distortion leads to more rapid101

modulations of ITs which, in the frequency domain, translates into wider peaks in the Lagrangian spectra102

(Fig. 3, right panels and Fig. S2 in Supplementary information). Once integrated across the IT frequency band,103

Lagrangian kinetic energy estimates will thus tend to be weaker than Eulerian estimates. In the case of small104

drifter displacements (labeled (A) in Figure 3), the drifter behaves as an Eulerian observer (e.g. a mooring)105

and measures purely temporal fluctuations. Lagrangian and Eulerian spectra match (Fig. 3, label A, right106

panel), resulting in similar band-integrated energy levels. Conversely, in the case of large drifter displacements107

(labeled (B) in Figure 3), the wave spatial variability is projected into the temporal one, resulting in apparent108

incoherence with wider Lagrangian spectral peaks compared to Eulerian ones (Fig. 3, label B, right panel), and109

ultimately lower Lagrangian energy estimates. This effect is mainly limited to 75% of the Eulerian energy, but110

can be stronger in regions of strong currents (such as some of the ones previously listed).111

The apparent incoherence theoretical model of Caspar-Cohen et al. (2022) is further exploited to predict112

the Lagrangian to Eulerian kinetic energy ratio – referred to as ”predicted energy ratio” (Fig. 2c and d). Its113

prediction is further described in section 4. Estimated and predicted energy ratios compare well visually with114

predictions of energy ratio minima in terms of their values (∼ 0.5) and locations. This strongly supports the fact115

that the smaller Lagrangian-based estimates are indeed linked to apparent incoherence and purely caused by the116

entanglement of spatial and temporal variability in Lagrangian-based estimates and the associated widening of117

Lagrangian spectra. A conversion from Lagrangian to Eulerian framework is thus necessary in order to compare118

them to Eulerian-based estimates.119
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(a) Eulerian

(b) Lagrangian

Figure 1: Maps of (a) Eulerian and (b) Lagrangian kinetic energy levels in the semi-diurnal band computed

from LLC4320 surface outputs and simulated drifter trajectories. The energy levels are averaged over time and

over 2°x2° spatial bins.
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(a) Estimated energy ratio

(b) Estimated energy levels, PDF

(c) Predicted energy ratio

(d) Predicted energy levels, PDF

Figure 2: Comparison between estimated Eulerian kinetic energy (from LLC4320) and estimated / predicted

Lagrangian kinetic energy. Maps of (a) estimated and (c) predicted Lagrangian to Eulerian energy ratio in the

semi-diurnal band computed from LLC4320 surface outputs and simulated drifter trajectories. Black contours

define regions in which the low frequency kinetic energy is larger than 0.1 m2 s−2. Joint plots of the distribution

of (b) estimated and (d) predicted (x-axis) Lagrangian and (y-axis) Eulerian energy levels are also plotted in

the right panels. Dashed black lines represent mean Eulerian and Lagrangian energy values.
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FrequencySpace

2π/k

2π/k

(A) (A)

(B) (B)

Lagrangian

Eulerian

⃗U

⃗U

Figure 3: Schematic description of the bias introduced by drifter displacements and how this bias impacts the

energy levels found in a fixed frequency band. Two examples are shown, labeled (A) and (B). (A) corresponds

to weak and (B) to strong drifter advection by the low-frequency background flow. Left panels represent the

waves signature and the drifter displacement, represented by the dashed red curve, compared to the wavelength

2π/k. U⃗ represents the background low-frequency flow. Right panels represent the same case scenario in the

frequency domain with schematic power spectra around a central frequency (represented by the dotted line).

Solid vertical black lines correspond to the limits of a fixed frequency band.

7



Applications: comparing Eulerian datasets to ground truth energy levels120

Now that the differences between Eulerian and Lagrangian-based energy estimates have been rationalized and121

predicted, we introduce a conversion factor to obtain reference energy levels from global, high temporal resolution122

in situ drifter dataset. In accordance with theory, we assume that the Lagrangian to Eulerian energy ratio123

depends on the strength of the low-frequency flow (defined as motion with timescales larger than 2 days) and124

internal tide spatial scales, both of which we assume are correctly predicted in the LLC4320 simulation (see Yu125

et al. (2019) for a quantitative description). This ratio can then be used as a conversion factor for Lagrangian126

observations. From there, converted Eulerian-like energy estimates (Figure S1a in Supplementary information)127

are obtained by multiplying Lagrangian-based energy levels with the conversion factor (Figure 2a).128

This conversion is thus applied to the energy estimate from the in situ Lagrangian observations of hourly129

surface velocity provided by the GDP (Elipot et al. (2016, 2022), section 4). The converted energy levels130

(GDPC) may be used as reference energy levels and compared to Eulerian-based estimates giving us a unique131

tool to directly validate and complement estimates from numerical models and along-track altimetry. We next132

use energy levels estimated in the same frequency band in two high resolution global numerical simulations,133

LLC4320 (Figure 4 a) and HYCOM (Arbic 2022; Arbic et al. 2022; Figures 4b and S1b in Supplementary134

information, and section 4). In addition, we compare our dataset to estimates from altimetry (Zaron et al.135

2022; Figure 4c).136

Despite similar input data types and processing, both numerical simulations exhibit significant differences137

when compared to semi-diurnal converted energies. LLC4320 energy levels overall overestimate GDP converted138

energy levels by a factor 2 on average (Figure 4a). Both LLC4320 and converted GDP energy levels follow139

a similar dependence on latitude (Figure 5 yellow and red curves), supporting the hypothesis of general phe-140

nomena causing this overestimation. Arbic et al. (2022) attributed this issue to the lack of a parameterized141

topographic internal wave drag in LLC4320 which has been shown to be necessary for accurate tides in HY-142

COM (Arbic et al., 2010; Ansong et al., 2015; Buijsman et al., 2020; Arbic, 2022). Comparing simulation143

outputs to converted energy levels instead of the biased (e.g., Lagrangian) ones attenuates this overestimation,144

decreasing from a factor 3 of the original dataset to a factor 2 of the converted one (Figure 4a, right panel). In145

comparison, the HYCOM simulation shows a better match with converted energy levels, representing 87% of146

converted levels. Differences between HYCOM and converted GDP energies highlight regional differences with,147

for instance, an underestimation below 40°S where HYCOM energy levels represents 37% of the GDP energy,148

and an overestimation in the North eastern Pacific area (energy levels five times higher than the converted GDP149

energy). Arbic et al. (2022) attributed the latter anomaly to numerical instabilities. The area between -30°150

and 30°N shows a particularly good concordance with converted levels, visible especially in the zonal average151

(Figure 5 green and red curves), with an average overestimation of the converted GDP energy by a factor 1.03,152

i.e., only 3% difference compared to GDPC energies. The comparison of our converted dataset to this simulation153

highlights again the importance of the conversion process as energy levels would have been overall overestimated154
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in HYCOM if compared directly to GDP energy levels, 87% of converted levels vs. 117% of the original GDP155

dataset.156

Reference energy levels also open the door to the quantification of IT incoherent energy fractions. Due to157

their low temporal resolution, IT atlas derived from satellite altimetry are indeed limited to coherent IT and158

few vertical modes. The incoherent energy has been estimated previously to account for a significant fraction159

of the total tidal energy 44% (Zaron, 2017) to 68% (Nelson et al., 2019). This remains true even in the case160

of advanced products such as High Resolution Empirical Tide (HRET) (Zaron et al., 2022). Indeed, while161

HRET successfully represents IT generation hotspots and main area of interest (Figure 1c in Supplementary162

information), its energy levels strongly depend on its ability to include incoherent and high modes tides in163

this representation. In the case of mode-1 internal tides and considering only the two main components, M2164

and S2, kinetic energy from HRET represents only 11% of the reference energy levels (Figures 4c and 5 blue165

curve). As further discussed in sections 3 and 4, the fundamental difference of data processing between HRET166

and GDP dataset explains this large difference. This result highlights the significance of including incoherent167

and/or contributions of higher modes as well as the necessity to use in situ observations to complement satellite168

altimetry.169
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(a) [LLC4320 - GDPC] / GDPC

(b) [HYCOM - GDPC] / GDPC

(c) [HRET - GDPC] / GDPC

Figure 4: Comparison of semi-diurnal kinetic energy estimated from GDP dataset to the ones from LLC4320,

HYCOM and HRET. (Left panels) Maps of the surface semi-diurnal kinetic energy differences between (a)

LLC4320, (b) HYCOM and (c) HRET and the converted energy levels from GDP surface drifters normalized by

converted GDP energy levels. (right panels) The distributions of the difference between each dataset and (blue)

converted and (red) biased energy levels from GDP data are shown. Mean energy differences are represented

by the colored vertical lines.
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Figure 5: Zonal average of the surface semi-diurnal kinetic energy estimated from LLC4320, HYCOM, converted

GDP and HRET. Grey shading correspond to error due to spatial sampling (i.e. standard deviation)
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3 Discussion170

Our study confirms the relevance of apparent incoherence for Lagrangian based mapping of the semi-diurnal171

internal tide. Its existence was speculated by Zaron and Elipot (2021) and Arbic et al. (2022) and verified172

in idealized simulations and modeled theoretically by Caspar-Cohen et al. (2022). Apparent incoherence and173

the associated spectral widening of the semi-diurnal peak resulting from drifter displacements is found to lead,174

without adequate treatment, to an average low bias of 25% of semi-diurnal Lagrangian-based estimated when175

compared to Eulerian-based ones. This difference is the largest in areas of energetic low frequency variability,176

where Lagrangian energy levels represents only 60% of the Eulerian energy levels, in accordance with theoretical177

predictions.178

Motivated by this successful theoretical description, we proposed a conversion of the GDP based estimates179

of semi-diurnal energy distribution to an Eulerian-like distribution. This method relies on the comparison180

between Lagrangian and Eulerian semi-diurnal energy levels in a state of the art numerical simulation of the181

ocean circulation. Our approach essentially remains robust to an overall bias in semi-diurnal variability energy,182

but critically assumes that the numerical simulation is able to reproduce the internal distribution across spatial183

scales. The latter assumption could be partly tested in latter studies at isolated spots with mooring data (Timko184

et al., 2012, 2013; Wang et al., 2018; Luecke et al., 2020), or altimetric observations via coherent internal tides185

(Ray and Mitchum, 1996, 1997; Zhao, 2014; Pan et al., 2022).186

This original approach enabled us to reassess the accuracy of the semi-diurnal internal tide variability187

predicted by two global tide-resolving numerical predictions (MITgcm LLC4320 and HYCOM). Previous results188

are confirmed: MITgcm LLC4320 semi-diurnal energy is higher than in situ observations by a factor of about189

two on average (equivalent to 8× 10−3 m2 s−2). HYCOM exhibits relatively little bias on average but regional190

modulations emerge: underestimated energy outside the tropics, overestimation in the tropics, and anomalous191

energy excess in the North Pacific caused by numerical instability. Reference energy levels Eulerian-like estimates192

using a conversion of Lagrangian observations highlight models and areas for which configurations are seemingly193

best suited to successfully describe IT dynamics. In addition, our study emphasizes the need to carefully factor194

potential biases when using in situ observations to validate these simulations. This assessment of the accuracy195

of numerical simulations, in regard to IT kinetic energy, is potentially limited by the different temporal coverage196

between numerical simulations and GDP (∼ one year against several decades). We argue that at least a year is197

covered by numerical simulations which mitigates seasonal fluctuations of the semi-diurnal IT energy (Lahaye198

et al., 2019). Inter-annual fluctuations however may remain and should be investigated in the future.199

A second direct application of our estimate of semi-diurnal internal tide energy is to provide new estimates200

of the IT incoherent kinetic energy via comparisons with altimetry-based estimates of the coherent energy201

(HRET). The averaged incoherent, and modes higher than 1, energy is about 5 × 10−4 m2 s−2, which is 89%202

of the total energy on average. This metric may be leveraged to assess the ability of tidal models to reproduce203

coherent and incoherent internal tides independently, and constitute a useful background value for internal tide204
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data assimilation efforts (Le Guillou et al., 2021b,a; Wang et al., 2022).205

Two points that may be investigated in the future are the presence of non-tidal motions in the semi-diurnal206

frequency band, e.g., submesoscale low-frequency motions, and, on the contrary, the risk to exclude some of the207

tidal energy. Two parameters control this: the form of the spectra of low-frequency motions, mostly determined208

by the decorrelation timescale, and the width of the frequency band chosen for the data processing. An209

investigation showed that a theoretical spectral form for low-frequency motions and tests of different frequency210

bands could provide a satisfying frequency bandwidth (Fig. S3). This results in a generic choice that successfully211

reduced the fraction of low-frequency energy present in the semi-diurnal band and its impact on the comparison212

of Lagrangian datasets with Eulerian-based estimates. This choice could be more finely defined in local studies,213

where a more precise optimal bandwidth could be necessary. However, this fraction of energy and/or other214

source of contamination will change depending on the frequency of interest of a study and optimum bandwidth215

should be carefully defined for each study case.216

Overall, this study highlights a recent surge of efforts and substantial results around the mapping of internal217

tides in the ocean in general and from drifter data in particular. Leads for future studies are numerous ranging218

from the application of present methods to diurnal tides (although apparent incoherence is expected to be219

weaker, as associated length scales are larger, and part of the signal may be non-tidal; Arbic et al. 2022), to220

per-vertical mode description of the effect of apparent incoherence. SWOT, its fast sampling phase in particular,221

may provide unprecedented details of internal tide dynamics which combined with drifter data could lead to222

unprecedented descriptions of the ocean internal tide variability. This could have a long-standing impact on223

our ability to represent internal tides explicitly in high resolution numerical simulations or implicitly via the224

parametrization of their effects in climate numerical simulations (Simmons et al., 2004; Melet et al., 2016; Olbers225

et al., 2019; de Lavergne et al., 2019).226

4 Methods227

LLC4320 and GDP data processing228

LLC4320 is a global-ocean configuration based on the MIT general circulation model (MITgcm) (NASA, 2021).229

Its grid resolution is 1/48° horizontally, i.e., around 2 km (1 km in the Arctic, 2.4 km at the Equator) with 90230

vertical levels. Outputs have been produced with hourly resolution. Atmospheric forcing is based on ECMWF 6231

hourly product, and tides are forced with 16 major constituents. An erroneous 10% overestimation of the tidal232

forcing has been reported in Arbic et al. (2022). LLC4320 dataset is approximately one year long, beginning on233

the 15th of November 2011 and ending on the 9th of November 2012. Drifter trajectories are computed offline234

from the hourly surface velocity fields using Ocean Parcels (Van Sebille et al., 2018). Interpolation schemes235

are a 4th order Runge-Kutta in time and TRACMASS in space (Delandmeter and Van Sebille, 2019). Drifters236

are initially deployed every 50 grid points (∼1°) in latitude and longitude. Every 10 days, drifters are released237
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at initial drifter locations if the closest drifter exceeds the initial closest neighbor separation. The number of238

drifters in the simulation hence increases from about 60 000 to 100 000 at the end of year-long simulation. This239

reseeding strategy enables to obtain above 8000 drifter positions per 1°x1° spatial bin over the time series length240

outside of Equatorial area and above 5000 drifters at the Equator.241

The in situ drifter dataset used in section 2 are the surface velocity fields provided by the GDP with a 1242

hour time resolution. In our study data from both Argos and GPS-tracked drifters were used (Elipot et al.,243

2016).244

The same data processing is applied to both simulated and in situ datasets in order to extract semi-diurnal245

variability from velocity time series. The first step is to bandpass filter the raw signal in the semi-diurnal246

frequency band defined by its central frequency ωc = (ωM2
+ ωS2

)/2 ≃ 1.97 cpd and bandwidth ∆ω = 0.4 cpd.247

The Hilbert transform is then applied to filtered time series. The resulting analytical signal is multiplied by248

exp (−iωct) leading to the demodulated tidal signal ũ(t). As illustrated in Arbic et al. (2022), energy estimates249

may be sensitive to the choice of bandwidth. The present choice is motivated by synthetic experiments and250

results from a trade-off aiming at reducing the imprint of background energy while including the majority of251

the semi-diurnal tidal signal.252

Averaged kinetic energy are then obtained from the demodulated horizontal velocity time series, ũ and ṽ

for the zonal and meridional velocity respectively. For Eulerian time series, this averaged energy is given by:

KEE,high =
1

2
< ũ2

E + ṽ2E >b (1)

where < . >b is the horizontal bin average and . is the time average. For Lagrangian model and in situ time

series, the energy is computed according to:

KEL,high =
1

2
< ũ2

L + ṽ2L >b,t (2)

where < . >b,t is the time and horizontal bin average.253

HYCOM data processing254

The dataset from the HYCOM simulation was processed outside of the scope of this study by Arbic et al. (2022)255

who give a complete description of both data and method. The HYCOM simulation has a 1/25° horizontal256

resolution with 41 vertical levels. The tidal forcing accounts for the 5 largest tidal components, including the257

three main semi-diurnal components, M2, S2, and N2. Outputs are provided with hourly time resolution for258

about one year starting on 1 January 2014.259

Kinetic energy is estimated from frequency rotary spectra which are computed by splitting the complex260

velocity time series u+iv, where u and v denote zonal and meridional velocities respectively, into 60-day windows261

overlapping by 50% (Arbic et al., 2022). For each temporal window, time series are detrended and multiplied262

by a normalized Hann window. Individual discrete Fourier transform are then computed and multiplied by263

their complex conjugates. Averages over all windows and within 1°x1° bins lead to time-averaged kinetic energy264
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spectra. These spectra are then integrated in the 1.8 to 2.2 frequency band, thereby providing the maps of265

kinetic energy presented in section 2.266

The data processing differs from the one applied to LLC4320 and GDP datasets. In order to investigate267

the potential impact of this difference on the comparison between GDP energies and HYCOM ones, both data268

processing methods were compared with LLC4320 data. Observed differences are mostly noise-like and lower269

than differences reported in section 2 (2% due to the noise in average against 6% caused by the difference of270

dataset).271

High Resolution Empirical Tide (HRET)272

HRET processing is described in Zaron (2019) and Zaron et al. (2022). HRET is an internal tide atlas based on

satellite altimetric data mapping the sea surface height (SSH) associated with internal tides component (Zaron,

2019; Zaron et al., 2022). Estimation of variance are obtained for the M2 coherent IT signal. To this signal we

added an estimation of the variance of the S2 coherent IT using theoretical equilibrium tides amplitudes.

KE = KEM2
(1 +

aS2

aM2

) (3)

where KEM2
is the energy estimation from HRET, aS2

is the equilibrium amplitude of S2 and aM2
is the273

equilibrium amplitude of M2.274

The estimation of energy based on HRET accounts for the coherent signal of two tidal components, M2275

and S2. HRET thus provides a fraction of the signal that can be obtained via integrated spectra or bandpass276

filtering, and is therefore expected to provide lower energy levels compared to data sources that account for the277

full tidal signal (e.g. LLC4320, HYCOM, GDP). The comparison between HRET diagnostics and other data278

sources highlights the fraction of internal tide energy not represented in satellite climatologies.279

Predicting apparent incoherence280

In section 2, we present a prediction of the Lagrangian to Eulerian energy ratio. This prediction is based281

on the study developed in Caspar-Cohen et al. (2022) which provides a theoretical model for the Lagrangian282

autocorrelation, following:283

C̃L(τ) = C̃E(τ)e
−k2σ2(τ) (4)

where C̃(τ) is the Eulerian autocovariance, k the internal tide horizontal wavenumber and σ a prediction of

drifters’ displacement depending on the low frequency motion amplitude and decorrelation timescale. Internal

tides and low frequency motion properties (energy and decorrelation timescales) are estimated from the Eulerian

outputs of LLC4320 simulation, following the fitting method described in Caspar-Cohen et al. (2022). From

these Eulerian estimates, Eulerian autocovariance is computed, and the Lagrangian autocovariance predicted.
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Eulerian and Lagrangian spectra, noted Ẽe and Ẽl respectively, are then estimated via their relationship with

autocovariance functions:

E(ω) =

∫
∞

−∞

C(τ)cos(ωτ)dτ (5)

where C is an autocovariance function. Estimates of the Eulerian and Lagrangian energy fields can then be

inferred from these spectra by integration in a fixed bandwidth.

KEE,high =

∫ ωc+∆ω/2

ωc−∆ω/2

Ẽe(ω)dω, (6)

KEL,high,predicted =

∫ ωc+∆ω/2

ωc−∆ω/2

Ẽl(ω)dω (7)

where ωc is the central frequency of the filter and ∆ω its bandwidth. Consequently the energy ratio referred to284

as ”predicted energy ratio” in section 2 corresponds to KEL,high,predicted/KEE,high (Figure 2a and 2b) and is285

compared to the ”estimated energy ratio”, KEL,high/KEE,high (Figure 2c and 2d).286
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