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Abstract12

Data assimilation (DA) reconstructs and forecasts the dynamics of geophysical13

processes based on available observations and on physical a priori. Recently, the14

hybridization of DA and deep learning has opened new perspectives to address15

model-data interactions. In this paper, we investigate its potential contribution to16

the analysis of a chaotic oceanic phenomenon: an idealized model representing the17

centennial to millennial variability of the North Atlantic ocean circulation during18

the last glacial period. The implemented neural approach – 4DVarNet – yields large19

relative improvements over a classical variational DA method on the reconstruction20

of the regime shifts of the Atlantic Meridional Overturning Circulation (AMOC).21

These gains are even more significant when the density of observations decreases.22

The results also exhibit that the explicit exploitation of the a priori dynamical23

model does not necessarily lead to the best performance compared to a data-driven24

model. Additionally, we compare four different sampling strategies to assess the25

impact of the observations on the capture of the unstable phases of the AMOC.26

We highlight the gain of regular over random sampling strategies, reaching an error27

of reconstruction below 2% with a sampling period of 100 years. The error on the28

reconstruction of regime shifts can even be divided by 5 when acquiring clusters of29

three consecutive observations, sometimes more suited in an operational framework.30

This study on an idealised, nonetheless complex, physical model suggests that neural31

approaches trained on observations wisely acquired could improve the monitoring of32

regime shifts in the context of climate change.33

Plain Language Summary34

This paper presents the benefits of deep learning for the monitoring of the35

centennial to millennial variability of the ocean circulation in the North Atlantic36

during the last glacial period. By improving the assimilation of observations and37

the representation of this complex phenomenon with a neural network, we reduce38

the error of reconstruction of regime shifts in the North Atlantic circulation by two39

orders of magnitude, compared with a classical method of assimilation. We also con-40

ducted experiments on the impact of the amount of observations and their moment41

of acquisition. Our results suggest that acquiring clusters of three consecutive ob-42

servations in a regular manner enables to capture accurately these climate regime43

shifts. We believe that this study establishes groundwork for a better monitoring of44

regime shifts in the context of climate change.45

1 Introduction46

Observing the ocean is a challenge, but one that needs to be met to improve47

the monitoring of oceanic processes in the context of climate change. One impor-48

tant oceanic phenomena which regulates the climate by heat storage, for instance,49

is the Atlantic Meridional Overturning Circulation (AMOC). The AMOC drives the50

transport of warm surface water masses towards the North Pole. Through exchanges51

with the atmosphere, these water masses become denser and sink when arriving52

to the Arctic Ocean. They continue their journey southwards as dense cold water53

masses at depth. This phenomenon is associated with a net heat transport in the54

North Atlantic. It also traps heat and captures excess carbon emissions from the55

surface to the deep ocean. Various studies have highlighted the chaotic nature of56

the AMOC dynamics (Buckley & Marshall, 2016; Germe et al., 2022). In particular,57

paleoceanography studies have evidenced abrupt climate shifts during the last glacial58

interval, referred to as Dansgaard-Oeschger (DO) events (Dansgaard et al., 1993).59

These events occurred approximately every 1470±500 years and were characterized60

by an abrupt slowdown of the AMOC. These paleoclimatic events are nowadays61
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studied to understand how current ocean temperature and salinity changes due to62

sea ice extent variability could reflect on the AMOC (Sévellec & Fedorov, 2015).63

Given the impact of the AMOC onto the climate regulation, the AMOC shutdown64

is regarded as a potential climate tipping point (Ditlevsen & Ditlevsen, 2023), which65

motivates dedicated research effort both in terms of monitoring, modelling, and66

predictability issues (McCarthy et al., 2020; Rayner et al., 2011)67

To reconstruct the AMOC variability of the last glacial interval, we propose68

to use a generic methodology in geosciences: data assimilation (DA). Over the last69

decades, DA has been developed to reconstruct and forecast geophysical dynamics70

from noisy and partial observations, given some prior knowledge on the underlying71

dynamics (Carrassi et al., 2017). We can cast data assimilation schemes into two72

main categories: statistical data assimilation schemes, especially sequential Kalman73

approaches (Evensen, 2009), and variational data assimilation schemes (Cummings74

& Smedstad, 2013). Recently, neural data assimilation, which bridges deep learn-75

ing and data assimilation, has attracted a greater attention with potential break-76

throughs for the targeted inverse problems (Boudier et al., 2023; Fablet et al., 2021).77

These recent advances appear appealing to monitor ocean processes, which remain78

usually poorly observed.79

Indeed, while the ocean encompasses up to 70% of the Earth’s surface, only80

10% is considered to have been explored (Kim & Seto, 2022). Nowadays, the ob-81

servation of the AMOC variability relies mostly on a few moorings measuring the82

dynamic height and the currents, on hydrographic campaigns and on satellite al-83

timetry (McCarthy et al., 2020). Even if technological progress enabled scientists84

to develop a consistent monitoring network, these observation points remain sparse85

compared to the immensity of the phenomenon at study, which evolves on thou-86

sand kilometers with a temporal scale reaching decades to centuries while inducing87

vertical transport at deep sea, a place still hard to reach with observation systems.88

Through an idealised representation of the AMOC, this study investigates the in-89

terplay between the scarcity of the observations and the reconstruction schemes to90

inform DO events.91

As Munk (2000) claimed, future advents in oceanography can only be achieved92

by an adequate sampling in space, but also in time. Therefore, in this study, we93

focus on sampling strategies of time series of a few thousands of years. More specif-94

ically, we vary both the observation budget and the sampling patterns and explore95

how neural DA can improve the monitoring of regime shifts in chaotic climate dy-96

namics under such observing conditions. More specifically, Fablet et al. (2021) de-97

veloped an end-to-end neural model for learning a system’s dynamics representation98

and jointly solving a variational formulation problem. This method, called 4DVar-99

Net, has shown a great potential to reconstruct chaotic dynamics like Lorenz-63 and100

Lorenz-96 systems (Fablet et al., 2021), and hence it will be used here as a neural101

DA scheme, which will be benchmarked against a classical state-of-the-art 4D-Var102

DA scheme (Cummings & Smedstad, 2013). Our results support a much greater103

ability of neural DA schemes to retrieve the dynamics of the different phases of the104

AMOC.105

In this paper, we delve into the potential of neural inversion schemes for im-106

proving the reconstruction of climate regime shifts, such as DO events. We inves-107

tigate how different observation strategies affect the monitoring performance of108

4DVarNet. The structure of the paper is as follows: we start by introducing the109

dynamical system representing the AMOC and the DO events. Section 3 presents110

the considered neural and variational DA schemes. We experiment various sampling111

strategies in Section 4 and discuss further our main contributions.112
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2 The Idealized Chaotic Model of the AMOC113

This experimental study exploits a theoretical representation of the AMOC114

proposed by Sévellec and Fedorov (2014). This idealized model allows us to analyze115

the typical centennial to millennial variability of DO events during the last ice age.116

Inspired by the Howard-Malkus loop (Howard, 1971; Malkus, 1972), this model was117

validated against δ18O paleorecords. The set of ordinary differential equations (M)118

for this model reads:119

M =


ω̇(t) = −λω(t)− ϵβSNS(t)
˙dSBT (t)= (Ω0 + ω(t))SNS(t)−KSBT (t) +

F0S0

h
˙dSNS(t)= −(Ω0 + ω(t))SBT (t)−KSNS(t)

, (1)

where ω is the time-varying component of the AMOC intensity, SBT and SNS are120

the vertical and meridional salinity gradients, respectively, λ is a linear friction coef-121

ficient, ϵ is the buoyancy torque coefficient, β is the haline contraction coefficient, Ω0122

is the constant component of the AMOC intensity (such as Ω=Ω0+ω, where Ω is the123

total AMOC intensity), K is the linear damping coefficient, F0 is the freshwater flux124

intensity, S0 is a salinity reference and h is the depth of the level of no motion for125

the baroclinic flow.126

The first equation of the system refers to the momentum balance, while127

the second and the third equations define the evolution of the bottom-top and128

North-South salinity gradients, respectively. In order to work with an homoge-129

neous state (say X), we apply the coefficient βϵ
λ to the second and third equa-130

tions. We obtain the following, time-depending, vector of three components131

X(t) ≜ [x1(t), x2(t), x3(t)]
T = [ω(t), βϵ

λ Sv(t),
βϵ
λ SBT (t)]

T . Thus, the dynamical132

system can eventually be written as:133

Ẋ(t) = M(X(t)) =

 −λ(x1(t) + x3(t))
(ω0 + x1(t))x3(t)− kx2(t) + f
−(ω0 + x1(t))x2(t)− kx3(t)

 . (2)

The time integration of the model highlights the different regimes of the sys-134

tem (Fig. 1). We compute the energy of the system such as d=
√
x2
1 + x2

2 + x2
3, from135

which we infer three categories experimentally. The ON phase corresponds to a sta-136

ble circulation with d<0.060 yr−1, while the OFF phase indicates a shutdown of the137

AMOC with an energy exceeding d>0.130 yr−1. In between, the regime shift corre-138

sponds to the transition between the ON and OFF phases. We note a regularity in139

this chaotic non-linear system, with a two-stage variability: a first centennial almost140

harmonic period close to 250 years occurs mainly during the ON phase; a second141

millennial variability of around 1470±500 years is linked to the temporal scale of the142

DO events, and corresponds to the periodicity of the AMOC shutdowns (i.e., OFF143

phase). Further information regarding the parameterization and dynamics of this144

model can be found in Sévellec and Fedorov (2014).145

3 Neural Data Assimilation146

The aim of this study is to monitor abrupt changes in a chaotic non-linear147

dynamical system by integrating it into a data assimilation problem. Data assimi-148

lation is widespread in climate sciences due to its ability to solve inverse problems149

by taking into account both physical models and observations, in order to compute150

a better estimate of the ground truth (Johnson et al., 2005; Carrassi et al., 2017).151
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Here, we adopt a variational approach of the problem, but we refer the reader to152

Evensen (2009) for details about the ensemble methods.153

Let us consider the following inverse problem:154

{
Ẋ(t)= M(X(t))
Y (t)= HtX(t) + qobs(t)

, (3)

where X is the state of the system at the considered time and Y is the vector of155

observations acquired with a Gaussian noise such as qobs ∼ N (0, σ2
obsI). While M is156

the dynamical model containing the physical knowledge, Ht stands for an observa-157

tion mask defining the chosen sampling strategy.158

The variational 4DVar method produces an estimate X̂ of the true state X by159

propagating the information brought by the observations to the rest of the system.160

This optimisation problem is based on the minimisation of a variational cost J over161

a chosen assimilation time window ∆T , such as X̂ = argminX J(Y ,X, ϕ(X),H)162

where J is defined as:163

J(Y ,X, ϕ(X),H) =
1

∆T

[
αobs

∫ t0+∆T

t0

||Y (t)−HtX(t)||22 dt

+ αdyn

∫ t0+∆T

t0

||ϕ(X)(t)−X(t)||22 dt

+ αB ||XB −X(t0)||22

]
,

(4)

with ϕ(X)(t) = X(t′) +
∫ t

t′
M(X(s))ds, where t, t′ and s are time variables, ds and164

dt stand for the time unit, ϕ is the propagator associated with M, ||.||22 is a norm165

such as ||X||22 = d2, t0 is the starting time, XB is the background state (i.e., an ini-166

tial first guess of the optimization), and αobs, αdyn, and αB are weights which have167

to be optimally parameterised.168

The first term of the variational cost J seeks to reduce the discrepancies be-169

tween the observations and the estimated state of the system, while the second term170

favors a small difference between the output of the dynamical model and the es-171

timated state X on the chosen time window ∆T starting at t=t0. The last term172

corresponds to a background-dependent regularization of X in order to constrain the173

stability of the assimilation by providing an initial condition of the system. To be in-174

formative, XB has to be a good approximation of the state X at time t0 (Zupanski,175

1997). In our study, this last term is only implemented in the classical 4D-Var data176

assimilation method (hereinafter referred to as 4DVar-classic).177

The minimisation of J , usually reached by gradient descent, leads to the anal-178

ysed state at iteration k ∈ N∗:179

Xk+1 = Xk − δ∇J(Y ,Xk, ϕ(Xk),H) (5)

where δ is the increment amplitude, and ∇J(Y ,Xk, ϕ(Xk),H) stands for the gra-180

dient of J evaluated at point Xk. This method is iterated until the variational cost181

converges. Its convergence also depends on the gradient step δ. It has to be set as a182

trade-off between a fast calculation and a stable convergence.183

As evidence by a growing literature, data assimilation and deep learning share184

common theoretical grounds which advocate novel approaches exploring machine185
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learning paradigms in data assimilation problems (Arcucci et al., 2021; Brajard et186

al., 2020). In this study, we focus on end-to-end neural data assimilation schemes187

(Fablet et al., 2021; Boudier et al., 2023), and more particularly 4DVarNets, as new188

means to optimize a data assimilation scheme for given dynamics and observing189

systems.190

3.1 4DVarNet Architecture191

The 4DVarNet architecture reproduces the unfolding of an iterative gradient192

descent algorithm to minimise the variational cost J as described in eq. (4). We193

implement a Residual Network (ResNet) architecture composed of convolutive Long-194

Short Term Memory (LSTM) residual units. Inspired by meta-learning (Vanschoren,195

2018), this approach is particularly convenient in the case of the reconstruction of a196

dynamical system since previous states of the assimilation are stored into memory197

to help out the learning of the optimal weights αobs and αdyn. Therefore, the gen-198

eral architecture of the neural network resembles momentum-based gradient descent199

(Zhou et al., 2023), enabling faster and more robust convergence of the variational200

cost J towards an optimal state X̂.201

As sketched in Fig. 2, the 4DVarNet scheme applies three main steps at itera-202

tion k ∈ N∗ :203

1. We compute the variational cost J(Y ,Xk, ϕ(Xk),H) for the observation data204

Y , the current state Xk, the output of the dynamical model ϕ and the chosen205

observation mask H;206

2. We apply the automatic differentiation to obtain ∇XJ(Y ,Xk, ϕ(Xk),H);207

3. The reconstructed state X is updated such that Xk+1 = Xk − δXk where208

δXk is the residual update computed as the output of a convolutional LSTM209

block G defined as δXk = G[∇J(Y ,Xk, ϕ(Xk),H].210

These steps are iterated over a predefined number K of iterations, typically up to a211

few tens. More details about this end-to-end scheme can be found in (Fablet et al.,212

2021).213

3.2 Representation of the Physical Model214

The definition of the dynamical model M is crucial for the computation of the215

variational cost J , and therefore for the process of data assimilation. Here, we pro-216

pose two approaches to compute the physical prior ϕ: a numerical integration of M217

and a neural network representing ϕ directly.218

ϕ as a numerical integration of M: The numerical integration follows a219

Runge-Kutta 4 integration scheme and relies on the AMOC equations introduced220

in Sec.2. This approach enables to inform the neural network with physics directly221

during its training. Physics-Informed Neural Networks (PINNs) is a growing field in222

machine learning since it provides a physical constraint, which facilitates the inter-223

pretability of the final output and of the optimisation process (Raissi et al., 2019;224

Dabrowski et al., 2023).225

ϕ as a U-Net operator: The U-Net architecture has been chosen to226

represent ϕ because of its capacity to learn the multiple scales of the system227

(Ronneberger et al., 2015). This is a complete data-driven approach, which is useful228

when the analytical solution of the system M cannot be retrieved. This approach229

is inspired by recent advances in data-driven model discovery, made possible by the230

increasing volumes of data and improvements in computational efficiency over recent231

decades. These techniques are more and more investigated in geophysics, where the232
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phenomena cannot always be put into equations because of their non-linearities and233

there chaotic natures (Berg & Nyström, 2019; Rudy et al., 2017). In our case, we234

know the physical system M and use it to simulate the data of the training dataset,235

which aims at jointly training the U-Net and the convolutive LSTM block – the236

solver –, making the optimization of the data assimilation problem powerful.237

3.3 Learning setting238

4DVarNet is trained in a supervised way according to the following learning
cost:

∀l ∈ N∗, Ll =
1

l

[
(l−1)dt∑
t=0

α1∥X̂(t)−X(t)∥2

+α2

(
∥ϕ(X̂)(t)− X̂(t)∥2 + ∥ϕ(X)(t)−X(t)∥2

)
+α3∥ϕ(X)(t+ 1)− ϕ(X)(t)−X(t+ 1) +X(t)∥2

]
,

(6)

where l is the number of time steps on which the dynamical system is assimilated,239

and α1, α2 and α3 are weights applied to each part of the learning cost. This learn-240

ing cost is formulated to minimise the mean square error between the ground truth241

and the reconstructed state X̂, and between the output of the dynamical model ϕ242

and the state X. A regularisation term on the derivative of ϕ(X)−X is added to243

limit the numerical noise of the reconstructed state X̂.244

In our implementation, we consider a 10-iteration 4DVarNet scheme. Our245

training procedure involves 450 epochs to reach a training convergence. We use an246

Adam optimiser on batches of size of 128, with a dropout of 20% to avoid overfit-247

ting of the data (Kingma & Ba, 2017; Srivastava et al., 2014). The learning rate248

varies from 1×10−3 to 1×10−7 throughout the training. The code is implemented in249

Pytorch and is available at: https://github.com/PerrineBauchot/AMOC 4DVarNet.250

4 Experiments and Results251

4.1 Experimental setup252

We carried out 100 simulations of the AMOC system over a time period of253

100 000 years, from which we extracted one training set and one test set (Fig. 3).254

To build our training dataset, we extract 50 2 500-year time series out of the first255

60 000 years of each simulation. This leads to a training dataset composed of 5 000256

time series of 2 500 years. Similarly, the test dataset comprises 100 time series of257

2 500 years extracted from the last 35 000 years of each simulation. This experi-258

mental setting enhances the diversity of situations provided to the learning scheme259

during the training phase, while guaranteeing the test dataset to be independent260

from the training one. As DO events occur with a characteristic period of about261

1470±500 years, each 2 500-year time series involves on average one DO events. This262

makes these simulated datasets relevant for the reconstruction of regime shifts in263

chaotic climate dynamics.264

The observation vector Y is also constructed out of this simulated dataset. To265

satisfy Shannon’s criterion for the frequency of DO events, observations are acquired266

with a minimum sampling frequency of 1
120 yr−1. We add a Gaussian measurement267

noise to the three variables with a variance equivalent to 10% of variance of the cen-268

tennial oscillation of the system. This percentage applies the same noise ratio across269

all observed variables. From these observations, we can derive the initial reconstruc-270

tion as a linear interpolation of the observations for the assimilation problem.271
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In our experiments, the three system components are observed simultaneously.272

We first compare the performance of three data assimilation methods (described273

below) in order to find the best among them for reconstructing the North Atlantic274

Ocean variability, and more specifically the regime shifts. Then, we analyse the in-275

fluence of sampling strategies on the resolution of the assimilation problem, and find276

the best “data assimilation method / sampling strategy” pair to capture DO events.277

4.2 Comparison of three Data Assimilation Methods278

In this study, three different data assimilation methods are implemented:279

1. 4DVar-classic: a 4D variational data assimilation method, where J is min-280

imised by a gradient descent;281

2. 4DVarNet-ode: a learning data assimilation method informed by physics,282

where J is optimised through a ResNet and the dynamics ϕ is a numerical283

integration of the system M;284

3. 4DVarNet-unet: a learning data assimilation method fully data-driven,285

where J is optimised through a ResNet and the dynamics ϕ is a U-Net opera-286

tor jointly trained.287

To compare these three methods, we first apply a regular sampling strategy
with a 50 year sampling period and evaluate the reconstruction performance of each
method. To get a initial idea on the performance, we compute the normalised mean
square error for each variable using the following formula:

NMSE =
1

S∆Tσ2
GT

S=100∑
s=0

∆T=2500∑
t=0

∥X̂s(t)−XGT
s (t)∥2 (7)

where XGT
s is the ground truth and σ2

GT its variance, S is the number of simulated288

trajectories on which the error is computed, and ∆T is the duration of the time289

series.290

We find that the 4DVarNet-ode and 4DVarNet-unet methods allow to divide291

by a factor 10 – and even by a factor 50 for x2 and x3 – the reconstruction errors292

compared to a classical data assimilation method (Tab. 1). This already demon-293

strates the usefulness of a neural network to improve the optimisation problem294

within a variational data assimilation framework. We also notice that the recon-295

struction of x1 is overall better performed than the reconstruction of x2 and x3.296

By looking at the temporal evolution of the system, the difference of amplitudes297

between x1 and (x2, x3) is obvious, which can explain the difference in NMSE be-298

tween variables of the system (Fig. 4(a)). This NMSE difference is more important299

with the 4DVar-classic method, which indicates its difficulty to deal with multi-scale300

processes.301

Qualitative comparison between 4DVarNet-ode and 4DVarNet-unet shows302

no specific differences in the reconstructed signal (Fig. 4(a)). They both fit the303

ground truth and capture the DO events variations. But, when represented in the304

phase-space, the differences between the trajectories adopted by 4DVarNet-ode and305

4DVarNet-unet are more visible (Fig. 4(b)). We assume that these differences are306

linked to the optimisation process. The 4DVarNet-unet method performs twice as307

good as 4DVarNet-ode method (Tab. 1). While 4DVarNet-ode method is guided by308

physics, potentially constraining trajectory of the AMOC system, 4DVarNet-unet309

is more efficient at reducing the NMSE, since it optimises a learning cost minimis-310

ing this error as defined by eq. (6). This is aligned with the recent advances in311

data-driven models discovery, where physical models may not be the most relevant312

models to perform a particular task: the reconstruction of non-linear chaotic dynam-313

ics and, more specifically, to capture DO events. The spectral analysis confirms that314
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4DVarNet-unet still respects the spectral characteristics of the system (Fig. 4(c)),315

and in particular the frequency of DO events.316

Furthermore, 4DVar-classic has difficulties to capture DO events accurately317

for x2 and x3 (Fig. 4). Indeed, the reconstruction of the highest amplitude varia-318

tions, corresponding to the AMOC slowdown events (i.e., x1>0.05 yr−1), appears319

weak and flattened by the 4DVar-classic method. By modifying the variational cost320

function, it might be possible to steer the assimilation towards a better reconstruc-321

tion of these climate extremes. However, to produce a consistent comparison of the322

three data assimilation methods, it was important to choose the same variational323

cost for each assimilation methods. Only the hyperparameters αobs and αdyn might324

vary depending on the assimilation method (Tab. 2). They are optimized for the325

4DVarNet-unet and 4DVarNet-ode methods through the training of the neural net-326

work, while they are fixed to an optimal value found with a parametrisation highly327

dependent on the experiment setup and assimilated system in the case of the 4DVar-328

classic method. This is one of the main issues with the 4DVar-classic method, which329

requires a tedious parameterization adapted to the case under study. In particu-330

lar, Lorenc and Payne (2007) has shown the limits of a 4DVar-classic method to331

capture a wide range of scales, as in our case study. Since the regularization of a332

4DVar-classic method might be inconvenient due to its high sensitivity, deep learn-333

ing enables us to directly learn the optimal hyperparameters of our model.334

It is worth noting that the variational cost amplitude (J) can significantly335

varies (Fig. 5) depending on the values of the hyperparameteres αobs and αdyn336

(Tab. 2). The considerable difference between αobs and αdyn in the 4DVar-classic337

method is due to the change in scale of the first and second terms of the variational338

cost J in eq. (4). Indeed, observation uncertainties are applied by a diagonal covari-339

ance matrix (of large amplitude).340

The NMSE values displayed in Figure 5 are consistent with those computed in341

Table 1. 4DVarNet-unet optimization starts with a lower NMSE than the 4DVarNet-342

ode and the 4DVar-classic methods. Therefore, we infer that the physical model343

leads to a less accurate AMOC variability than the U-Net cell – even at the be-344

ginning of the training. While 4DVar-classic and 4DVarNet-unet methods show345

a monotonously variational cost decrease with the NMSE and also improve quite346

rapidly, the 4DVarNet-ode optimisation path appears quite different. Indeed, it347

reaches low values of NMSE quickly but without necessarily being correlated with a348

smaller variational cost. This suggests that this optimization method is not as well349

posed as the two others. As a reminder, the 4DVarNet-ode method uses the physical350

model for the computation of the variational cost, just as in a 4DVar-classic method.351

The optimisation of this assimilation problem is therefore handled differently by our352

neural model, compared to classical gradient descent. In fact, what matters in the353

training of a neural model is the convergence of the learning cost only then to reach354

the convergence of the variational cost. In the 4DVarNet-ode method, the learning355

cost has converged but might have reached low NMSE values with a lower reliance356

on the variational cost, flawed by an ideal physical model probably too chaotic to be357

useful for the optimisation of the assimilation problem.358

4.3 Influence of the Density of Observations359

To evaluate the performance of our three data assimilation methods with360

respect to the observation budget, we computed the error of reconstruction accord-361

ing to the sampling frequencies of observations, going from 1
10 yr−1 to 1

120 yr−1.362

This sampling frequency could be compared to the highest frequency of the model363

∼ 1
250 yr−1 and the fastest error growth timescale of ∼5 yr (Sévellec & Fedorov,364

2014). As expected, the NMSE increases overall with the sampling period (see365

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Fig. 6). Specifically, the 4DVar classic method shows a rapid decline in the accuracy366

of the reconstruction of x2 and x3 when the data become sparse, with an error above367

10% once the sampling period surpasses 40 years. We can infer that observations368

might be lacking to sufficiently constrain this assimilation problem. On the contrary,369

we observe the excellent performance of the 4DVarNet methods. Even when the370

sampling period extends beyond 100 years, 4DVarNet consistently yields sufficiently371

good results, with reconstruction errors below 2% for the 4DVarNet-unet until the372

minimum tested sampling frequency of 1
120 yr−1. Thus, 4DVarNet-unet appears as373

promising scheme to provide a high-quality reconstruction of a chaotic model with374

fewer observations, which is especially sought after in oceanography since observa-375

tions are often only punctual in time and space (Munk, 2000).376

We also focus on the ability to reconstruct each phase of the AMOC system.377

We notice here that data assimilation methods perform better at reconstructing the378

ON Phase than the OFF Phase. The OFF Phase is characterised by abrupt extreme379

values and happens on a shorter time span than the ON Phase. As a result, the380

assimilation of observations during OFF Phases might be more challenging than381

during the ON Phase. However, the comparison between the 4DVarNet-ode and the382

4DVarNet-unet methods also proves the robustness of 4DVarNet-unet in a situa-383

tion of poor observations. The 4DVarNet-ode method relies on the defined physical384

system, known to be chaotic and for which the OFF Phase is a deviation from the385

”normal” state of the ON Phase. While the physical system introduces uncertainties386

in the modeling of the phase changes of the AMOC, the U-Net have a more stable387

representation of the system, leading to a better reconstruction, even when obser-388

vations are sparse and the dynamics unstable. Finally, it is worth noticing that the389

regime shift is reconstructed with satisfactory results, while it is a transition between390

the ON and the OFF Phases. By having trustworthy results on the reconstruction of391

regime shifts, we can consider that a 4DVarNet method could help in the forecast of392

extreme events happening during the OFF Phases.393

4.4 Influence of Sampling Strategies394

In this subsection, we test the performance of the 4DVarNet-unet method395

when the system is only sparsely observed. Here, we investigate how the pattern396

of observation affects the reconstruction of the DO events, when observations are397

assimilated with a deep learning approach. According to the previous section, we398

can choose a sampling period of Ts=100 years and still expect a reconstruction er-399

ror below 2% with the 4DVarNet-unet method. In this section, we implement four400

sampling strategies (illustrated in the second column of Tab. 7):401

1. Regular sampling strategy: We observe the system with a regular fre-402

quency, as in the previous sections. We consider Ht=I3 ∀t ∈ [1:100:∆T ] ;403

2. Regular cluster sampling strategy: We build clusters composed of three404

observations acquired with a finer consecutive time steps (dt=10 years), and405

observed every Ts. Here, Ht−dt=Ht=Ht+dt=I3 ∀t ∈ [1:100:∆T ];406

3. Random sampling strategy: We observe the system at times randomly407

chosen. The budget of observations is set according to the number of obser-408

vations acquired by following the regular sampling strategy. We thus consider409

Ht=I3 for t randomly chosen in the ∆T -time window;410

4. Random cluster sampling strategy: We build clusters of three observa-411

tions acquired with finer consecutive time steps (dt =10 years), separated by412

time intervals, which duration varies randomly. Number of clusters is fixed413

according to the number of clusters acquired by following the regular cluster414

sampling strategy. Thus, we consider Ht−dt=Ht=Ht+dt=I3 for t randomly415

chosen in the ∆T -time window.416
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Cluster sampling strategies (2 and 4) result in a higher observation budget417

compared to the two other sampling strategies (1 and 3). These sampling strategies418

were inspired by possible operational contexts, where deploying acquisition resources419

is expensive. To make their deployment profitable, we can intend leaving them in420

place for slightly longer periods of time. Indeed, as detailed in (Rayner et al., 2011),421

the RAPID program deployed an array left in place at 26.5°N for now almost two422

decades, which enabled to monitor the AMOC continuously and therefore more ac-423

curately. This example encourages us to consider the clustering strategies (2 and 4)424

as more practical scenarios.425

We find that random strategies lead to an NMSE that is, on average, 10 times426

higher than that of regular strategies. Even if this method scan a larger range of427

states, it does not statistically lead to a better reconstruction. We notice that ran-428

dom strategies fail to capture the pseudo-periodicities of the AMOC system, which429

undermines their trustworthiness. While incorporating additional trajectories into430

the learning process might enhance the performance of random strategies, we favor431

methods requiring less training data for computational efficiency, but also consider-432

ing that the ocean is only sparsely observed.433

The random cluster sampling strategy does not improve the reconstruction434

of the system compare to the random sampling strategy, whereas it multiplies by 3435

the number of observations. On the other hand, if we multiply the number of ob-436

servations by 3 in the framework of a regular sampling strategy, we reach an NMSE437

with an order of magnitude less than the NMSE reached by a regular cluster sam-438

pling strategy. We deduce that more observations do not necessarily lead to better439

reconstruction results if observations are inefficiently acquired. It is especially true440

when comparing the results of the regular sampling strategy in regards of the ran-441

dom cluster sampling strategy. The random cluster sampling strategy has 3 times442

as much observations as the regular sampling strategy, but produces results with443

an NMSE twice as high on the ON Phase and almost 4 times as high on the OFF444

Phase as the NMSE when regular sampling strategy is used.445

Since, in an operational context, it might be more practical in some cases to446

acquire a group of observations on a longer time window, we evaluated the potential447

benefit of clustering observations rather than increasing the sampling frequency. The448

random cluster sampling strategy decreases by 26% the error of reconstruction on449

the ON Phase, and by 31% on the OFF Phase compared to the random sampling450

strategy. The impact of clustering appears much more efficient on regular sampling451

strategies. Indeed, the regular cluster sampling strategy reduces the NMSE by 73%452

on the reconstruction of the ON Phase and by 84% on the reconstruction of the453

OFF Phase. We can infer that clustering should especially be sought after for the454

reconstruction – and eventually forecasting – of extreme events difficult to monitor,455

with a reconstruction error below 1%. We can assume that the regular acquisition of456

three consecutive samples helps the detection of short-term variations in the system,457

especially during periods of regime shifts. Consequently, the regular acquisition of458

observations over a sufficiently long period may facilitate the monitoring of regime459

shifts such as those induced by DO events, particularly in cases where data are460

sparse due to low sampling frequency. In 2007, Keller, Deutsch, Hall, and Bradford461

advocated for more frequent observations to enable the detection of early changes in462

the AMOC, but showed with his co-authors that such an observation system would463

increase observation costs by a few orders of magnitude. Here, we illustrate that464

with clustering, we do not necessarily need to increase the acquisition frequency465

to reconstruct accurately an idealised AMOC dynamics, but only to increase the466

acquisition time window. From a practical point of view, this can be achieved by467

installing moorings, such as those that form part of the RAPID network (Rayner et468

al., 2011). Eventually, improving the reconstruction of regime shifts could improve469
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the reconstruction of extremes by informing scientists on the premises of an OFF470

Phase, leading to an abrupt climate change, consistently with Early Warning Signal471

principle (Lenton, 2011). The observation of the phenomena could then be rein-472

forced for the good monitoring of the AMOC at a moment of high instability, and473

hence help to manage logistical resources in a more sustainable way.474

5 Conclusion475

The complexity of inverse problems in geophysics is driving the search for new476

computational methods. Data assimilation has already proved its ability to help477

solve such problems by optimising the compromise between observations and phys-478

ical knowledge. However, there are still challenges to be met to improve climate479

monitoring. To achieve finer resolutions and work with low observation rates, the480

computation efficiency of machine learning opens up new possibilities for processing481

data, enhancing their full exploitation.482

Here, we combined the advantages of data assimilation and the benefits of483

deep learning to solve an inverse problem of a chaotic non-linear model representing484

the evolution of the AMOC during the last glacial interval. Two different methods485

were implemented and compared to a 4D Variational Data Assimilation method,486

considered as the state-of-the-art in this study. On the one hand, 4DVarNet-ode is487

a physics-informed neural network where the physical model is the prior on which488

the data assimilation problem is relying. On the other hand, 4DVarNet-unet is a489

fully data-driven method where the prior is encoded by a U-Net cell jointly trained490

with the rest of the neural network. The power of 4DVarNet lies in optimising the491

dataassimilation problem by training of a convolutive LSTM neural network, which492

boosts the gradient descent usually computed to minimise the variational cost. As493

a result, 4DVarNet performed better than the 4DVar benchmark method, with a494

reconstruction error divided by 10, and even by 100 for the reconstruction of the495

varying AMOC intensity (x1). We also noticed that 4DVarNet-unet was better than496

4DVarNet-ode at reconstructing the AMOC signal when observations are sparse.497

Despite its fully data-driven training, 4DVarNet-unet is able to capture the physical498

properties of the AMOC system, including the frequencies and amplitudes char-499

acteristic of DO events. This result questions the exploitation of prior knowledge,500

given as a dynamical model, in data assimilation formulations addressing sparse501

observations. This dynamical model puts into equation the forces at play, and more502

specifically the buoyancy gradient impact on the circulation and the advection of503

salinity. When only few noisy observations are available, we can expect that the504

reconstruction relies further on the specified model, either the true physical system505

for 4DVarNet-ode or the U-Net cell for 4DVarNet-unet. We may therefore suggest506

that the U-Net learnt a better representation of the sparsely, erroneous observed507

AMOC variability than the perfect-physical system itself, which goes in line with the508

recent advances in model-discovery (Zanna & Bolton, 2020). Thus, neural networks509

provide new means to study processes, for which imperfect or no physical model has510

been established yet because of their inherent complexity, or even to improve estab-511

lished perfect-models, which have shown their limits of representation in this study.512

Variational data assimilation is a method historically developed in meteorology, field513

in which observations are dense and retrieved daily. Even if it also applies as the514

state-of-the-art in operational oceanography, our study suggests that end-to-end515

neural approaches could lead to monitoring and forecasting breakthroughs given the516

scarcity of the available observations for oceanic processes (Fairbairn et al., 2014;517

Yaremchuk & Martin, 2014; Cummings & Smedstad, 2013).518

With a sampling period of 100 years, we tested out four different sampling519

strategies to further improve the reconstruction of these climate extremes. Here,520

regular sampling methods were more efficient than random sampling methods, since521
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their regularity of observations is suited to reconstruct a signal which evolves ac-522

cording to 2 pseudo-periodicities (one being harmonics). The best reconstruction523

was reached with a regular cluster sampling strategy, which acquired 3 observations524

every 100 years on a time window of 30 years. This method captures the variations525

of the system more accurately, especially during the regime shifts of the AMOC.526

Admittedly, we could expect that multiplying the number of observations by 3527

would lead to better results. However, the random cluster sampling strategy leads528

to poorer results, with one order of difference on the NMSE compared to the regular529

cluster sampling strategy, despite the same amount of observations. We conclude530

that the moment of acquisition matters in climate monitoring, sometimes even more531

than the amount of observations. Here, the regular cluster sampling strategy can532

respond to the practical needs of a measuring campaign in geographical areas that533

are difficult to reach, like the Northern part of the subpolar North Atlantic for the534

AMOC monitoring.535

Optimising the choice of the position and time of acquisition of an observa-536

tion may certainly have a high impact on our knowledge of a physical phenomenon.537

As a consequence, the design of sampling strategy has to be adapted according538

to multiple factors: the region of study, the spatiotemporal scales of the targeted539

oceanic processes, the sensors and platforms of observations, the cost of acqui-540

sition. . . Adaptive sampling has already proved its benefits to improve sampling541

strategies in oceanography, by adapting on-line the trajectory of a survey to gather542

the most useful observations given logistical and physical constraints. Here, the dif-543

ferentiability of end-to-end neural DA solvers could also be of key interest to explore544

adaptive observation operators stated as neural observation operators and result in545

the improved monitoring of chaotic non-linear oceanic processes such as the AMOC546

system considered in this study (Lermusiaux, 2007; Greenhill et al., 2020).547

In addition to the sampling scheme, we should also take into account the con-548

sidered physical variables and measurement positions to propose a complete and549

optimised observation system able to capture Early Warning Signals of a possible550

AMOC collapse. With the increasingly plausible hypothesis of reaching this tip-551

ping point because of global warming, several studies have tackled this task recently552

(Jackson & Wood, 2020; Michel et al., 2022; Ditlevsen & Ditlevsen, 2023). A sudden553

shutdown of the AMOC would disrupt the climate, particularly in Europe and in the554

Amazon forest, with an abrupt drop in temperatures or a reversal of the rainfall pat-555

tern, as described in (van Westen et al., 2024). An AMOC shutdown would not only556

require a major adaptation effort from the local populations, but could also lead to557

cascading tipping points, having an impact on the global climate. Ultimately, a com-558

prehensive and adequate observation network coupled with deep learning techniques559

could help to anticipate such major climate changes.560
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7 Tables721

Method x1 x2 x3

4DVar-classic 8.45 155 155

4DVarNet-ode 1.90 4.38 5.75

4DVarNet-unet 0.78 1.88 2.00

Table 1. NMSE (×10−3) of the reconstructed signal for each variable with each data assimila-

tion method.

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Data assimilation method αobs αdyn

4DVar-classic 1.00 1.00× 107

4DVarNet-ode 0.41 0.12

4DVarNet-unet 0.29 0.18

Table 2. Values of the two hyperparameters, αobs and αdyn, used for each data assimilation

method.

Strategy Sampling NMSE Average NMSE per phase

Regular
ON Phase 3.19×10−3

Regime Shift 1.05×10−2

OFF Phase 5.40×10−2

Regular cluster
ON Phase 8.47×10−4

Regime Shift 2.26×10−3

OFF Phase 8.47×10−3

Random
ON Phase 1.10×10−2

Regime Shift 6.64×10−2

OFF Phase 2.93×10−1

Random cluster
ON Phase 8.07×10−3

Regime Shift 4.51×10−2

OFF Phase 2.02×10−1

Table 3. Influence of sampling strategies on the reconstruction of the AMOC dynamics. The

two first columns refers to the sampling strategies at play. The third column displays the Nor-

malised Mean Square Error (NMSE) of the reconstructed system on the attractor. Last column

reports the NMSE computed for the ON Phase, the Regime Shift and the OFF Phase of the

AMOC. Each row corresponds to one sampling strategy.

8 Figures722
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(a) (b)

Figure 1. Dansgaard-Oeschger events simulated over 15 000 years. On the left, each line cor-

responds to the time evolution of the three re-scaled variables (x1, x2, and x3). On the right, the

model trajectory is shown in the phase-space. The dynamics is split into three categories: the

ON Phase, the Phase Shift, and the OFF Phase of the AMOC.

Figure 2. Sketch of the 4DVarNet procedure. The model ϕ is computed from the state X.

Then, the variational cost J is calculated from the observations, the output of the model and

the state X. Subsequently, the variational cost is derived by automatic differentiation. Next,

the neural network is trained to optimise the minimisation of the variational cost J . Finally, the

analysed state X is updated until the convergence of the learning and variational costs.
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Figure 3. Evolution of the idealized model over one simulation of 10 0000 years, 50 2 500-year

time series were extracted randomly between 5 000 and 60 000 yrs (in orange); one 2 500-year

time series was extracted between 65 000 and 95 000 yrs to built the test dataset (in yellow).

(a) (b) (c)

Figure 4. Qualitative comparison of the three data assimilation methods (4DVar-classic in

orange, 4DVarNet-ode in purple and 4DVarNet-unet in green): (a) AMOC temporal signal re-

constructed by the 3 data assimilation methods; (b) Attractor of the AMOC system; (c) Spectral

analysis of the reconstructed AMOC signal
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Figure 5. Variational cost (J) evolution according to the NMSE using 4DVar -classic, -ode,

and -unet assimilation method, respectively. Each dot represents an iteration of the data assimi-

lation process.

(a) (b) (c)

Figure 6. NMSE evolution for each of the 3 variables (corresponding to each row) acccording

to the sampling period for the 3 data-assimilation methods (corresponding to the 3 color lines)

computed on: (a-c) the ON Phase, the Regime Shift, and the OFF Phase of the AMOC, respec-

tively.

–20–


