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Abstract 

 
This paper proposes an ocean-only dynamical framework to mitigate the influence present-

day biases of Earth System Models (ESMs) on future regional ocean physical and 

biogeochemical projections. Initially, a control experiment is conducted using fluxes derived 

from an atmospheric reanalysis, excluding climate change signals. Subsequently, a climate 

change simulation is performed by adding historical and future fluxes perturbations from a 

selected ESM to these background realistic fluxes. Since part of the ESM surface heat fluxes 

perturbation is a direct feedback to the sea surface temperature (SST) warming, these fluxes 

perturbations are split into SST-dependent and independent components. The climate change 

simulation is forced by the independent component, while the SST-dependent component is 

modeled online as an SST relaxation to the control experiment, accounting for Newtonian 

cooling and long-wave radiative feedback.  

 

This approach demonstrates that ESMs present-day biases can heavily impact the reliability of 

regional physical and biogeochemical ocean projections. For instance, the strong cold-tongue 

bias simulated by the IPSL-CM6A-LR model causes greater warming and chlorophyll decrease 

in the western than in the eastern equatorial Pacific, while our bias-corrected simulation shows 

opposite projected patterns. Sensitivity experiments applying heat, freshwater and momentum 

fluxes perturbations separately further indicate that thermodynamical and dynamical processes 

equally contribute to this warming pattern, highlighting the strong role of the Bjerknes 

feedback. This cost-effective method can be applied to any ESMs oceanic component to 

produce more reliable regional oceanic projections and understand the mechanisms driving the 

projected patterns. 
 

 

 

 

 

 

 



 
 

1. Introduction  

 

Relevance of global warming for blue and green oceans. As a result of human activities, 

global-mean sea surface temperature has raised by approximately 0.8°C compared to pre-

industrial levels. Earth System Models (ESMs) indicates that this warming will further increase 

over the course of the 21st century under all of the Representative Concentration Pathways 

(RCPs), leading to rising sea level,	altered the hydrological cycle, changes in atmospheric and 

oceanic circulation, stronger tropical cyclones and heavier rainfall (Masson-Delmote et al. 

2021). For the green ocean, this warming will enhance upper ocean stratification, limiting 

nutrients supply to the euphotic zone (Kwiatkowski et al., 2020). This generally leads to 

projected global reductions in phytoplankton and net primary production (Bopp et al., 2013; 

Kwiatkowski et al., 2020). This decline is consistently amplified in higher trophic levels, 

including zooplankton (Kwiatkowski et al., 2019) and fish (Lotze et al., 2019). Due to warming-

induced reduction in O2 solubility, increased stratification and reduced ventilation, ESMs 

consistently project a global decline of dissolved oxygen (Bopp et al., 2013; Kwiatkowski et 

al., 2020). The uptake of carbon by the oceans also leads to ocean acidification, extensively 

impacts marine species including corals (Pandolfi et al. 2011).  

 

Uncertainties in ESMs regional projections. The impacts of global warming will be felt 

most strongly at regional scales. However, considerable uncertainties exist in regional ESMs 

projections, particularly in tropical regions, limiting our ability to provide useful information 

for the planning and implementation of appropriate adaptation measures. Projected SST pattern 

indeed largely controls the tropical regional rainfall projections, through the “warmer-get-

wetter” paradigm (Xie et al. 2010) and the climate sensitivity (Sherwood et al., 2020) through 

the pattern effect (Stevens et al., 2016). Phytoplankton forms the base of the marine food web 

and O2  is crucial for marine ecosystems at low O2, where marine animals are unable to sustain 

aerobic metabolism. When averaged, ESMs display an “El Niño-like” and “Indian Ocean 

Dipole-like” warming pattern in the tropical Pacific/Atlantic and Indian Ocean (Xie et al., 2010; 

see Fig. 1a). However, tropical SST patterns projections vary considerably across models, 

ranging for instance from El Niño–like, zonally uniform to La Niña–like patterns in the Pacific 

(Huang and Ying, 2015), leading to large uncertainties in projected rainfall patterns (Ma and 

Xie, 2013) and ENSO amplitude changes (Beobide-Arsuaga et al., 2021). Despite a consistent 



decrease of surface chlorophyll along the entire equatorial Pacific and Atlantic, ESMs display 

a highly uncertain change phytoplankton and primary production in tropical and subtropical 

oceans (Fig. 1b), which largely control the very diverse magnitude of the chlorophyll decline 

across ESMs (Bopp et al. 2013; Kwiatkowski et al., 2017). Similarly, ESMs project a consistent 

O2 decline outside the tropical band but inconsistent changes in the tropics (Fig. 1c) and more 

specifically in the oxygen minimum zones (Cabré et al., 2015). These regional physical and 

biogeochemical projections are crucial as they form the basis of risk assessments for critical 

open ocean marine ecosystems and ecosystem services, such as fisheries (Bindoff et al., 2019). 

Understanding the drivers behind the diversity of these regional projections has thus attracted 

considerable attention in the past decade (e.g. Clement et al., 1996; Collins, 2005; Liu et al., 

2005; Xie et al., 2010; Kwiatkowski et al., 2017; Tagliabue et al., 2021).  

 

Impact of ESMs biases. The persistent present-day biases simulated by ESMs pose a long-

standing challenge to the reliability of the projected oceanic patterns in the tropics (Li et al., 

2016ab; Seager et al., 2019; Yang et al., 2022). Physical biases include a strong equatorial 

Pacific cold tongue bias extending too far into the western Pacific, a warmer eastern than 

western equatorial Atlantic opposite to observations (Richter et al., 2020); and too cold 

subtropical gyres (Fig. 1a). On the biogeochemical side, ESMs generally overestimate 

chlorophyll concentrations in all tropics and southern ocean (Fig. 2b), and overestimate O2 

concentrations at depth in the central and western Pacific and in the Arabian Sea OMZ (Fig. 

2c) These climatological biases are thought to significantly influence the regional ESMs 

projections (Li et al. 2016, Luo et al. 2018, Seager et al. 2019, Heede and Fedorov, 2021). 

Statistical “emergent constraint” approaches (Brient et al. 2019), relying on statistical 

relationship across a model ensemble between a measurable aspect of the present-day climate 

and projected future climate response to correct future changes, have been proposed to mitigate 

the influence of background biases on projected patterns (Huang and Ying, 2015; Li et al., 

2016ab, Kwiatkowski et al., 2017). These studies indicate that the removal of ESMs biases 

could result in a more pronounced El Niño-like warming pattern (Huang and Ying, 2015; Li et 

al., 2016a), a reduction of the IOD-like warming pattern (Li et al., 2016b). It also allowed to 

better constrain the tropical marine primary decline (Kwiatkowski et al., 2017), O2 changes in 

Southeastern Pacific OMZ (Almendra et al., 2024) or the ocean carbon sink (Terharr et al., 

2022). However, some emergent constraints may be spurious, as they may be influenced by 

common structural model assumptions, rather than from an intrinsic underlying process, or by 

the use of subjective model metrics or spurious correlations unsupported by a plausible 



mechanism (Knutti et al., 2017; Eyring et al., 2019; Sanderson et al., 2021), ultimately leading 

to biased and overconfident constrained projections. The primary objective of this paper is to 

propose an alternative dynamical framework to evaluate the influence of CMIP model biases 

on future oceanic projections. 

 

Our approach: present-day bias correction. The objective of this study is to build an ocean-

only modeling framework to assess the impact of model biases on projected ocean physical and 

biogeochemical responses and investigate their underlying mechanisms. To achieve this, we 

will incorporate external climate change forcing perturbations from ESMs into surface fluxes 

derived from an ocean model driven by detrended atmospheric reanalysis-derived forcing, 

ensuring that the background oceanic state closely aligns with observations. This approach 

significantly reduces present-day ESMs biases, enabling an assessment of these biases on future 

oceanic projections. This approach is the oceanic counterpart of dynamical atmospheric 

approaches developed to mitigate the influence of background atmospheric biases on future 

atmospheric projections. In these approaches, large-scale climate change changes from ESMs 

are imposed on a control atmospheric climate simulation forced with observed SST by 

modifying the boundary conditions of the regional (e.g. Adachi and Tomita 2020) or global (the 

amip-Future4K simulations from the CMIP6 protocol; see Webb et al. 2017) atmospheric 

models. This for more reliable atmospheric projections by correcting the ESM biases in 

boundary conditions.  

 

Our approach: Accounting for air-sea flux SST dependency. However, since a portion of 

anomalous surface heat fluxes induced by climate change represent direct feedback to climate 

change-induced SST warming, it becomes necessary to separate the ESMs surface fluxes 

component that directly depends SST from the component that does not. The latter portion is 

used as a forcing flux input to the ocean model, while the former is modelled online as a 

relaxation of the SST from debiased historical and future simulations to the SST of the de-

biased control simulation. This SST feedback coefficient, derived from ESMs surface variables, 

encompasses the Newtonian cooling negative feedback associated with latent heat fluxes via 

the Clausius-Clapeyron relationship, the negative feedback associated with upward long-wave 

radiation according to Stefan’s law (Zhang and Li, 2014), and the positive downward longwave 

radiation feedback related to increasing temperature (Shakespeare and Roderick, 2022).   

 



Our approach: Process-oriented studies. This modelling strategy can also help 

understanding the dominant processes shaping the physical and biogeochemical oceanic 

response to climate change. Varied processes have been proposed to explain the projected 

tropical response to climate change pattern. In the tropical Pacific, models projecting an El 

Niño-like warming pattern typically emphasize thermodynamical processes, such as a greater 

evaporative cooling at the equator than off-equator and in the western Pacific than in the eastern 

Pacific (Zhang and Li, 2014). Conversely, models that project a La Niña-like warming pattern 

typically emphasize ocean dynamical processes, notably the ocean dynamical thermostat 

mechanism (Clement et al., 1996). This mechanism impedes the warming in the central-eastern 

equatorial Pacific through a time delay in the response to warming between the surface and 

subsurface ocean, resulting in intensified ocean stratification (Clement et al., 1996; DiNezio et 

al., 2009). Additionally, the Bjerknes feedback (Bjerknes, 1969) can amplify equatorial changes 

in SST patterns through the coupling between the zonal SST gradient, the equatorial trade winds 

and the zonal thermocline slope (Held and Soden, 2006; Vecchi and Soden, 2007; Bayr et al., 

2014). On biogeochemical side, increased stratification has been proposed as the leading 

hypothesis explaining the decline in primary production by reducing the nutrients supply to the 

euphotic zone (Bopp et al. 2013; Fu et al. 2016; Kwiatkowski et al., 2017). While this 

hypothesis may hold in oligotrophic regions, it may not apply in productive regions like 

upwellings, where ocean dynamics partly controls the productivity through its influence on the 

nutricline depth (Kwiatkowski et al., 2017). Similarly, the processes responsible for oxygen 

changes, which result from both physical (solubility, ventilation) and biological (respiration) 

processes are not well understood yet (Cabré et al. 2015; Oschlies et al. 2018). Our ocean-only 

framework allows for sensitivity experiments where heat, freshwater and momentum fluxes 

perturbations are applied separately. These simulations can then be used to delineate the relative 

role of thermodynamical and dynamical processes on the projected patterns.   

 

Paper structure. The objective of the proposed modelling framework is to assess the 

influence of the mean-state ESMs biases on future projected physical and biogeochemical 

patterns and to identify the mechanisms driving these patterns. To achieve this, we propose a 

novel approach based on ocean-only simulations, where the background state more closely 

resemble observations compared to most ESMs. This approach involves introducing 

“externally forced” perturbations in surface heat, freshwater and wind stress fluxes derived 

from a given ESM, in addition to the background fluxes. These ocean-only simulations use the 

ocean component of the parent ESM, but with the ocean being forced by prescribed fluxes at 



its boundaries instead of being coupled to an atmosphere. This methodology is illustrated with 

perturbations derived from two ESMs (IPSL-CM6A-LR and CNRM-ESM2-1) sharing the 

same oceanic component (NEMOv3.6), although the approach can be applied to any other 

ESMs. Section 2 describes the methodology employed to produce the spin-up and control 

simulations while Section 3 describes the methodology for deriving the climate change 

simulations. Section 4 demonstrates the robustness of the proposed methodology, illustrating 

the large impact of the IPSL-CM6A-LR and CNRM-ESM2-1 biases on the physical and 

biogeochemical projected changes for the tropical Pacific and discussing the mechanisms 

driving these projected changes. Section 5 provides a brief summary, discusses the present 

results in the context of the previous literature and lay out some perspectives of this work.    

 

2. Methodology for spin-up and control simulations 

 

2.1. The ocean model configuration 

 

In the following, we illustrate this modelling framework in the context of the simulated 

climate by the IPSL-CM6A-LR (Boucher et al., 2020) and CNRM-ESM2-1 (Séférian et al. 

2019) coupled models. These models share the same ocean model configuration NEMO3.6 

(Madec et al. 2017), with a nominal horizontal resolution of 1◦ refined to 1/3◦ at the Equator, 

comprising 75 vertical levels (1 m at the surface to 200 m at the deepest levels). The physical 

component (OPA) of is coupled to the LIM3 sea-ice model (Rousset et al., 2015) and to the 

PISCES-v2 biogeochemical model (Aumont et al., 2015). Additionally, the ocean physical and 

biogeochemical components are employed in stand-alone mode, without the inclusion of the 

sea ice component, using the same configuration as in the coupled model. It is acknowledged 

that this configuration may result in localized temperature values falling below the freezing 

point in polar regions. To address this, the ocean temperature is capped to the freezing point in 

both the equation of state and in the calculation of the Brunt–Väisälä frequency, as proposed 

by Silvy et al. (2022).  

 

2.2. Detrended atmospheric forcing 

 

Detrended forcing. This section describes the ocean-only spin-up experiment, designed to 

simulate a stable oceanic mean state representative of the mid-20th century without climate 

change signals but with a natural variability comparable to that observed. The initial step is to 



perform a long spin-up simulation, which is forced with bulk formulae using atmospheric inputs 

derived from the JRA-55 atmospheric reanalysis (Kobayashi et al. 2015) over the 1958 to 2022 

period. Given that the climate change signal will be derived from the coupled model, it is 

important to ensure that the spin-up and control simulations exclude anthropogenically-driven 

signals. Some near-surface atmospheric parameters used as inputs for the bulk formulae indeed 

exhibit a clear upward trend over the historical period (Fig. 2a-c). This trend is exemplified by 

the 10-m air temperature and surface specific humidity, showing consistent increase, 

particularly pronounced over the tropical Indo-Pacific warm-pool region. Conversely, other 

variables like winds display a more varied signal, potentially unrelated to climate change. To 

ensure consistency, a point-wise linear detrending is applied to all the JRA-55 input parameters. 

The resulting globally-averaged evolution of JRA55 inputs is illustrated on Figure 2def. This 

straightforward linear detrending efficiently mitigates the long-term warming and moistening 

of the surface layers, while keeping interannual to multidecadal signals unaltered. Although 

alternative trend estimation methods, such as fitting a point-wise fourth-order polynomial to 

JRA55 entry variables, has been explored, they yielded similar results (not shown). 

 

2.3. Bulk forced spin-up simulation 

 

 

Bulk-forced spin-up and control simulation. The spin-up and control simulations strategy 

is schematized in Figure 3. The detrended near-surface atmospheric parameters described above 

are used as forcing for the spin-up simulation through bulk formulae. This simulation is 

initialized from the WOA at rest As illustrated in Figure 4a, the SST and other near-surface 

physical ocean parameters swiftly stabilize. Conversely, biogeochemical variables display 

notable drifts until the end of the first 65 years (Fig. 4bc). To achieve equilibrium in the solution 

of biogeochemical variables (and physical variables at depth), the last time step of this 65-year 

simulation is used as a restart to run another 65-year simulation using the same atmospheric 

forcing. This process is repeated six times to achieve a 455 years long spin-up simulation. The 

globally averaged chlorophyll signal stabilizes by the 4th cycle, while the drift of the globally 

averaged oxygen signal at depth decreases considerably over time, although showing a modest 

positive trend until the end of the simulation. A similar evaluation, focusing on the eastern 

equatorial Pacific (Niño3 region; 140°E-90°E; 5°N-5°S), indicates a more rapid equilibration 

of the biogeochemical variables (Figure 4def).  From the 3rd cycle onwards, the Chl and O2 

concentration stabilize.  



 

2.4. Flux-forced control simulation 

 

Flux-forced CTL simulation. The objective of the control (CTL) experiment is to establish 

a baseline oceanic state devoid of climate change signals but encompassing realistic natural 

climate variability against which climate change simulations can be compared to. To apply our 

heat flux climate change simulation strategy, surface boundary conditions have to be applied as 

fluxes, not computed through bulk formulae. All necessary fluxes (heat, freshwater, salt, wind 

stress) from the last three cycles of the above bulk-forced spin-up simulation and required to 

force the control simulation are outputs of the bulk-forced simulation at a frequency of 3 hours, 

allowing to resolve the diurnal cycle and to remain close to bulk-forced simulation. A 

comprehensive description of all the flux components required to force the CTL simulation is 

provided in Silvy et al. (2022). A flux-forced simulation is simply driven by the fluxes derived 

from the bulk-forced simulation over the last three cycles, with initial conditions taken as the 

last time step of the fourth cycle of the bulk-forced experiment (Figure 3). The first cycle allows 

the ocean to adjust to the flux-forced framework, while the final two cycles constitute our CTL 

simulation against which all climate change simulations will be compared (Figure 3). Given 

that the fluxes originate from beneath sea-ice and are imposed onto the ocean, the sea ice model 

component is excluded from this oceanic configuration. As illustrated in Figure 4 the CTL SST, 

Chl and O2 evolution closely follows that of the bulk-forced simulation for both the globally 

averaged and regional timeseries.  

 

2.5. Reference simulation 

 

Reference simulation. To validate our modelling framework to observations over the 

historical period, we also conducted a bulk-forced reference simulation (REF) using the original 

JRA55 atmospheric parameters prior to detrending. This simulation starts at the end of the fifth 

cycle of the spin-up simulation (Figure 3). As illustrated in Figure 4 it depicts an 

anthropogenically induced global warming trend, a global Chl decline and a global O2 increase. 

However, these changes are rather heterogeneous, as shown in Figure 3def for the case of the 

eastern Pacific. Here, the warming trend is weaker and masked by the strong ENSO-related 

interannual variability, with O2 concentrations decreasing while Chl remains relatively stable.  

 



Forced vs. coupled climatological biases Figure 5 shows an evaluation of the biases in our REF 

simulation (left panels) compared to those of the IPSL-CM6A-LR coupled historical 

simulations (right panels) for SST and Chl and O2. As anticipated, the climatological SST biases 

in the forced experiment are considerably weaker compared to those simulated in the coupled 

historical experiment (Fig. 5ab). For example, the cold tongue bias of up to -2°C across the 

equatorial Pacific in the coupled simulation, is considerably reduce in the REF simulation. 

Additionally, cold biases in the subtropical gyres and warm biases along the west coast of North 

America and in the Southern Ocean in the coupled simulation are corrected in REF simulation. 

However, our forced framework does not correct for the strong cold bias in the northwestern 

Atlantic. Tropical O2 biases are also reduced in the forced simulation compared to the coupled 

one (Fig. 5ef). The coupled simulation strongly overestimate O2 concentrations in the Eastern 

Pacific and Arabian Sea OMZs, with biases ranging from +40 to /100 mmol.L-1 in regions 

where climatological O2 concentrations are lower than 20 mmol.L-1. This issue is mitigated in 

the REF simulation, where biases range between -20 and 20 mmol.L-1 in OMZ regions. The 

overestimated O2 concentrations in the northern Indian Ocean and in the northeastern Pacific 

are also considerably reduced. However, REF simulation cannot correct for the overestimated 

O2 concentrations in the central tropical Pacific and underestimates O2 concentrations in the 

North Pacific subtropical gyre. Compared to SST and O2, surface Chl biases are relatively 

similar in the forced and coupled simulations (Fig. 5cd). This might be due stem from the 

relatively weak Chl biases in the IPSL-CM6A-LR historical experiments (Fig. 5d) compared to 

those from most other ESMs (Fig. 1c). 

 

3. Methodology for climate change simulations 

 

3.1. Diagnosing future air-sea flux changes from ESMs 

 

Scenarios. For the purpose of the CMIP6 exercise, after a long spin-up, multiple 

experiments were already conducted with the IPSL-CM6A-LR and CNRM-ESM2-1 coupled 

models.The IPSL-CM6A-LR model provides 32 members for the historical period (1850–

2014) and 7 members for the SSP585 (Shared Socioeconomic Pathway 3-8.5; Gidden et al., 

2019) scenario while the CNRM-ESM2-1 model provides 15 members for the historical period 

and 5 members for the SSP585 scenario.  

 



CMIP preprocessing. The climate change (CC) simulations receive the same flux forcings 

as the CTL experiment, with additional perturbation corresponding to surface fluxes (heat, 

freshwater, wind-stresses) future changes. These perturbations are derived from the monthly-

mean fluxes of a selected CGCM and are averaged across ensemble simulations covering both 

the historical and future period. Future changes (noted D) in air sea fluxes (noted F) are obtained 

as: 

∆𝐹(𝑖, 𝑗, 𝑡) = 𝐹(𝑖, 𝑗, 𝑡) −	𝐹(𝚤, 𝚥, 𝑡).......... 

 where the overbar denotes a temporal mean over the 1948-1967 period, and 𝐹(𝑖, 𝑗, 𝑡) =

〈𝐹(𝚤, 𝚥, 𝑡, 𝑘)〉!"#,%,..,'2  is the ensemble mean flux over all available members k for the ESM 

ensemble considered. Ensemble averaging removes a substantial portion of the internal 

variability, yielding a reasonable approximation of external forcing. To mitigate residual natural 

noise resulting from the limited number of members in some scenario, a 25-year running mean 

smoothing is applied to the ensemble mean, denoted by ⬚⬚
4  in the above formula. In our 

approach, the internal variability (e.g. ENSO) in our CTL experiment corresponds to that in the 

detrended JRA55 dataset, repeated twice. In the climate change simulations, we apply the same 

internal variability, adding the low-frequency surface flux perturbations on top. Subtracting the 

two therefore extracts the externally-forced response, including the potential rectification of 

internal variability by changes in the mean state.  

 

3.2. Heat flux changes: computing the SST-dependent “feedback” component 

 

General approach. Previous studies have demonstrated that a significant portion of the air-

sea heat flux response to climate change is strongly dependent on SST (e.g. Xie et al., 2010; 

Zhang and Li, 2014). While greenhouse gases only alter the surface radiative forcing by a few 

W.m-2, the resulting SST warming can modify surface fluxes by a much larger magnitude, often 

several tenth of W.m-2 (Pendergrass et al., 2018; Shakespeare and Roderick, 2022).  For 

instance, a significant proportion of the increase in downward longwave flux is a direct 

feedback to the surface ocean warming, as a consequence of increased air temperature and 

moisture content, which in turn amplifies downward surface longwave fluxes. If our correction 

strategy significantly modifies SST projections, the resulting changes in air-sea fluxes must be 

accounted for to maintain physical coherence. This can be achieved by separating surface heat 

flux changes into a SST-dependent and SST-independent part as detailed in Zhang and Li 



(2014) for latent heat fluxes and upward longwave radiation and Shakespeare and Roderick 

(2022) for downward longwave radiations. These derivations are synthetized below. 

 

Latent feedback. While the weakening of the tropical circulation generally acts to warm the 

ocean, this warming directly increases latent heat fluxes via the Clausius-Clapeyron 

relationship, therefore acting as a negative feedback. Zhang and Li (2014) proposed a simple 

analytical development to derive the feedback coefficient related to latent heat fluxes. The bulk 

formula for surface latent heat flux can be expressed as: 

𝑄)* = 𝜌𝐿𝐶+𝑉	(1 − 𝑅𝐻𝑒,-./)𝑞0 

where is 𝜌 air density near the surface; CE is the heat exchange coefficient of LH, , V is the 

surface wind speed, RH is relative humidity, and δT	is the difference between SST and surface 

air temperature. Using Clausius Clapeyron relationship, and assuming that δT remains constant 

in the future, the change of 𝑄)* with respect to change in SST can be rewritten as: 

∆𝑄)*12! =	𝜆)*ΔSST 

where ∆𝑄)*12!denotes the part of future latent heat flux changes du to SST change (the 

“feedback” component) and 𝜆)* =
3!"444444	)#
6	77/$4444444, with 𝐿8	being the latent heat of condensation, R the 

ideal gas constant for water vapor and 𝑄)*..... the present-day climatological latent heat flux. 

∆𝑄)*19: =	∆𝑄)*⬚ − ∆𝑄)*12! denotes the “forcing” part of surface latent heat flux changes, i.e. the 

SST-independent part, related to changes in atmospheric wind speed, relative humidity, and 

air–sea temperature difference.  

 

Longwave upward feedback. According to Stephan’s law, upward longwave radiation 

primarily depends on the SST, constituting a negative feedback to the SST response rather than 

a direct radiative forcing resulting from increased CO2 concentrations. Indeed, the change of 

upward longwave radiation at the ocean surface may be approximately written as :  

∆𝑄);<⬚
12! =	𝜆);<⬚ΔSS𝑇 

Where 𝜆);<⬚ = 4𝜎𝑆𝑆𝑇=......., with 𝜎 being the ocean surface emissivity assumed to be unit. In 

that case, ∆𝑄);<⬚
19: is negligible (not shown). 

 

Longwave downward feedback. ESMs simulate an increase in downwelling longwave 

surface radiation, leading to warming of the upper ocean. In their analytical development, 

Zhang and Li (2014) considered ∆𝑄);>⬚as a forcing term, with no SST feedback component. 



Nevertheless, the forcing component of the downward longwave radiation flux perturbations 

(∆𝑄);>⬚
19: ) due to the direct surface effect of greenhouse gases increase constitutes a relatively 

very small fraction (5-10%) of ∆𝑄);>⬚ (Pendergrass et al., 2018; Shakespeare and Roderick, 

2022). Most of ∆𝑄);>⬚ warming effect results from a positive feedback (∆𝑄);>⬚
12! ) to the ΔSS𝑇 

warming, through increased air temperature and moisture content, which in turn amplifies 

downward surface longwave fluxes. In a recent publication, Shakespeare and Roderick (2022) 

presented an explicit analytic expression for the radiative forcing and feedbacks, which capture 

more than 90% of ∆𝑄);>⬚in ESMs, with a typical error of less than 5%. Furthermore, the 

authors demonstrate that ∆𝑄);>⬚
12!  can be decomposed into contributions from changes in 

temperature, specific humidity, water vapor height scale, and cloud fraction. They show that 

changes in temperature, specific humidity and height scale are closely linked to ΔSS𝑇 and 

therefore that 90% of the ∆𝑄);>⬚ increase can be attributed to a feedback from increasing 

ΔSS𝑇. Following their analytical development, ∆𝑄);>⬚
12! can be written as: 

∆𝑄);>⬚
12! = 𝜆);>⬚ΔSS𝑇  

Where 𝜆);>⬚  gather the feedback contributions from temperature changes in the 

atmospheric column, changes in specific humidity and changes in water vapor scale related to 

temperature changes and can be directly expressed as a function of basic climatological surface 

variables available in the ESMs (for details refer to Shakespeare and Roderick (2022)).The part 

of longwave downward heat flux change due directly to the change of CO2 and cloud cover 

change, which cannot directly be related to ∆𝑆𝑆𝑇, can be obtained as: 

∆𝑄);>⬚
19: =	∆𝑄);>⬚

⬚ − ∆𝑄);>⬚
12!  

 

Total longwave feedback. The net longwave radiation flux perturbation can then be written 

as: 

∆𝑄);⬚
⬚ =	∆𝑄);⬚

19: +	𝜆);⬚
ΔSS𝑇 

With ∆𝑄);⬚
19: = ∆𝑄);>⬚

19:  and 𝜆);⬚
= 𝜆);>⬚ +	𝜆);<⬚. 

 

Other feedbacks. The last two components of heat flux changes,	∆𝑄7;  and ∆𝑄7* , are 

entirely considered as forcing components. Indeed, because we assume no changes in δT 

between the present and future climate, ∆𝑄7*12! = 0 and ∆𝑄7*19:=∆𝑄7*⬚ . Similarly, ∆𝑄7; in the 

tropics is strongly related to cloud changes, which cannot easily be related to local SST changes. 

 



3.3.Heat flux changes: separating the forcing and feedback components 

 

Building heat flux forcing perturbations. While ∆𝐹(𝑖, 𝑗, 𝑡) is applied as such for the wind-

stress and freshwater flux, we separate the heat flux forcing change into feedback (SST-

dependent) and forcing (SST-independent) components as detailed above. We first calculate 

the forcing component of latent (∆𝑄)*19:)	and longwave heat flux perturbations (∆𝑄);⬚
19: ),	which 

are not directly related to ∆𝑆𝑆𝑇, as: 

 

∆𝑄);&'()
19: (𝑖, 𝑗, 𝑡) 	= 	∆𝑄);&'()

⬚ (𝑖, 𝑗, 𝑡) 	− (𝜆);&'()
⬚ (𝑖, 𝑗, 𝑡0?@0) 	∗ 	ΔSS𝑇ABCD(𝑖, 𝑗, 𝑡) ) 

 
∆𝑄)*19:(𝑖, 𝑗, 𝑡) = 	∆𝑄)*⬚ (𝑖, 𝑗, 𝑡) − (𝜆)*CD7)(𝑖, 𝑗, 𝑡0?@0) 	∗ 	ΔSS𝑇ABCD(𝑖, 𝑗, 𝑡)) 

 

where ∆𝑄);⬚
⬚ (𝑖, 𝑗, 𝑡) and ∆𝑄)*⬚ (𝑖, 𝑗, 𝑡) are the longwave and latent heat flux perturbations for 

the selected ESM as calculated in Section 2.2, 𝜆);⬚
⬚ (𝑖, 𝑗, 𝑡0?@0)	and 𝜆)*⬚ (𝑖, 𝑗, 𝑡0?@0)  are the 

seasonally varying feedback coefficients from the selected ESM as calculated in Section 2.3 

and ΔSS𝑇ABCD(𝑖, 𝑗, 𝑡) is the anomalous SST relative to the historical period calculated in the 

same way as ∆𝑄(𝑖, 𝑗, 𝑡). In our forced climate change simulations, the total heat flux is then 

formulated as: 

∆𝑄!"!(𝑖, 𝑗, 𝑡) = 	 (∆𝑄#$ +	∆𝑄#% + ∆𝑄&$⬚
'"( +∆𝑄&%⬚

'"( )(𝑖, 𝑗, 𝑡) − (𝜆!"!⬚ (𝑖, 𝑗, 𝑡*+,*) ∗ ΔSS𝑇--(𝑖, 𝑗, 𝑡)) 

where ∆𝑄E9E is the total heat flux perturbation applied to the ocean model simulation, ∆𝑄7; 

and ∆𝑄7* are the shortwave and sensible heat fluxes perturbations directly derived from the 

selected ESM. The SST-dependent part of the surface heat flux changes is represented as a 

linear relaxation to the pre-industrial simulation SST in our CC experiments. 𝜆E9E being the 

total negative feedback coefficient derived from the ESM outputs expressed as 𝜆E9E = 𝜆);⬚
⬚ +

𝜆)*⬚  and ΔSS𝑇AA(𝑖, 𝑗, 𝑡) the SST anomalies related to climate change in our forced framework 

calculated as the SST difference between CC and CTL forced ocean simulations model: 

ΔSS𝑇AA(𝑖, 𝑗, 𝑡) = SS𝑇AA(𝑖, 𝑗, 𝑡) − SS𝑇A/)(𝑖, 𝑗, 𝑡). feedback coefficient.  

 

Application to the IPSL and CNRM forcing. In the following section, we will demonstrate 

the efficiency of this protocol by applying it to the NEMO3.6 ocean model with forcing 

perturbations derived from the IPSL-CM6A-LR and CNRM-ESM2-1 coupled model. The CTL 

experiment spans two cycles, which are representative of the 1950s background oceanic state 

and simulate a realistic intraseasonal to interdecadal natural variability over the 1958-2022 



period, yet with the long-term trend associated with climate change removed. As schematized 

in Figure 6, the climate change simulation (CC-ALL) is performed over the 1958–2087 

timeframe (i.e. two JRA55 cycles) to simulate the oceanic response to climate change 

perturbations originating from the historical and SSP585 scenarios of the selected ESM 

ensemble mean. CC-ALL experiment employs the same ocean-only configuration as CTL but 

adds all IPSL-CM6A-LR fluxes perturbations (heat, wind-stress and freshwater) to the CTL 

present-day fluxes. The reference period for calculating these flux perturbations spans 1948 to 

1967, ensuring near-zero anomalies at the beginning of the JRA55 forcing period (1958). Wind-

stress and freshwater flux perturbations are directly added to their present-day evolution from 

the CTL experiment. For heat fluxes perturbations, only the SST-independent part is added to 

CTL heat fluxes, calculated as described above. The SST-dependent part of the heat flux change 

is then represented as a relaxation to present day CTL SST, with the feedback coefficient 

computed as in section 3.2. This ensure that heat flux changes are consistent with the SST 

evolution in the experiment. This experimental design can however be applied to any ESM and 

its ocean-only configuration, provided that the externally forced historical and future response 

can be extracted. 

 

4. Results 
 

4.1. IPSL-CM6A-LR forcing perturbations	
 

Flux perturbations patterns. Figure 7ab displays the wind-stress and freshwater flux 

perturbations derived from the IPSL-CM6A-LR model over the last 20 years of the CC 

simulation (2068-2087).  These fluxes perturbations are generally representative of those in 

other ESMs (Shanshan et al. 2024). The total heat flux perturbations can be either positive or 

negative, depending on the location, because of the opposite effect of the forcing component 

that predominantly warms the ocean surface (Fig. 7c), largely through reduced latent cooling 

in response to wind speed reduction, and  the online negative feedback component that counters 

the warming induced by the direct forcing (Fig. 7d), largely through enhanced evaporative 

cooling  in response to surface warming through the Clausius-Clapeyron relationship.. The 

spatial distribution of this feedback term is closely related to the spatial distribution of the 

feedback coefficient (Fig. 7e), primarily determined by the latent heat flux feedback coefficient 

(not shown), the total longwave radiative feedback being weaker and more homogeneous. The 

pattern of the latent heat flux feedback coefficient is largely governed by the pattern of the 

present-day climatological latent heat flux (see section 3.2). In the tropics, the feedback 



coefficient is maximum on either side of the equator in the three tropical basins, coinciding 

with regions of strong trade winds, and minimum at the equator, where climatological winds 

are weaker.  

 

Flux and SST evolution. Figure 8a displays the evolution of globally-averaged heat flux 

perturbations derived from the coupled and ocean-only simulations over the 1958-2087 period, 

as well as their forcing and feedback components. By design, the forcing component is identical 

in both simulations. The feedback component diagnosed from the ESMs outputs and calculated 

online in our ocean-only simulation framework closely match. Consequently, their net heat flux 

perturbation (Fig. 8a) and the corresponding SST changes (Fig. 8b) are very similar. These 

results suggest that the ESM mean state bias correction does not affect global SST changes and 

that our ocean-only framework, including our online damping, can accurately reproduce the 

global SST evolution simulated by the coupled model. Figure 8cd presents similar diagnostics 

to Figure 8ab, but focuses on the Niño3 region.  While the forcing perturbations are identical 

by design in both simulations, the damping and net heat flux perturbations are different. The 

damping is weaker in the ESM compared to CC-ALL experiment, leading to a larger net heat 

flux warming in the ESM.  The SST evolution also differs between the two simulations (Fig. 

8d), with the forced simulation showing enhanced warming compared to the coupled 

simulation. This result illustrates that the mitigation of the coupled model mean biases can lead 

to different regional SST responses.  

 

4.2. Impact of IPSL-CM6A-LR biases on future projections in the tropical Pacific 

 

Impact of bias correction in the tropical Pacific. Figure 9 highlights the differences in 

regional projections between the IPSL coupled model and the bias-corrected CC-ALL 

simulation in the tropical Pacific. Figure 9a,b shows that the ocean-only simulation qualitatively 

reproduces the SST pattern simulated by the coupled model, with enhanced warming in the 

equatorial Pacific and reduced cooling in the southeastern subtropical Pacific. However, 

marked regional differences, especially in the equatorial region, are evident. The ESM projects 

a modest relative warming over the entire equatorial band, while CC-ALL projects a larger 

relative warming in the eastern equatorial Pacific and a relative cooling over the western 

equatorial Pacific, opposite to the response of the ESM. This leads to a significant reduction in 

the zonal equatorial SST gradient in the ocean-only simulation, in contrast to the very modest 

change in the coupled simulation. These differences likely results from the strong equatorial 



cold tongue bias in the IPSL-CM6A-LR model. The projected equatorial trade winds relaxation 

(Fig. 7b) likely acts to weaken the unrealistically strong upwelling simulated by this coupled 

model in the western Pacific, resulting in an enhanced warming there. In the bias-corrected 

simulation, the absence of upwelling in the western Pacific prevents a strong dynamical 

response to this wind relaxation. Differences in projected patterns are also evident for Chl and 

O2. Figure 9d,e show that the ESM projects the largest Chl decrease in the western Pacific, with 

a smaller decrease in the eastern Pacific,  while CC-ALL projects a very small decrease in the 

western Pacific and a much larger decrease in the central and eastern Pacific. These differences 

also most likely results from the strong IPSL-CM6A-LR cold tongue bias. Finally, the O2 

decrease in the equatorial Pacific projected by the ESM is significantly reduced in the ocean-

only simulation (Fig. 9g,h). 

 

Framework evaluation. These results suggest that IPSL-CM6A-LR present-day biases may 

strongly influence future oceanic projections, affecting both physical and biogeochemical 

properties. However, it is also possible that the different responses arise from inaccuracies in 

our ocean-only modelling framework. To test this hypothesis, we have performed a series of 

additional ocean-only simulations, similar to CC-ALL and CTL, but with the climatological 

flux biases from the IPSL-CM6A-LR added to the CTL and CC-ALL heat fluxes (Figure 6). 

These simulations (CTL-BIAS and CC-BIAS) demonstrate that reintroducing the coupled 

model biases into our ocean-only framework (middle panels of Figure 9) allow to bring the 

ocean model solution much closer to the coupled model results (right panels of Fig. 9) than to 

the debiased forced simulation (left panels of Fig. 9). This clearly demonstrates that most of the 

differences between the CC-ALL and the IPSL-CM6A-LR simulations can be attributed to the 

different background ocean state, confirming that the coupled model biases strongly alter future 

projections. 

 

4.3.Process-oriented studies 

 

Mechanisms driving the Pacific warming pattern. The proposed framework offers an 

alternative dynamical approach to statistical methods, such as the “emergent constraint” 

methods, for correcting future oceanic projections from ESMs biases. Additonally, it serves  as 

a powerful tool for conducting process-oriented studies. Figure 6 provides a schematic of how 

sensitivity experiments can be used to understand the mechanisms underlying future model 

projections. These experiments are similar to the CC-ALL simulations, but each driven by a 



single component of the flux perturbations: heat fluxes (CC-Q), wind stress (CC- 𝜏 ) or 

freshwater fluxes (CC-F). Comparing these to CC-ALL allows us to assess the respective 

contribution of the flux component to future projections. As anticipated, the global warming 

signal is driven by heat flux perturbations (Fig. 11a), with wind stress and freshwater 

perturbations playing a much smaller role. However, this is different when examining the 

drivers of the Pacific warming patterns (Figure 11b-f). While relative cooling in the 

southeastern Pacific is largely due to heat flux perturbations, changes in the equatorial zonal 

gradient result from a combined response to the heat flux and wind-stress perturbations. The 

reduced damping in the eastern equatorial Pacific (Fig. 7d) and the ocean dynamical response 

to the relaxation of the trade winds (Fig. 7b) contribute almost equally contribute the relative 

warming in the eastern Pacific and relative cooling in the western Pacific. These results are put 

into a broader context in the discussion section. 

 

4.4. Application to the CNRM-ESM2-1  

 

Impact of bias correction in the tropical Pacific. To evaluate the sensitivity of our 

results to the ESM forcing perturbations, we conducted similar climate change simulations (CC-

ALL, CC-Q, CC-T, CC-F) using fluxes perturbations derived from the CNRM-ESM2-1 

projections. Since this ESM uses the same oceanic component as the IPSL-CM6A-LR model, 

any differences in bias-corrected projections can only be attributed to the ESM forcing 

perturbations applied. As shown on Figure 11b, the projected RSST pattern for the CNRM-

ESM2-1 coupled model significantly differs from that of the IPSL-CM6A-LR one. While the 

IPSL-CM6A-LR model projects an enhanced warming all along the equatorial band (Fig. 9a). 

the CNRM-ESM2-1 model simulates a modest enhanced warming localised in the eastern 

Pacific, west of the Galapagos islands, with very weak RSST changes in the rest of the 

equatorial Pacific. The pattern projected by the CNRM-ESM2-1 model more closely resembles 

the pattern projected by most other ESMs compared to the ISPL-CM6A-LR. When correcting 

for the CNRM-ESM2-1 biases, the enhanced warming extends all over the central and eastern 

equatorial Pacific and the equatorial western Pacific experiences a relative cooling (Fig. 11a). 

Interestingly, this bias-corrected pattern resembles the one simulated with the IPSL-CM6A-LR 

perturbations, suggesting that our bias-correction strategy may not only impact the projected 

pattern but may also reduce the uncertainty across ESMs. Chl and O2 pattern projected by the 

CNRM-ESM2-1 coupled and forced simulations are relatively similar to that of the IPSL-

CM6A-LR model (not shown). 



 

Driving mechanisms. Sensitivity experiments where each flux perturbation is applied 

individually (CC-Q, CC-T, CC-F) reveal that the same mechanisms drive the tropical Pacific 

warming pattern for the both bias-corrected CNRM (Fig. 11cd) and IPSL (Fig. 10de) 

simulations. Specifically, heat flux and wind-stress perturbations contribute similarly to the 

reduction of the east-west equatorial SST gradient. 

 

5.  Summary, discussion and perspectives 

 

5.1.Summary 

 

This paper proposes an ocean-only dynamical framework to mitigate the influence present-day 

biases of Earth System Models (ESMs) on future regional ocean physical and biogeochemical 

projections. Initially, a control experiment is conducted using fluxes derived from an 

atmospheric reanalysis, excluding climate change signals. Subsequently, a climate change 

simulation is performed by adding historical and future fluxes perturbations from a selected 

ESM to these background realistic fluxes. Since part of the ESM surface heat fluxes 

perturbation is a direct feedback to the sea surface temperature (SST) warming, these fluxes 

perturbations are split into SST-dependent and independent components. The climate change 

simulation is forced by the independent component, while the SST-dependent component is 

modeled online as an SST relaxation to the control experiment, accounting for Newtonian 

cooling and long-wave radiative feedback.  

 

This approach demonstrates that ESMs present-day biases can heavily impact the reliability of 

regional physical and biogeochemical ocean projections. For instance, the strong cold-tongue 

bias simulated by the IPSL-CM6A-LR model causes greater warming and chlorophyll decrease 

in the western than in the eastern equatorial Pacific, while our bias-corrected simulation shows 

opposite projected patterns. Sensitivity experiments applying heat, freshwater and momentum 

fluxes perturbations separately further indicate that thermodynamical and dynamical processes 

equally contribute to this warming pattern, highlighting the strong role of the Bjerknes 

feedback. This cost-effective method can be applied to any ESMs ocean component to produce 

more reliable regional oceanic projections and understand the mechanisms driving the projected 

patterns. 

 



5.2. Discussion 

 

Comparison with a bulk-forced approach. Our efficient flux-forced simulation strategy 

may appear somewhat complex, leading to questions whether a simpler strategy, where the 

ocean model is forced by surface atmospheric perturbations from ESMs added to JRA55 

detrended forcing, might yield similar results. Figure 11 however illustrates that bias-corrected 

projected RSST patterns differ when using the flux-forced strategy detailed in this paper (Fig. 

11a) and a simpler bulk-forced approach (Fig. 11b). The bulk-forced approach simulates an 

enhanced warming over most of the equatorial Pacific, closely resembling the pattern simulated 

by the IPSL-CM6A-LR coupled model (Fig. 11c). This similarity is likely due to the fact that 

the bulk-corrected warming pattern is strongly driven towards the coupled model projected SST 

patterns by incorporating near surface humidity and air temperature perturbations simulated by 

the coupled model in the bulk formulae. In contrast, a flux-forced strategy using an online SST 

damping constrains less the forced solution towards the one of the coupled model. 

 

Comparison with previous approaches. To the authors’ knowledge, only a single study 

(Matear et al. 2015) has attempted to assess the impact of ESMs oceanic biases onto future 

projections in a dynamical ocean-only framework. Their study focused specifically on the 

Western Pacific Ocean. However, their approach differed significantly from ours: they applied 

their bias-correction strategy using a different ocean model with considerably higher horizontal 

resolution than the coupled model they used for comparison. Consequently, they were unable 

to isolate the effects of bias correction from those of resolution enhancement or the use of a 

different model, unlike our framework. Their study concluded that while enhanced spatial 

resolution and bias correction together had only a marginal impact on physical oceanic 

projections, they strongly influenced the phytoplankton response. Despite both studies 

employing a flux-forced approach, direct comparison with our study is challenging due to 

differences in climate change simulations strategies (time-slice vs. transient simulations), the 

impossibility to cleanly isolate the impact of bias correction in their framework or the different 

coupled models analyzed.  

 

5.3.Perspectives 

 

Framework improvements. Our preliminary results with the IPSL-CM6A-LR and 

CNRM-ESM2-1 models suggest that ESMs oceanic biases can heavily impact the reliability of 



future projections but also contribute to projections uncertainties. Expanding our framework to 

encompass a broader range of ESMs would enable a more comprehensive assessment of how 

biases inherent in different ESMs affect projection biases and uncertainties. It may also be 

interesting to assess the feasibility of deriving feedback coefficient directly from observational 

data,	which introduces an additional layer of bias correction to assess the sensitivity of global 

warming levels and patterns projected by ESMs to these feedback biases. Moreover, tropical 

and subtropical cloud changes and their shortwave radiative effect projected by ESMs has also 

been identify as a major driver of the uncertainty in global warming level (Andrews et al., 2012; 

Vial et al., 2013) but also regional warming patterns (Ying et al., 2016). In our current 

framework, tropical shortwave changes are considered entirely as a forcing because these 

changes are not directly related to local SST changes but rather to relative SST changes through 

the warmer-get-wetter mechanisms. Including shortwave feedback through RSST in our 

modelling framework would allow to investigate the sensitivity of global and regional SST 

changes to cloud feedback uncertainties. On a longer term, it may also be useful to implement 

a flux-correction strategy in a fully coupled ocean-atmosphere coupled model to allow 

accounting for coupled feedbacks other that those directly related to local SST changes (e.g. 

circulation changes) on the projected SST changes. This coupled framework will not only 

provide a refine assessment of the impact of ESMs biases on projected changes in the ocean 

but also in the atmosphere, allowing for instance to address the issue of the uncertain response 

of the Walker Cell to climate change (Chung et al. 2019; Heede et al. 2021).   

 

Assessing underlying mechanisms. The framework presented in this study provides a 

comprehensive tool for elucidating the drivers behind the heterogeneous tropical SST responses 

to climate change, which are crucial for understanding associated changes in tropical rainfall 

and circulation patterns. The projected SST patterns in the tropical Pacific are influenced by a 

combination of thermodynamic and dynamical processes. Thermodynamically, enhanced 

evaporative damping over the warm pool (Xie et al., 2010; Zhang and Li, 2014) and differential 

cloud-radiation feedbacks play significant roles (Ramanathan and Collins, 1991; Erfani et al., 

2019) in shaping the SST gradient across the basin. Dynamically, processes such as the ocean 

thermostat mechanism and the Bjerknes feedback further modulate these SST patterns. Our 

preliminary results indicate that heat flux changes and the dynamical ocean response to 

equatorial trade winds relaxation both contribute to shape the El Niño-like warming pattern in 

the tropical Pacific. Extending this analysis to other ESMs would provide insights into model-

specific responses and their implications for future climate projections. Moreover, additional 



sensitivity experiments could provide a refined assessment of the specific contribution of 

individual processes. For example, applying a spatially uniform latent heat feedback coefficient 

would allow isolating the role of evaporative cooling effects on the El Niño-like warming 

pattern, while experiments combining uniform coefficients and heat flux perturbations, and 

excluding wind stress and freshwater fluxes, could elucidate the specific contribution of the 

ocean thermostat mechanism on the tropical Pacific warming pattern. Beyond the tropical 

Pacific, this framework can allow identifying how ocean dynamical changes and 

thermodynamical processes contribute to the Indian Ocean Dipole (IOD)-like warming (Zhang 

and Li, 2014; Sharma et al., 2023) and the equatorial El Niño-like warming pattern in the 

equatorial Atlantic. Furthermore, this framework will allow to understand the processes driving 

the regional biogeochemical response, including the respective role of increased upper ocean 

stratification versus changes in ocean dynamics in projected chlorophyll concentrations 

declines or the respective contribution of physical (solubility, ventilation) and biological 

(respiration) processes on the projected O2 changes at depth.  

 

In conclusion, this framework represents a powerful approach for improving the accuracy 

of regional oceanic projections for both their physical and biogeochemical properties but also 

to advance our understanding of their underlying processes.  
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Figure	1:	MMM	CMIP	model	biases	and	projected	changes.	CMIP6	multimodel	mean	
(MMM)	bias	(left)	and	future	changes	(right)	for	SST	(top;	°C),	surface	Chl	(middle;	mg.m-

3)	and	O2	averaged	between	200	and	800m	(bottom;	mmol.m-3).	The	MMM	is	derived	as	
the	average	of	the	first	available	member	of	the	23	CMIP	models	for	which	SST,	Chl	and	
O2	data	are	available	are	considered	to	calculate	(see	list	in	SI).	Present-day	values	are	
defined	as	the	1985–2014	average	of	historical	simulations.	Changes	are	defined	as	the	
difference	between	the	2071–2100	average	under	SSP585	and	present-day	values.	Future	
changes	are	defined	as	the	difference	between	SSP585	simulations	over	the	2068-2087	
period	minus	the	historical	simulations	over	the	1948-1967	period.	Dots	indicate	regions	
where	75%	of	the	models	agree	with	the	sign	of	the	MMM	bias	or	change.	
	
	
	 	



	
Figure	2:	Detrended	reanalysis	forcing.	Linear	trend	maps	(left)	and	globally	averaged	
original	and	detrended	time	series	(right)	of		10m	atmospheric	temperature	(top),	surface	
specific	 humidity	 (middle)	 and	wind-speed	 (top)	 derived	 from	 JRA-55	 reanalysis	 data	
over	the	period	1958-2022.		To	perform	oceanic	experiments	that	incorporate	projected	
air-sea	flux	changes	from	CMIP	historical	and	future	simulations,	it	is	necessary	to	remove	
the	climate	change	signal	from	our	control	simulation.	The	detrended	JRA	dataset	will	be	
used	for	this	purpose.	
	



Figure	3:	Schematic	of	spin-up	and	control	simulations.		



	 	



Figure	4:	Control	and	reference	simulations.	Time	series	for	SST	(top;	°C),	surface	Chl	
(middle;	mg.m-3)	and	O2	averaged	between	200	and	800m	(bottom;	mmol.m-3)	for	three	
simulations:	the	bulk-forced	spin-up	simulation	(SPI;	grey	lines),	the	bulk-forced	and	flux-
forced	 control	 simulations	 (CTL-BULK	 and	 CTL;	 grey	 and	 orange	 lines)	 and	 the	 bulk-
forced	reference	simulation	(REF;	pink	lines).	The	left	panels	show	the	global	averages,	
while	the	right	panels	focus	on	the	Niño3	region.	Detailed	setups	for	these	simulations	are	
provided	in	Figure	2.	
	 	



	

	

			
	
Figure	5:	Climatological	biases	in	forced	and	coupled	ocean	configurations.	Global	
maps	of	climatological	biases	(shading)	and	present-day	values	(contours)	for	REF	ocean-
only	simulation	(left)	and	IPSL-CM6-LR	historical	MMM	(right)	for	SST	(top;	°C),	surface	
Chl	(middle;	mg.m-3)	and	O2	averaged	between	200	and	800m	(bottom;	mmol.m-3).	 	



	
Figure	6:	Schematic	of	control	and	climate	change	simulations	
	 	



	
	
	
	
	
	
	

	
	
Figure	7:	Forcing	patterns	of	IPSL-CM6A-LR	climate	change	simulations.	Global	maps	
of	climate	change	simulations	forcing	over	the	period	2068-2087.	The	anomalous	fluxes	
perturbations	derived	from	the	IPSL-CM6A-LR	historical+SSP585	multi-ensemble-mean	
and	used	to	force	the	climate	change	(CC-		)	simulations	are	(a)	freshwater	flux	(mm.day-
1),	(b)	wind-stress	(N.m-2)	and	(c)	heat	flux	forcing	(W.m-2)	and	of	(d)	the	online	negative	
heat	flux	feedback	term	of	CC-ALL	simulation	(W.m-2)	and	(e)	total	net	heat	flux	into	the	
ocean	difference	between	CC-ALL	and	CTL	simulation	(W.m-2).	(f)	Global	map	total	heat	
flux	damping	coefficient	from	the	IPSL-CM6A-LR	model	(W.m-2.°C-1).		
	 	



		
		
		
	

	
Figure	 8:	 Forcing	 time	 evolution	 of	 IPSL-CM6A-LR	 climate	 change	 simulations.	
Time-series	of	total	net	heat	flux	(blue	curve),	feedback	(pink	curve)	and	forcing	(orange	
curve)	components	(W.m-2)	for	CC	simulation	relative	to	CTL	simulation	(plain	lines)	and	
IPSL-CM6A-LR	historical+SSP585	MMM	(dashed	lines)	relative	to	the	period	1948-1967.	
(Bottom)	 SST	 anomalies	 (°C)	 of	 CC-ALL	 and	 CC-BIAS	 relative	 to	 their	 corresponding	
control	simulation	(dashed	blue	curve)	and	the	IPSL-CM6A-LR	historical+SSP585	multi-
ensemble-mean	 simulation	 (orange	 curve)	 relative	 to	 the	 period	 1948-1967.	 The	 left	
panels	display	globally	averaged	time	series,	while	the	right	panels	focus	on	the	Niño3	
region.	
	
	 	



	

	
	

	
	

	
	
	
Figure	9:	Impact	of	IPSL-CM6A-LR	biases	on	projected	changes.	Tropical	Pacific	maps	
of	RSST	(top;	°C),	surface	Chl	(middle;	mg.m-3)	and	O2	averaged	between	200	and	800m	
(bottom;	 mmol.m-3).	 The	 left	 panels	 display	 the	 difference	 between	 CC-ALL	 and	 CTL	
(2068-2087),	the	middle	panel	the	difference	between	CC-BIAS	and	PI-BIAS	(2068-2087)	
period	 and	 (right)	 the	 IPSL-CM6A-LR	 difference	 between	 historical	 MEM	 simulations	
(1948-1967)	and	ssp585	MEM	simulations	(2068-2087)	for	IPSL-CM6-LR	model.	
	
			
	
	 	



	
	
	
	

	
Figure	 10:	Process-oriented	 simulations.	 (a)	 Globally-averaged	 SST	 difference	 (°C)	
relative	to	CTL	simulation	for	CC-ALL	(??	curve),	CC-Q	(??	curve),	CC-t	(??	curve),	CC-F	(??	
curve)	simulations.	(b)	Same	as	panel	(a)	but	for	RSST	difference	(°C)	in	the	Niño3	region.	
Tropical	Pacific	maps	of	RSST	difference	relative	to	CTL	simulation	for	(c)	CC,	(d)	CC-Q,	
(e)	CC-S	and	(f)	CC-F	simulations	over	the	2068-2087	period.	
	 	



	

	

	
	
Figure	11:	Application	to	the	CNRM-ESM2-1	perturbations.	Tropical	Pacific	maps	of	
RSST	(top;	°C)	difference	for	(a)	CC-ALL,	(c)	CC-Q,	(d)	CC-Tau	and	(e)	CC-F	relative	to	
CTL	(2068-2087)	and	(b)	between	historical	MEM	simulations	(1948-1967)	and	ssp585	
MEM	simulations	(2068-2087)	for	CNRM-ESM2-1	model.	
	 	



	
	

	

	
Figure	 11:	 Bulk	 vs	 Flux-forced	 future	 simulations.	 (a)	 Globally-averaged	 SST	
difference	 (°C)	 for	 CC-ALL	 (??	 curve)	 and	 CC-BULK	 (??	 curve)	 relative	 to	 their	
corresponding	 control(CTL	 and	 bCTL)	 	 simulations.	 Tropical	 Pacific	 maps	 of	 RSST	
difference	(°C)	between	(b)	CC-BULK	and	CTL-BULK	(2068-2087),	between	(c)	CC-ALL	
and	 CTL	 (2068-2087),	 between	 (d)	 the	 IPSL-CM6A-LR	 SSP585	 (2068-2087)	 and	HIST	
(1948-1967)	MEM	simulation.	
	
	
	
	

 


