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Abstract :   
 
Mayotte island experienced a large volcanic eruption 50 km offshore in 2018–2021, creating the 
submarine volcano “Fani Maoré”. The eruption was accompanied by intense seismicity at mantle depths 
(20–45 km), divided into a “proximal” and a “distal” cluster centered 10 and 30 km east from the island, 
respectively. Previous studies suggest that two separate magma reservoirs may lie at the top and bottom 
of the proximal cluster. Here, we assess whether two reservoirs are a mechanically viable explanation for 
the proximal cluster's truncated conical shape. We developed finite-element models of pressurized 
magma reservoirs in a 2D axisymmetric domain, modeling the reservoirs as compliant elastic ellipsoids 
embedded in an elastoplastic host rock. We find that, at these depths, extremely low friction is required 
to generate failure at realistically low reservoir pressures. This implies in turn that mechanical weakening 
must occur at these depths. The weakening could be induced by fractures or pore fluid overpressure in 
the volcanic system. We find that two superimposed reservoirs can generate a plastic domain between 
them, if they are spatially close enough. Several reservoir geometries (from spherical to sill-like) are 
plausible. A conical fracture domain is more likely to appear for reservoirs with opposite pressure loads 
(i.e. one inflating, one deflating). Given the geometrical match with the proximal seismicity cluster at 
Mayotte, we suggest that the shallower (Moho-depth) reservoir is inflating, creating a potential hazard for 
Mayotte island. 
 
 

Highlights 

► Two interacting magma reservoirs can explain the earthquake distribution near Mayotte. ► A 20-km 
deep reservoir near the island may have inflated during the recent eruption. ► Shear patterns between 
modeled magma reservoirs depend on the applied pressure loads. ► The occurrence of mantle-deep 
earthquakes near Mayotte may indicate mantle weakening. 
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1. Introduction 

Volcanic eruptions are surface manifestations of the Earth’s internal dynamics. Telltale 

signs associated with volcanic activity include ground deformation (e.g. Xu et al., 2016; 

Peltier et al., 2022) or earthquakes (e.g. Levy et al., 2018; Agústsdóttir et al., 2019) linked 

with host rock fracturing by fluid motion or accumulation at depth. Deformation and 

earthquake observations can therefore shed light on the subsurface structure and dynamics 

of magmatic systems, and are key to monitoring volcanic activity. 

Since May 2018, the French island of Mayotte, in the southwest Indian Ocean, has 

experienced seismic activity without known historical precedent (Figure 1, Cesca et al., 

2020; Lemoine et al., 2020). In addition to the emplacement of the new submarine Fani 

Maoré volcanic edifice east of the island in 2018 (Feuillet et al., 2021), thousands of 

earthquakes have been detected (REVOSIMA, 2023). Despite the apparent end of the 

eruption in early 2021 (Berthod et al., 2022), seismicity persists at a low but steady level 

(REVOSIMA, 2023). The seismicity, exceptional for its early intensity, its depth and its 

longevity, reveals the presence of an active magmatic system near Mayotte (Feuillet et al., 

2021; Berthod et al., 2021a), calling for a reevaluation of the regional volcano-seismic 

hazard. 

In the context of this recent seismo-volcanic activity, interpretative models of the 

magma feeding system have been proposed, based on geophysical and geological 

observations (details in Section 2). These models suggest that a ≃40-km deep magma 

storage zone was drained eastward by an ascending dyke or conduit (e.g., Feuillet et al., 

2021; Lavayssière et al., 2022; Mercury et al., 2023). Nonetheless, this system’s detailed 

structure and dynamics remain poorly understood, and could involve multiple magma 

reservoirs (Berthod et al., 2021a,b; Lavayssière and Retailleau, 2023) and a mush zone 

(Mittal et al., 2022). 

The seismicity distribution attracts particular attention. Most earthquakes occur at 

mantle depths (22-45 km), but close to land (5-15 km), beneath a possible former caldera 

ringed with geologically recent eruptive products (Puzenat et al., 2022; REVOSIMA, 

2023). A horseshoe-shaped volcanic structure on its southern rim (the “Fer à Cheval”) is 

currently experiencing degassing (Feuillet et al., 2021). This highlights the threat of a 
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connection between deep magmatic structures and outlets near or on the island, especially 

since degassing also occurs onshore (Liuzzo et al., 2022). Understanding the structures 

and processes generating this seismicity should help to assess the volcanic hazard 

affecting nearby populated areas. 

In this study, we use elasto-plastic numerical models to investigate the origin of the 

seismicity near Mayotte. Our goal is to gain first-order mechanical understanding of 

magmatic structures and their interaction which could explain the observed seismicity 

distribution. 

2. Context 

2.1. Geodynamic setting 

The Comoros archipelago is a NW-SE trending alignment of four volcanic islands: 

Grande Comore, Mohéli, Anjouan and Mayotte, lying north of the Mozambique channel 

and south of the Somali basin (Figure 1, Michon, 2016). The area features seamounts, 

volcanic ridges, lava flows and hundreds of volcanic cones (Feuillet et al., 2021; Thinon 

et al., 2022). 

The Comoros mark an immature transtensional plate boundary between the Lwandle 

and Somali plates (Famin et al., 2020; Feuillet et al., 2021; Thinon et al., 2022). Together 

with a negative S-wave velocity anomaly in the upper mantle (Mazzullo et al., 2017), this 

suggests that volcanism in the region may result from an interaction between lithospheric-

scale tectonics and a mantle plume. 

Volcanism at Mayotte initiated 26-27 Ma (Masquelet et al., 2022). The youngest traces 

of onshore volcanism in Mayotte are 4 ka old (Zinke et al., 2003). Before 2018, the only 

historically known active volcano in the Comoros was Karthala on Grande Comore. 

Hence, the region was considered seismically quiet. Only about 30 earthquakes of Mw ≥ 4 

were recorded in the Comoros between 1976 and 2018 (Famin et al., 2020). 
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2.2. Seismo-volcanic activity since 2018 

The Mayotte seismo-volcanic crisis began on May 10, 2018. Over the first month, 

hundreds of earthquakes were felt, with magnitudes up to 5.9 (Cesca et al., 2020; 

 

Figure 1: Geophysical observations of the 2018 eruption near Mayotte. Top: seismicity distribution 

(Lavayssière et al., 2022) and deformation sources (Peltier et al., 2022). The arrows show the orientation of 

the cross-sections below. Red symbol: location of Fani Maoré volcano. ML: local magnitude. Contours: 0.2, 

0.4, 0.6, 0.8 and 1 isovalues of the probability density function of GNSS-derived deflation sources (Peltier 

et al., 2022) for 2018 (red), 2019 (green) and 2020 (cyan), with the most opaque areas representing the 

highest densities. Red frame on top right globe: location of the Comoros archipelago. The square frame 

beneath the globe details this region, showing 1: Grande Comore. 2: Mohéli. 3: Anjouan. The red box in 

this plot outlines the bounds of the top left map. Bottom: 2-km-wide cross-sections of the proximal cluster. 

The horizontal distances are the distances along the cross-section axes. Contours: Vp/Vs ratio from seismic 

tomography (Foix et al., 2021). Areas below 45 km depth (in gray) are unresolved. 
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Lemoine et al., 2020; Mercury et al., 2023). In mid-June 2018, the number and magnitude 

of earthquakes decreased, and VLP (Very Long Period) events began to be observed 

(Cesca et al., 2020; Laurent, 2023). VLP events, thought to be generated by resonating 

fluid-filled cavities, are relatively common during volcanic episodes (Chouet, 1996). In 

July 2018, the island began to subside eastward. This subsidence, reaching in places 10-

20 cm, is best modeled by a ≃ 40-km-deep deflating source east of Mayotte (Figure 1, 

Lemoine et al., 2020; Peltier et al., 2022; REVOSIMA, 2023). The VLP events and the 

subsidence are thought to mark the beginning of the offshore eruption (Cesca et al., 2020; 

Lemoine et al., 2020). 

The new Fani Maoré volcanic edifice was discovered during the first MAYOBS cruise 

in May 2019 (Rinnert et al., 2019; Feuillet et al., 2021). The edifice lies 50 km east of 

Mayotte, at 3500 m depth, (Figure 1). The 820-m high volcano and associated lava flows 

have a volume of 6.55 km3 (REVOSIMA, 2023), as of 2021, making the 2018-2021 

episode one of the largest basaltic eruptions ever observed and documented (Feuillet et 

al., 2021). Since the first MAYOBS cruise, repeated oceanographic cruises continue to 

monitor the volcanic edifice, with the last active lava flow detected in January 2021 

(Rinnert et al., 2019; Berthod et al., 2022). 

The abundant seismicity since 2018 sheds light on the architecture of the Fani 

Maoré feeding system. The seismicity is divided between two clusters, named “distal” 

and “proximal”, based on their distances from Mayotte (Saurel et al., 2021). Figure 1 

shows the relocated seismicity catalog from 25 February 2019 to 9 May 2020, built by 

Lavayssière et al. (2022). 

Most if not all of the first month’s earthquakes occurred in the distal cluster (Mercury 

et al., 2023), whose base lies at 40 km depth, 30 km east of Mayotte, and which extends 

upwards and southeast towards the Fani Maoré edifice (Figure 1). Most active in May-

June 2018, this cluster is thought to mark host-rock fracturing prior to magma ascension 

towards the seafloor (Cesca et al., 2020; Mercury et al., 2023). 

The proximal cluster initiated in late September 2018 (Mercury et al., 2023). 

Mostly located between depths of ≃ 22 km and 45 km, it is centered 10 km east of 
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Mayotte’s Petite-Terre island (Figure 1). This cluster is less understood than the distal one. 

To a first order, it is roughly axisymmetrical. In cross-section, it has an “hourglass” shape 

(Lavayssière et al., 2022), with a conical bottom part (below ≃ 32 km depth) and an 

ellipsoidal top part. Most of the proximal earthquakes are volcano-tectonic (VT), but VLP 

and Long Period (LP) events are also located in this cluster (Laurent, 2023; Retailleau et 

al., 2022). 

2.3. Possible interpretations of the proximal earthquake distribution 

At first glance, the conical shape of the proximal seismicity cluster evokes outward 

dipping ring faults such as those observed during caldera collapse events at Axial 

Seamount on the Juan de Fuca Ridge (Levy et al., 2018) and at Bárðarbunga in Iceland 

(Agústsdóttir et al., 2019). However, there is no seafloor geomorphological evidence of a 

caldera collapse associated with the Fani Maoré eruption. 

The volcanic contexts mentioned above feature seismicity at much shallower depths 

than in the context of Mayotte (0-2 km for Axial Seamount, 0-6 km for Bárðarbunga). 

McTigue (1987) linked, based on analytical work, caldera collapse above an inflating 

spherical cavity to circumferential stress acting along its walls and the presence of a free 

surface. More generally, many numerical and analogical studies have modeled the 

development of ring fracture zones linking shallow magma reservoirs to the surface (e.g., 

Gudmundsson, 2007; Holohan et al., 2013; Gerbault et al., 2012, 2018; Cabaniss et al., 

2020). 

Deeper reservoirs have received less attention. Grosfils et al. (2015) show that, when 

a reservoir’s depth is large enough compared to its size (usually depth/size ratios of 2-3), 

circumferential (i.e. “ring”) roof failure becomes less favorable than vertical dyking from 

the reservoir’s apex or lateral sill emplacement from its sides (depending on reservoir 

geometry). Interpreting the proximal cluster as a marker of “ring-fault”-associated 

collapse is thus challenging because (1) the necessary failure pattern is unlikely at such 

depths and (2) there is little to no seismicity between the seafloor and 20 km depth (Figure 

1). 

Lavayssière et al. (2022) propose an alternative explanation, in which the proximal 

cluster represents a conical fault zone connecting two superimposed reservoirs. They 
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suggest that its top outlines an ovoid aseismic zone. Seismic tomography by Foix et al. 

(2021) also shows two roughly ellipsoidal areas with high Vp/Vs at the cluster’s top and 

bottom boundaries (Figure 1). Further constraints on reservoir depths and dimensions are 

detailed in Section 3.2. 

Few studies have investigated the mechanical relationships between neighboring 

reservoirs. Gonnermann et al. (2012) explain the apparent coupling between Mauna Loa 

and Kilauea volcanoes (Hawaii) by modeling pore pressure diffusion within the melt 

accumulation layer. Pascal et al. (2014) model magma bodies as pressurized cavities 

within an elastic domain to assess the impact of magma reservoir interactions on surface 

displacement. Albino and Sigmundsson (2014) use a similar framework but study how a 

neighboring magma body locally alters the failure threshold on a reservoir’s wall. 

Karaoğlu et al. (2020) present elastic models of the Karliova Triple Junction (eastern 

Turkey) featuring three neighboring magma bodies, and predict likely areas of failure and 

magma transfer based on stress distributions within the host rock. Because of the 

complexity of this area, the authors choose a multi-layered and highly heterogeneous 

domain with numerous preexisting faults. Their modeled magma bodies are also much 

closer to one another (≃ 2 km) than the anomalies imaged by Foix et al. (2021) (10-15 

km) near Mayotte. Their results thus seem difficult to relate directly to our case study. 

Another challenge concerning the proximal cluster is to explain the occurrence of 

seismic failure at such great depths. As depth increases, so does the confining pressure, 

which tends to inhibit tensile or shear rock failure (Grosfils, 2007; Gerbault, 2012). The 

role of internal fluid pressures or weak chemical phases is often invoked to reduce 

effective yield strengths (e.g. Rubey and King Hubbert, 1959; Brantut et al., 2016). 

Our models therefore address two main questions: (1) are two interacting magma 

reservoirs a mechanically viable explanation for the occurrence and shape of the proximal 

seismic cluster observed in Mayotte?; and (2) what conditions can lead to reservoir wall 

failure at these depths? 
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Figure 2: Numerical setup of our models. A: Boundary conditions and parameter definitions (see Table 1 

for more details). B: Overwiew of the used mesh. Minimum element size is 150 meters on the reservoir 

walls. 

3. Methods 

3.1. Numerical setup 

We perform finite element calculations using the COMSOL Multiphysics® software 

(v6.1). We use the Structural Mechanics module of COMSOL which solves for the 

conservation of mass and momentum on an elasto-plastic material; the equations and the 

method are detailed in Appendix A and Appendix B. We choose a cylindrical coordinate 

system, because we assume that the structures generating the axisymmetric proximal cluster 

are also axisymmetric. We define a 200-km-by-200-km 2D axisymmetric domain, with r = 

0 corresponding to the symmetry axis (Figure 2). The top of the modeled domain is a free 

surface (z = 0, representing the seafloor). Considering the depths of interest, we neglect the 

presence of seawater, which is discussed in Section 3.3. The bottom boundary is a no-slip 

boundary and the lateral boundaries have a roller (or “free-slip”) boundary condition. 

Gravity is applied (g = 9.81 m.s−2) and the domain is lithostatically loaded. 

The domain includes the host rock as well as one or two spheroidal subdomains at the 

symmetry axis, representing magma reservoirs (Figure 2). Along the reservoir walls, we 

apply a normal stress ∆P, representing the reservoir’s pressure difference with respect to 

lithostatic pressure. A negative value represents an underpressure (deflation) and a 
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positive value an overpressure (inflation). Reservoir pressurizations are noted ∆Pup and 

∆Plow for the upper and lower reservoir, respectively. 

We build our mesh using triangular elements. The resolution is high near the reservoirs 

(150 m) and coarsens progressively towards the domain’s edges (up to 7500 m). This 

allows us to capture fine structures while keeping computation times reasonable over a 

domain that is large enough to avoid border effects. 

3.2. Geometrical parameters 

We define magma reservoir depths and dimensions based on geophysical and 

geological data acquired near Mayotte. Table 1 provides numerical values. 

In addition to the proximal cluster’s shape, there are several lines of evidence for 

magma reservoirs near its top and bottom. LP and VLP earthquakes, generally associated 

with resonating fluid-filled areas (Chouet, 1996), seem to be located within a VT event 

gap at the axis of the proximal cluster (Retailleau et al., 2022; Laurent, 2023). Analysis of 

rock samples from the Fani Maoré and Fer a` Cheval areas suggest that a main storage 

reservoir lies between 37 and 48 km depths and that several differentiated melt lenses may 

be stagnating near the Moho, at 15-20 km depths (Berthod et al., 2021a,b). Foix et al. 

(2021) image two areas with high Vp/Vs (Figure 1) above and below the proximal cluster, 

which they interpret as melt-rich zones. These anomalies range from 22 to 30 km depth, 

and from 38 to 50 km depth, with respective volumes of 205 km3 and 234 km3. 

To account for these observations, our simulations feature two magma reservoirs. We 

also provide a numerical benchmark with a single reservoir in Section 4.1. Based on 

seismic tomography and geochemical data, we choose a central depth of 40 km for the 

deep reservoir, and a range of depths from 20 to 30 km for the shallower one. When testing 

spherical reservoirs, we define radii of 3 km and 4 km for the upper and lower reservoir, 

respectively. This yields initial volumes of 113 km3 and 268 km3, respectively. We 

examine the effects of reservoir geometries using thickness/width ratios of 1 (spheres), 

1/2 (oblate) and 1/4 (sill-like). 
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Parameter description Parameter name Value(s) 

Upper reservoir wall pressure ∆Pup — 

Lower reservoir wall pressure ∆Plow — 

Pressure ratio ∆Pup/∆Plow -1 to 1 (increment of 0.1) 

Upper reservoir central depth* dup 20, 22.5, 25, 27.5, 30 km 

Lower reservoir central depth* dlow 40 km 

Upper reservoir width wup 6 km 

Lower reservoir width     wlow        8 km 

Upper reservoir thickness     hup   6, 3, 1.5 km 

Lower reservoir thickness     hlow     8, 4, 2 km 

Reservoir separation*              ቀ𝑑௟௢௪ −  
௛೗೚ೢ

ଶ
ቁ −  ቀ𝑑௨௣ +  

௛ೠ೛

ଶ
ቁ   13, 10.5, 8, 5.5, 3 km 

Bedrock Young’s modulus Eb 150 GPa 

Reservoir Young’s modulus Em 0.1 GPa 

Density ρ 3300 kg.m−3

Poisson’s ratio ν 0.25 

Cohesion C 10 MPa 

Friction angle ϕ 1◦ 

Dilatancy angle ψ 0 
 

Table 1: List of numerical parameters. For C and ϕ, parametric tests are presented in Figure S1. 

*“Reservoir separation” is the distance from the upper reservoir’s base to the lower reservoir’s apex. The 

central depths shown here are those tested for the spherical reservoir cases. For non-spherical cases, they 

were modified so that reservoir separations remained identical. 

3.3. Mechanical parameters 

We define the elastic parameters throughout the modeled domain (Young’s modulus 

E, Poisson’s ratio ν and density ρ). We approximate the reservoirs as purely elastic 

(following Gerbault et al., 2012; Got et al., 2013) and the host rock as elasto-plastic with 

prescribed failure parameters (cohesion C and friction angle ϕ). 
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To simplify our analysis, we choose a uniform density ρ = 3300 kg.m−3, corresponding 

to mantle peridotites. This “replaces” 17 km of crust (ρ = 2800 kg.m−3) with mantle, 

adding 83 MPa to the confining pressure. We do not consider the buoyancy effects of less 

dense magma reservoirs on the stress field (see Discussion) and neglect the weight of 

seawater, which subtracts ≃ 35 MPa on top of the domain. These approximations yield a 

≃ 50 MPa excess in confining pressure at mantle depths. Compared to the confining 

pressures of 800 MPa at 25 km depth and 1.3 GPa at 40 km depth, these simplifications 

yield relative errors of 6% and 3.5%, respectively. 

Based on our chosen density and on the velocity model of Lavayssière et al. (2022), 

we calculate a bedrock Young’s modulus Eb = 150 GPa, which is a reasonable value for 

the upper mantle (e.g., Afonso et al., 2005). Poisson’s ratio ν is set to 0.25 for the reservoirs 

and the host rock. Estimating an average magma reservoir Young’s modulus Em is difficult 

due to internal heterogeneities linked with the presence of several physical phases (crystal 

layering, volatiles) that can evolve transiently before and after a volcanic eruption. Several 

studies argue for complex poro-visco-elastic behavior (e.g., Mittal and Richards, 2019; 

Liao et al., 2021; Alshembari et al., 2022, 2023). Here, we neglect these internal variations 

and choose an homogeneous constant elastic behavior. 

We test different values of Em for a deflating reservoir in a fully elastic model (Figure 

3A) and then fix it for subsequent model cases, based on how well the 

resulting surface displacement fits analytical solutions for pressurized spherical reservoirs 

(McTigue, 1987). We find that more compliant magma reservoirs produce better fits. 

Ultimately, we choose Em = 0.1 GPa: smaller values require excessively small numerical time-

steps for the elasto-plastic simulations. Alternatively, we could have chosen empty (not 

meshed) magma reservoirs, similarly to other studies (e.g., Karaoğlu et al., 2020; Zhan and 

Gregg, 2019); our choice stems from faster numerical convergence when considering a 

meshed magma reservoir. Gerbault (2012) compared both approaches, and a numerical 

benchmark is shown in Appendix C. 

Elasto-plastic behavior in COMSOL is dealt with in the following manner (see 

Appendix B). Elastic materials follow Hooke’s law (e.g., Jaeger et al., 2007). Plastic 

behavior is prescribed with a Drucker-Prager failure criterion, a smoothed approximation 
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of the Mohr-Coulomb criterion in 3D, and follows a non-associated plastic flow rule 

appropriate for rocks and granular materials (dilatancy angle ψ = 0, Vermeer and de Borst, 

1984). Plastic behavior is irreversible and non-associated plastic flow rules are difficult to 

compute numerically, because they require drastically small time-steps (Gerbault et al., 

1998). Reservoir wall pressures must therefore be imposed with small increments, as a 

succession of quasi-static steps (e.g., Gerbault, 2012; Novoa et al., 2022). We choose an 

initial pressure step of 1 MPa. When the solver fails to converge, it automatically reduces 

the pressure step by down to seven orders of magnitude. Nevertheless, in our simulations, 

the solver fails to converge shortly after a specific pressure step, due to the large amount of 

deformation (e.g., mesh distorsion) induced by plastic behavior (see Results). Note that our 

modeled domain does not present initial strength heterogeneities; the role of preexisting 

structures and other factors that would favor rupture at specific locations are discussed later 

in Section 5.2. 

Ground displacement inversions on Mayotte suggest that a 40-km-deep deflation 

source lies near the distal cluster (Figure 1, Lemoine et al., 2020; Feuillet et al., 2021; 

Peltier et al., 2022). However, the source’s position is poorly constrained due to the non-

optimal GNSS network disposition and the simplicity of the purely elastic rheology. 

Multiple sources and deformation occurring at the proximal cluster cannot be excluded. 

Magma withdrawn from the area of the proximal cluster could have replenished a drained 

reservoir further east (e.g., Mittal et al., 2022). We thus assume that the ≃ 40-km-deep 

lower reservoir is deflating, i.e. ∆Plow < 0. For the upper reservoir, we test positive, null 

and negative wall pressures (∆Pup). Without constraint on the actual evolution of pressures 

within the two hypothetical reservoirs, we assume simultaneous variations of magma 

pressure in both reservoirs. 

∆Pup and ∆Plow are imposed progressively such that the ∆Pup/∆Plow ratio remains 
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Figure 3: Benchmark with a single reservoir. A: vertical displacement generated by a 40-km deep spherical 

reservoir of radius 4 km, underpressurized by 1.5 GPa (hence deflating by 5 km3). Simulations are 

performed in an elastic bedrock with Eb = 150 GPa, and for different values of Em. The inset shows misfits 

with the analytical solution by McTigue (1987), in log scale for both axes. B: Shear stress field obtained 

with a deflating reservoir in an elastic medium. The color levels show our numerical solution. The contours 

show the analytical solution by McTigue (1987), in GPa. C: plastic shear strain obtained with a deflating 

reservoir in an elasto-plastic medium, with C = 10 MPa and ϕ = 1◦. σ1, σ2 and σ3: principal stresses (from 

most to least compressive). 

constant throughout the simulation. 

GNSS inversion by Peltier et al. (2022) propose 5 km3 of volume loss at depth between 

2018 and 2019, while Berthod et al. (2021a) suggest 4.8 km3 based on petrology. 

Throughout the simulations, we also survey the volume variation of our modeled magma 

reservoirs (noted ∆Vup and ∆Vlow for the upper and lower reservoir, respectively) by 

integrating the normal displacement at the reservoir walls. We use the 5-km3 deflation as 

an upper bound for the volume loss at the proximal cluster (see Discussion). 

We represent our results graphically using the “Von Mises” or “shear” stress (second 

invariant of the deviatoric stress tensor, here noted τ) and plastic shear strain (here noted 

ϵpl
II) distributions (more details in Appendix A.2 and Appendix A.5). Our goal is to 

produce modeled distributions of τ and/or ϵpl
II that match the conical shape of the proximal 

cluster at the considered depths. 
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4. Results 

4.1. Preliminary tests with a single reservoir 

We first perform numerical benchmarks using a single spherical reservoir in an elastic 

bedrock. This framework, commonly used in volcanology (e.g., McTigue, 1987; Peltier 

et al., 2022), is a first-order approximation of magma reservoir behavior. Figure 3B shows 

the result for a 40-km-deep spherical reservoir with a 4-km radius. Segall (2010) gives the 

equation linking reservoir wall pressure and volume variation for a spherical cavity of 

radius a: 

  with  (1) 

Assuming ∆V = −5 km3 for Mayotte (Berthod et al., 2021a; Peltier et al., 2022), we obtain 

∆P = − 1.5 GPa, greater than the 1.3 GPa confining pressure at 40 km depth. The reservoir 

dimensions are uncertain and, although our chosen radius seems to match the observations, 

Equation 1 shows that the relationship between 

∆P and ∆V strongly depends on reservoir size. It also implies that the decrease of Young’s 

modulus at high temperatures (e.g., Cabaniss et al., 2020) yields a smaller ∆P to match a 

similar volume loss. Nevertheless, a wall pressure of at least several hundred MPa is still 

needed to deflate the reservoir by 5 km3. While our modeled distribution of τ matches the 

solution by McTigue (1987) (Figure 3B), the elastic framework thus requires an 

unrealistic pressure in order to reproduce the observed volume variation. 

Furthermore, given the reservoir’s small radius/depth ratio, the distribution of τ is 

concentric. Predicting conical “ring”-like failure would require stress concentrations on 

the sides of the reservoir (McTigue, 1987; Grosfils et al., 2015), which do not appear here. 

Purely elastic simulations are thus insufficient to predict both the proximal earthquake 

cluster’s occurrence and its spatial distribution. 

While elastic simulations can predict where host rock failure may initiate, they 

generally fail to compute its evolution (Gerbault et al., 1998). Therefore, we perform a 

second test using the same reservoir dimensions but in an elasto-plastic bedrock. We 

consider self-consistent plasticity to assess whether a single reservoir can reproduce 

propagating fractures or shear zones that match the shape of the proximal cluster. 
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We first explore different values of the failure parameters (Figure S1). At the 

considered depths, cohesion (C) has little impact, so we use a standard value of C = 10 

MPa. The critical pressure for reservoir wall failure is mainly driven by the friction angle 

(ϕ). Figure S1 shows that, unless we set ϕ below 5◦ (as opposed to the standard 30◦ for 

undamaged rocks), shear failure at 40 km depth requires a ∆P of several hundred MPa. 

Although we lack constraints on the actual reservoir pressure, such large values are likely 

unrealistic (see Section 5.2). Therefore, in the rest of the study, we show simulations with 

ϕ = 1◦, representing an end-member case with extremely low friction; several studies argue 

for such a low value, referred to as an “effective” friction (e.g., Gerbault et al., 2022, and 

references therein). 

Figure 3C shows the ϵpl
II field generated by a deflating spherical reservoir with 

C = 10 MPa and ϕ = 1◦. Volume loss of 5 km3 is achieved for ∆P = -180 MPa, ≃ 8 times 

less than for an elastic bedrock. Once the failure threshold is reached, the amount of strain 

generated for a given pressure is larger than for the elastic case, in agreement with, e.g., 

Gerbault et al. (2012). The modeled plastic domain is concentric around the reservoir wall, 

consistent with Gerbault et al. (2018) for a spherical reservoir in 3D. At the considered 

pressure, no conical fracture zone appears. 

We also perform tests with an oblate and a sill-like reservoir (Figure S2). The non-

sphericity of the magma source generates stress and strain concentrations at the reservoir’s 

tips, i.e. the areas of greatest curvature, in agreement with the literature (Gudmundsson, 

2007; Grosfils et al., 2015; Gerbault et al., 2018; Zhan and Gregg, 2019; Sigmundsson et 

al., 2020). Nonetheless, we observe that the generated plastic domains remain mostly 

diffuse, and do not match the shape of the observed proximal cluster near Mayotte. Even 

in an elasto-plastic framework, a single reservoir thus seems unlikely to generate the 

observed earthquake distribution. 

4.2. A reference model case 

We now present a reference model with two spherical reservoirs within an elasto-plastic 

bedrock. In this reference case, only the deepest reservoir is pressurized (∆Plow < 0 and 

∆Pup/∆Plow = 0). 
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Figure 4: Evolution of the strain field during an elasto-plastic simulation with two spherical reservoirs. Only 

the lower reservoir has an applied underpressure. A-C: key snapshots of the simulation. σ1, σ2 and σ3: 

principal stress orientations (from most to least compressive). D: volume variation for both reservoirs as a 

function of lower reservoir wall pressure during the simulation. A, B and C correspond to the snapshots on 

the left. The dashed black line highlights the 5 km3 volume loss. Stage 1-4: see main text. 

Figure 4 shows the evolution of ϵpl
II and of the reservoirs’ change in volume during 

the simulation. This evolution can be divided into four stages: 

• Stage 1: the lower reservoir deflates elastically. ∆V is proportional to ∆P, consistent 

with Equation 1. 

• Stage 2: the lower reservoir wall reaches failure at ∆Plow ≃ -40 MPa, in agreement 

with our analytical predictions (Appendix A.3). A concentric plastic domain forms 

around it and progressively expands (Figure 4A). 

• Stage 3: the plastic shear domain reaches the upper reservoir. A zone of localized 

plasticity progressively appears in between them (Figure 4B). 

• Stage 4: the plastic domain connecting both reservoirs is now a well-defined conical 

fracture zone that concentrates most of the plastic strain (Figure 4C). Volume 

variation sharply increases for both reservoirs (Figure 4D). 
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This reference case shows that adding an area of greater compliance above a 

pressurized reservoir can enhance stress localization and favor the development of conical 

shear bands. Based on the orientation of the principal stresses and on the displacement 

field (Figure S3), the produced plastic domain accommodates inverse displacement, and 

delimits a conical subsiding area between the reservoirs. In this case, the establishment of 

a well-defined conical shear zone happens largely after the lower reservoir has deflated 

by 5 km3 (Figure 4D), which is discussed in Section 5.1. 

4.3. The influence of differential reservoir pressure on shear zone geometries 

We now explore the effects of applying a differential pressure at the walls of both 

reservoirs. We run numerical simulations varying ∆Pup/∆Plow from -1.0 to 1.0 (for example, 

for ∆Pup/∆Plow = -1.0, when the lower reservoir deflates by 100 MPa, the upper reservoir 

inflates by 100 MPa). ∆Plow is negative in these simulations. Figure 5 shows the effect of 

∆Pup/∆Plow on the critical ∆Plow needed to reach the different stages described in the 

reference model case above. 

For values of ∆Pup/∆Plow ranging from -1 to ≃ 0.3, the critical pressure for stage 4 

increases with increasing ∆Pup/∆Plow. In other words, rapid volume variation 
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Figure 5: Effect of magma reservoir pressurization, for two spherical reservoirs. A: critical pressures for the 

different stages on a set of runs with varying ∆Pup/∆Plow. Solid blue curve: applied critical magma pressure 

at which plastic deformation initiates at the lower reservoir wall. Dashed blue curve: same for the upper 

reservoir. Dashed black curve: critical applied magma pressure for which the lower reservoir has deflated 

by 5 km3. Red curve: onset of stage 4 (Figure 4). Black arrow: case described in Section 4.2 (∆Pup/∆Plow = 

0); its direction indicates the progression through the run. The limit between “axial” and “conical” fracture 

zones is based on the observation of the final stress fields shown in Figure S4. B-D: final stages of the end-

member simulations (see Figure S4 for intermediate cases). Principal stress orientations are shown similarly 

to Figure 4. 
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(accompanying brittle failure at the reservoir walls) begins earlier when the two reservoirs’ 

differential pressures have opposite signs. This effect reverses for ∆Pup/∆Plow greater than 0.3 

(Fig. 5A, red curve). 

The ∆Pup/∆Plow ratio also influences the geometry of the plastic domain (Figure S4). For 

negative ratios, a well-localized conical shear zone appears, as seen in the reference case 

(Figure 4). As this ratio increases, this conical shear zone becomes less and less localized, and 

strain tends to concentrate around the reservoirs’ walls. For ∆Pup/∆Plow above 0.5, the shear 

failure area shifts towards the center of the domain, which we refer to as an “axial fracture 

zone”. 

In summary, applying opposite wall pressures on two reservoirs (1) tends to generate 

better-defined conical failure zones and (2) requires smaller applied pressure to establish 

a plastic domain connecting the reservoirs. 

4.4. The effect of reservoir depths 

Next, we investigate the effect of reservoir depths on the geometry of the plastic shear 

zone. Figure 6 shows simulations with the lower reservoir set at a central depth of 40 km 

and the upper reservoir set at varying depths (Table 1). We define the reservoirs’ 

separation height as the distance between the upper reservoir’s base and the lower 

reservoir’s apex (1). We examine three pressure regimes: ∆Pup/∆Plow equal to 0.3 (top row), 

0 (middle row) and -0.3 (bottom row). 

With ∆Pup/∆Plow = −0.3, a conical shear zone appears for all tested upper reservoir 

depths. When the reservoirs are farther apart, the shear zone appears to be less well defined. 

The case with a separation of 13 km (Figure 6C) shows poorly localized strain, with ϵpl
II 

seemingly more concentrated on the reservoirs’ walls. Figure 6F (separation = 10.5 km) 

shows a ≃5-km wide network of curved faults. Cases with a smaller separation display 

more sharply defined conical fracture zones. 

For the other two pressure regimes, the plastic domain connecting both reservoirs is 

hardly visible beyond a certain reservoir separation. For ∆Pup/∆Plow = 0, it is poorly 

developed at 10.5 km separation (Figure 6E) and disappears at 13 km separation (Figure 

6B). For ∆Pup/∆Plow = 0.3, it is poorly defined at 8 km separation (Figure 6G) and 

disappears beyond 10.5 km separation (Figure 6A, D). 
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Figure 6: Effect of the separation distance between reservoirs on the plastic strain field, for spherical 

reservoirs. For each case, the presented step is the last before solver divergence. ∆Pup/∆Plow ratios are 0.3 

for the top row, 0 for the middle row and -0.3 for the bottom row. Horizontal and vertical axes are the radial 

distance and depth, in km. Reservoir separations are indicated by the black arrows. Principal stress 

orientations are shown similarly to Figure 4. 

In summary, there seems to be a critical separation height below which a localized 

plastic connection can develop between the reservoirs. We find that opposite reservoir 

wall pressure signs raise this critical height. 

4.5. The effect of reservoir geometries 

Figures S5 and 7 show models featuring oblate and sill-like magma reservoirs. 

Reservoir depths are slightly modified from Table 1 in order to keep the same reservoir 

separation heights as in Figure 6. 
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With non-spherical reservoirs, the critical separation below which a well-defined 

plastic connection forms decreases. For example, for opposite pressure signs and a 13-km 

separation, the plastic connection is hardly visible with oblate reservoirs (Figure S5C) and 

it is absent with sill-like reservoirs (Figure 7C), whereas it is clearly visible in the spherical 

case (Figure 6C). 

Grosfils et al. (2015) predicted that, at great depths, inflating oblate and sill-like 

reservoirs tend to generate laterally propagating fractures. With deflating reservoirs, the 

most compressive principal stress σ1 shifts by 90◦ from wall-normal to wall-parallel, as can 

be seen on our results. But slip line plasticity theory (Gerbault, 2012, and references 

therein) predicts that shear bands form at an angle 45◦ ± ϕ/2 from σ1. Thus, fault orientation 

will not change significantly with the wall pressure sign (since we choose ϕ = 1◦), which is 

why we observe laterally propagating faults. With oblate or sill-like reservoirs, these 

generated faults need to cover a broader curved pattern prior to flipping back and 

connecting with the upper reservoir, which could explain why it seems more difficult for 

pressurized sills to generate a connecting shear zone. 

When a plastic connection does form in between the reservoirs, it seems to develop a 

better-defined cone, i.e. strain focuses into a thinner shear band, in contrast to a diffuse 

plastic domain or to strain concentration along the reservoir walls. For example, the case 

with two deflating reservoirs and a 5.5-km separation, which produced a rather diffuse 

conical failure zone in between the reservoirs and significant concentric strain along the 

lower one (Figure 6J), shifts to a well-defined conical fault zone when the reservoirs are 

oblate or sill-like (Figure S5J and Figure 7J). Stress and strain concentrations in areas of 

greater curvature (e.g., Gudmundsson, 2007; Gerbault et al., 2018, Figure S2) may explain 

why non-spherical reservoirs 
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Figure 7: Effect of the distance between reservoirs on the plastic strain field, for sill-like reservoirs (h/w = 

1/4). Horizontal and vertical axes are the horizontal distance from the domain center and the depth, in km. 

For every case, the presented step is the last before solver convergence fails. ∆Pup/∆Plow ratios are 0.3 for 

the top row, 0 for the middle row and -0.3 for the bottom row. dup and dlow differ from Figure 6 to make sure 

that the tested reservoir separations remain the same (see Table 1 caption), i.e. identical to Figure 6. Principal 

stress orientations are shown similarly to Figure 4. The insets on the right column are zooms in between 30 

and 40 km depths. 
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Figure 8: Interpretative sketch of the proximal earthquake cluster near Mayotte. Gray dots: VT earthquakes 

from Lavayssière et al. (2022). Background color: Vp/Vs ratio from Foix et al. (2021). The tomography 

data is cut below 45 km depth due to the lack of resolution. Red arrows: magma transfer. Blue arrows: 

possible fluid transfer (hydrothermal fluids, gases). Black arrows: magma reservoir pressurization. LP event 

location from Lavayssière and Retailleau (2023). 

produce well-defined conical strained areas in our simulations. These well-defined shear 

strain areas appear for smaller applied pressures than for spherical reservoirs, which 

agrees with Currenti and Williams (2014) and Gerbault et al. (2018). 

In summary, oblate and sill-like reservoirs (1) require shorter reservoir separation to 

generate a well-defined plastic connection, but (2) seem more prone to generate well-

defined conical shear bands, and (3) require smaller applied pressures and volume 

variation to achieve this plastic connection. 
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5. Discussion 

5.1. Understanding the distribution of the earthquakes in the proximal cluster 

Although ground displacement inversions place the deflation source of the 2018-2021 

eruption east of the proximal cluster, (Lemoine et al., 2020; Feuillet et al., 2021; Peltier 

et al., 2022), the area may still have undergone magma withdrawal and fed the eruption 

(Lemoine et al., 2020; Mittal et al., 2022). We thus used the estimated 5 km3 volume loss 

as an upper bound. For the same reason, we favor cases requiring applied pressures that 

are as moderate as possible. 

Our goal was to produce plastic shear strain patterns that would match a given 

earthquake distribution, hence we assumed that brittle plasticity is a proxy for seismic 

activity, e.g. like in Gerbault et al. (2022). However, while plastic strain indicates areas 

undergoing brittle behavior (Vermeer and de Borst, 1984), it does not necessarily reflect 

a seismic distribution (Dieterich, 1979). Fault-induced stress changes can cause 

earthquakes slightly off the major faults (King and Cocco, 2001), making the earthquake 

distribution more diffuse than the shear strain pattern. Interpreting our strain distributions 

in terms of seismicity thus requires caution. 

In our models, we find several cases where the interaction of two nearby reservoirs 

can produce a conical plastic domain matching the shape of the observed proximal 

earthquake cluster. In particular, scenarios with reservoir wall pressures of opposite signs 

are more prone to generate such shapes (Figures 5, S4), and require the lowest applied 

magma pressures (Figure 5A). Assuming spherical reservoirs, these scenarios are also the 

only ones where a well-defined fracture zone (stage 4) is established before the lower 

magma reservoir deflates by 5 km3. 

Alternatively, oblate and sill-like reservoirs can generate conical plastic domains for 

smaller volume variations, even when ∆Pup/∆Plow ≥ 0 (Figures S5 and 7). However, these 

models raise two issues. First, oblate reservoirs or sills poorly match the geometry of the 

anomalies imaged by Foix et al. (2021) (Figure 1). This issue is minor, since recent works 

(e.g., Cashman et al., 2017, and references therein) propose that magma “reservoirs”, 

classically conceived as spheroidal cavities, actually consist of multi-layered sill 

complexes. Due to its low resolution, the tomography by Foix et al. (2021) cannot 
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discriminate between such structures and vaguely spherical melt-rich zones. Second, 

oblate spheroidal reservoirs must be closer to one another in order to establish a 

mechanical connection, especially for cases ∆Pup/∆Plow ≥ 0, and require reservoir height 

separations of less than 5.5-8 km (Figures S5 and 7). The proximal cluster extends over a 

depth interval of ≃ 15 km (Figure 1, Lavayssière et al., 2022), hence reservoirs less than 

8 km apart are too close to represent the Fani Maoré plumbing system. Only cases with 

∆Pup/∆Plow < 0 produce plastic connections for height separations of more than 10 km 

(e.g., Figure S5F for oblate reservoirs). Non-spherical reservoir geometries may 

contribute to generating the observed proximal earthquake distribution, but opposite 

reservoir pressure signs are our favored explanation. 

Since we assume a deflating lower reservoir, we propose that an inflating reservoir 

may lie atop the proximal cluster (Figure 8). It would be located beneath a possible former 

caldera on the seafloor, where geologically recent volcanic features have been identified 

(Puzenat et al., 2022; REVOSIMA, 2023). There is currently no evidence for lava 

emission during the 2018-2021 period in this supposed caldera, despite active degassing 

being recorded in the Fer a` Cheval, on its southern rim, only 10 km east of Mayotte 

(Feuillet et al., 2021; REVOSIMA, 2023). A recharging reservoir below this location 

highlights the possibility of a future eruption closer to Mayotte than the Fani Maoré edifice. 

However, our study cannot predict the likelihood of such a scenario, let alone propose a 

related timescale. 

5.2. Pressure conditions necessary for failure at the considered depths 

The proximal cluster’s depth (25-40 km) is a challenging point. The corresponding 

confining pressures, of the order of a GPa, make both tensile and shear failure especially 

hard to attain (Grosfils, 2007; Gerbault, 2012). Here, we produce shear failure by lowering 

the friction angle ϕ to an extremely low value (1◦) with respect to usual standards in rock 

mechanics (≃ 30◦). The case without friction is an end-member scenario tested in several 

modeling studies (e.g., Novoa et al., 2022, Gerbault et al., 2022), and mimics the influence 

of elevated bedrock pore fluid pressures (Rubey and King Hubbert, 1959). 

In the case of Mayotte, our quasi-null friction hypothesis indicates that the mantle is 

likely weakened by preexisting sets of fractures. Lithospheric-scale fault zones likely 
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affect the mantle, given Mayotte’s location on a plate boundary. (Famin et al., 2020; 

Thinon et al., 2022). Besides, the proximal cluster lies beneath volcanic structures on the 

seafloor (Feuillet et al., 2021). Whether these structures are directly connected to the 

proximal cluster is unclear, but their presence suggests that pre-existing magma-induced 

fractures may have been reactivated by the recent eruption. Emission of magma-originated 

gases on the seafloor near and on Mayotte (Feuillet et al., 2021; Liuzzo et al., 2022) also 

hint at a hydrothermal system reaching or approaching the identified magma reservoir 

depths; thus, serpentinization induced by hydrothermal fluids could contribute to mantle 

weakening (Brantut et al., 2016). 

While the critical pressures for the onset of reservoir failure do not exceed 50 MPa in 

our simulations, the pressures required to develop a well-defined conical shear zone range 

from ≃ 125 MPa to ≃ 250 MPa for spherical reservoirs (Figure 5). For sill-like reservoirs, 

they are lower but still on the order of 100 MPa (Figure S7). Numerical modeling studies 

of magma reservoirs generally feature applied pressures below a few dozen MPa (e.g., 

Gudmundsson, 2007; Currenti and Williams, 2014; Browning et al., 2021; Novoa et al., 

2022; Karaoğlu et al., 2020). Some studies apply pressures beyond 100 MPa for theoretical 

purposes, and in models featuring both gravity and standard friction values (Gerbault et 

al., 2012, 2018). Soltanmohammadi et al. (2021) model magma ascent atop mantle plumes 

via compaction waves, and compute pressures up to 150 MPa. Kiss et al. (2023) also 

present models with over/underpressures nearing 400 MPa due to thermal 

contraction/dilatation. Our simulations thus fall on the high end of what is usually tested 

in terms of magma pressures. 

Here, we model deeper magma reservoirs than the studies cited above, and although we 

examine essentially friction-less cases, our simulations do include gravity and lithostatic 

loading. While reservoir pressures beyond 100 MPa are problematic for shallower or 

gravity-less cases (due to tensile failure occurring prior to shear failure for example), it is 

hard to assess how (un)realistic such applied pressures are in our framework. We note, 

however, that pore fluids are likely present near Mayotte, in the form of hydrothermal 

fluids (Feuillet et al., 2021; Liuzzo et al., 2022) or of a magma mush (Foix et al., 2021; 

Mittal et al., 2022). Partial reduction of the confining pressure by pore fluids (Grosfils et 

al., 2015) is likely at play near Mayotte. In these conditions, it seems plausible that an 

overpressure of ≃ 100 MPa would suffice to trigger tensile failure at 20-40 km depth. 
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An alternative to high magma pressures triggering bedrock seismicity would be that the 

fractures or faults generating the proximal swarm predate the 2018-2021 eruption. 

Slipping along a preexisting fault plane requires less stress than along new faults (Lockner 

and Beeler, 2002; Collettini et al., 2009). In our modeled framework, reactivation of a 

preexisting fault zone connecting the reservoirs would only require the pressure difference 

between stages 3 and 4 (see Section 4.2), which is several tens of MPa less than that 

required to go from stage 1 to stage 4. We lack the data needed to assess the state of the 

tectono-magmatic system before May 2018, but Mittal et al. (2022) proposed that the 

absence of delay between magma emission and seismicity in early 2019 could indicate 

that the proximal cluster faults were already close to critical state and therefore reacted 

rapidly to magma withdrawal. Further studies are required to better characterize regional 

tectonic inheritance. 

Other factors than a reservoir over/underpressure may also contribute to host rock 

failure. In choosing a uniform domain density, we neglected magma buoyancy effects (a 

more realistic magma density would be ≃ 2500 kg.m−3). Sigmundsson et al. (2020) 

showed that a buoyant magma reservoir exerts a stress field on its roof that can bring it 

close to failure without extra magma over/underpressure. An 8-km-high magma column 

like our lower reservoir, with density 2500 kg.m−3 embedded in the mantle (∆ρ = 800 

kg.m−3) will exert an extra pressure ∆ρgh ≃ 63 MPa on the reservoir roof. Whether this 

extra pressure would cause host rock failure is difficult to say. Gudmundsson (2007) argues 

that reservoir pressures overcoming the host rock’s tensile strength (generally 10 MPa) 

will trigger tensile failure at any depth, but their approach assumes that the host rock is 

saturated by pore fluids at lithostatic pressure, allowing them to neglect the confining 

pressure (Grosfils et al., 2015). Although pore fluids seem present near Mayotte as 

mentioned above, total cancellation of the lithostatic pressure over the entire 40-km thick 

column seems to be a strong hypothesis. 

5.3. Perspectives for further studies 

Our modeling could benefit from a more complete consideration of physical effects. 

We treated our problem via simple solid mechanics, albeit with an elaborate rheology to 

model fault initiation and propagation. First, we do not account for the high temperature 

at 25-40 km depth, especially near magma reservoirs. This thermal state could trigger 
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viscous behavior instead of brittle behavior (Currenti and Williams, 2014; Zhan and Gregg, 

2019; Kiss et al., 2023). Viscous flow (Head et al., 2022) and thermal expansion (Karaoğlu 

et al., 2020; Kiss et al., 2023) also largely impact stress magnitude and distribution. 

Future models could also include fluid transfer between the reservoirs and the host 

rock. The location of LP seismicity inside the VT gap of the proximal cluster (Figure 8, 

Lavayssière and Retailleau, 2023) suggests a fluid pathway between the two reservoirs, 

which could be modeled as a conduit in the intervening domain (Reverso et al., 2014), as 

a poro-elasto-plastic domain within which fluids can be pumped in and out transiently 

(Sáez-Leiva et al., 2023), or as a viscous fluid-filled propagating crack (Furst et al., 2023). 

These approaches could help reproduce more consistent volume variations in between the 

reservoirs with lower pressures than those imposed here. 

Our choice of axially symmetrical 2D models is based on the first-order shape of the 

proximal cluster. Actually, the proximal earthquake distribution is not perfectly 

symmetrical, nor does it seem to evolve symmetrically with time (Lavayssière and 

Retailleau, 2023). Besides, onshore and bathymetric volcanic and tectonic features clearly 

follow a NW-SE tensile regional stress pattern, and Mayotte is located on a transtensional 

oceanic-to-continental plate boundary (Famin et al., 2020; Feuillet et al., 2021; Thinon et 

al., 2022). A three-dimensional setup then becomes necessary to account for the influence 

of such an anisotropic regional stress field. 

Finally, a complete and quantitative study of magma transfer during the Fani Maoré 

eruption should also include the distal cluster area. Concurring changes in seismicity in 

mid-2020 suggest a connection between the proximal and distal seismic clusters 

(Lavayssière and Retailleau, 2023). It has been convincingly argued that the erupted 

magma transited through the area of the distal cluster located further east (Cesca et al., 

2020; Lemoine et al., 2020; Mercury et al., 2023). This lateral propagation of magma calls 

for further mechanical explanation. 

6. Conclusion 

Our work shows that bedrock failure in-between two superimposed magma reservoirs 

(one lying around 40 km depth, the other around 20-25 km depth, as indicated by geophysical 

and petrological data) is a plausible explanation for the presence of the proximal earthquake 
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cluster offshore east Mayotte island. The proximal cluster’s earthquake distribution seems to 

favor opposite pressure signs on the reservoir walls (one inflating, one deflating). Assuming, 

based on data, that the deeper reservoir has undergone magma withdrawal during the recent 

eruption suggests that the shallower reservoir near Moho depth may have been recharged 

during the same period. Inflation of this upper magma reservoir could allow upward magma 

propagation to the surface in the future; further studies are needed to ascertain whether this 

phenomenon could cause an eruption closer to the island. In the meantime, such a structure 

should be closely monitored due to the hazard it represents. 
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Appendix A. Equations solved, flow laws and physical parameters 

Appendix A.1. Fundamental equations 

The conservation of mass and momentum is written as follows (Jaeger et al., 2007): 

 ቊ
𝛻 ⋅ 𝝈 + 𝑭𝒗  =  0

డఘ

డ௧
+ 𝛻 ⋅ (𝜌𝒗)  =  0

 (A.1) 

where 𝜎 is the stress tensor, 𝒗 the velocity and 𝑭𝒗 is the sum of body forces (in the present work, 

it is equal to the gravitational body force 𝜌𝒈). 

Constitutive laws define the rheology of the domain, i.e. the relationship between the 

stress tensor 𝝈 and the strain tensor 𝝐. For linear elastic materials (here, we assume the magma 

reservoirs to behave elastically), we assume Hooke’s law (Jaeger et al., 2007): 

 𝐸𝝐 =  (1 + 𝜈)𝝈 − 𝜈tr(𝛔)𝐈 (A.2) 

with 𝝐 the strain tensor, 𝑰 the 3 × 3 identity matrix, 𝜈 Poisson’s ratio and 𝐸 Young’s modulus. 

The notation “tr” refers to a tensor’s trace, i.e. the sum of its diagonal components. We assume 

that the bedrock surrounding the magma reservoirs (e.g. the lithosphere) is elasto-plastic, which 

means that Hooke’s law prevails (Equation A.2) until a failure threshold is reached. 

 

Appendix A.2. Shear stress and failure criterion 

Shear failure (i.e. “mode II” or “mode III”) is assumed to be triggered by a Drucker-

Prager criterion: 

 𝐹஽௉ = ඥ𝐽ଶ(𝝈) + 𝛼𝐼ଵ(𝝈) − 𝑘 =  0 (A.3) 
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where 

 𝛼 =
ଶ௦௜௡(ఝ)

√ଷ(ଷି௦௜௡(ఝ))
 and 𝑘 =

ଶ√ଷ௖௢௦(ఝ)

(ଷି௦௜௡(ఝ))
𝐶 (A.4) 

with 𝐶 the cohesion and 𝜑 the internal friction angle. 𝐹஽௉ is the Drucker-Prager yield function. 

𝐼ଵ(𝝈) = tr(𝛔) is the first invariant of the stress tensor, equal to three times the mean normal 

stress (counted positively for tensile stresses and negatively for compressive stresses). 𝐽ଶ(𝝈) is 

the second invariant of the stress deviator 𝒔, such that 

 𝒔 = 𝝈 −
ூభ(𝝈)

ଷ
𝑰 (A.5) 

and 

 𝐽ଶ(𝝈) =
ଵ

ଶ
𝒔: 𝒔 =

ଵ

ଶ
𝑠௜௝𝑠௜௝ =

ଵ

ଶ
(𝑠ଵଵ

ଶ + 𝑠ଶଶ
ଶ + 𝑠ଷଷ

ଶ ) + 𝑠ଵଶ
ଶ + 𝑠ଵଷ

ଶ + 𝑠ଶଷ
ଶ  (A.6) 

A Drucker-Prager yield envelope corresponds to a regular cone in the three-dimensional 

stress space, compared to a Mohr-Coulomb yield envelope which was developed for two-

dimensional approaches and displays sharp hexagonal corners (hence discontinuous domains in 

3D). A comparison of both criteria can be found in Wojciechowski (2018). 

The “Von Mises stress”, here referred to as “shear stress” and denoted 𝜏, is defined as 

 𝜏 = ඥ3𝐽ଶ = ට
ଷ

ଶ
𝒔: 𝒔 (A.7) 

In elastic-only simulations, the distribution of 𝜏 is often used to determine the areas prone to 

shear failure (e.g. Gudmundsson, 2007; Browning et al., 2021; Karaoğlu et al., 2020). 

Tensile failure (i.e. “mode I”) is classically thought to occur when the mean normal 

stress 𝐼ଵ(𝝈) exceeds the rock’s tensile strength 𝑇, which generally ranges between 1 and 10 

MPa (e.g. Grosfils et al., 2015, and references therein). In our study, we do not account for 

tensile failure since the confining pressure at the studied depths is so large that stresses around 

our modeled reservoirs were never at tensile state. Besides, laboratory experiments, analytical 

studies, numerical modeling and field observations suggest that, for depths greater than ≃ 2 km, 

shear failure occurs prior to tensile failure (Gerbault, 2012; Grosfils et al., 2015, and references 

therein). Let us recall that double-couple earthquakes are associated to shear failure, and are 

often observed during volcanic eruptions (e.g. Levy et al., 2018). Hence, we consider the 

absence of tensile failure in our models to be a minor drawback. 
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Appendix A.3. Expected critical pressure for wall failure 

The Drucker-Prager criterion predicts that plasticity occurs when Equation A.3 is 

satisfied, i.e. when: 

 ඥ𝐽ଶ(𝝈)  =  𝑘 − 𝛼𝐼ଵ(𝝈) (A.8) 

Assuming that the confining pressure is nearly lithostatic yields: 

 𝐼ଵ(𝝈)  =  −3𝜌𝑔𝑧 (A.9) 

with z counted positively downwards. McTigue (1987) and Segall (2010) give the stress field, 

in spherical coordinates (𝑟, 𝜃, 𝜑), for a spherical reservoir of radius 𝑎 in an unbounded elastic 

region: 

 𝝈 =

⎝

⎜⎜
⎛

− ቀ
௔

௥
ቁ

ଷ

0 0

0
ଵ

ଶ
ቀ

௔

௥
ቁ

ଷ

0

0 0
ଵ

ଶ
ቀ

௔

௥
ቁ

ଷ

⎠

⎟⎟
⎞

× 𝛥𝑃 (A.10) 

with the convention that tensile stresses are positive. On the reservoir wall (𝑟 = 𝑎), this yields: 

 𝝈 = ൮

−1 0 0

0
ଵ

ଶ
0

0 0
ଵ

ଶ

൲ × 𝛥𝑃 (A.11) 

This tensor is purely deviatoric, and its second invariant is: 

 ඥ𝐽ଶ(𝝈) = ට
ଵ

ଶ
𝝈: 𝝈 =

√ଷ

ଶ
× 𝛥𝑃 (A.12) 

This solution agrees with our numerical tests. Our modeled reservoirs seem far enough from the 

free surface for Equation A.10 to be valid. 

Substituting Equations A.4, A.9 and A.12 into Equation A.8 gives the value of the critical 

pressure at which failure occurs: 

 𝛥𝑃௖௥௜௧  =
ସ

(ଷି௦௜௡(ఝ))
(𝑐𝑜𝑠(𝜑)𝐶 + 𝑠𝑖𝑛(𝜑)𝜌𝑔𝑧) (A.13) 

Given the large reservoir radius-to-depth ratio considered, we expect that, for a spherical 

reservoir, failure initiates at its apex (Grosfils et al., 2015). Considering a center depth 𝑑 and a 

radius 𝑟 , we thus calculate 𝛥𝑃௖௥௜௧  at depth 𝑑 − 𝑟 . Figure S1 summarizes our parameter 
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exploration. In particular, for 𝐶  = 10 MPa and 𝜑  = 1, 𝑑  = 40 km and 𝑟  = 4 km, we expect 

𝛥𝑃௖௥௜௧  ≃  40 MPa. For a reservoir with 𝑑 = 25 km and 𝑟 = 3 km, assuming the same 𝐶 and 𝜑, 

we expect 𝛥𝑃௖௥௜௧  = 30 MPa. Given its shallower depth, it is not surprising that the upper 

reservoir reaches failure for smaller applied pressures than the lower reservoir. Analytical works 

generally examine the case of an overpressure, but we find that applying an underpressure does 

not significantly affect the failure threshold. 

 

Appendix A.4. Non-associated plastic flow rule 

When the failure criterion is met, brittle behavior is simulated by a non-associated plastic 

flow rule. For this rule, the strain rate tensor 𝝐̇ is split between an elastic and a plastic component 

(Vermeer and de Borst, 1984): 

 𝝐̇ = 𝝐̇௘௟ + 𝝐̇௣௟ (A.14) 

The elastic part 𝝐̇௘௟ follows Hooke’s law while the plastic part 𝝐̇௣௟ is the derivative of the plastic 

potential 𝑄 such that: 

 𝜖̇௣௟ = 𝜆
డொ

డఙ
 (A.15) 

where 𝜆 is a positive proportionality factor. Details on its derivation can be found in Vermeer 

and de Borst (1984)] or Gerbault et al. (1998). The plastic potential 𝑄 is defined similarly to the 

stress yield function (Equations A.3 and A.4), except that the internal friction angle 𝜑  is 

replaced by the dilatancy angle 𝜓: 

 𝑄 = ඥ𝐽ଶ(𝝈) + 𝛼ொ𝐼ଵ(𝝈) − 𝑘ொ (A.16) 

with 

 𝛼ொ =
ଶ௦௜௡(ట)

√ଷ(ଷି௦௜௡(ట))
 and 𝑘ொ =

ଶ√ଷ௖௢௦(ట)

(ଷି௦௜௡(ట))
𝐶 (A.17) 

The case 𝜓 = 𝜑  is referred to as “associated plasticity”, while the case 𝜓 ≠ 𝜑 

corresponds to “non-associated plasticity” (Vermeer and de Borst, 1984). This latter framework 

is more appropriate for soils, rocks and granular materials in general (Vermeer and de Borst, 

1984), and is the most complete approach in predicting propagating fault patterns (Gerbault et 

al., 1998). Choosing 𝜓 =  0 yields a theoretically incompressible flow within the plastic areas, 
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and can thus produce localized shear bands without any preexisting strength heterogeneities 

(Gerbault et al., 1998). 

 

Appendix A.5. The interpretation of plastic shear strain 

In this study, we have chosen to evaluate the occurrence of shear failure by examining 

the distribution of the second invariant of the plastic strain deviator, here noted 𝜖ூூ
௣௟: 

 𝜖ூூ
௣௟

= ට
ଵ

ଶ
𝒅𝒆𝒗(𝝐௣௟): 𝒅𝒆𝒗(𝝐௣௟) (A.18) 

where 𝒅𝒆𝒗(𝝐௣௟) is the deviator of the plastic strain tensor 𝝐௣௟: 

 𝒅𝒆𝒗(𝝐௣௟) = 𝝐௣௟ − tr(𝛜௣௟)𝑰 (A.19) 

We refer to 𝜖ூூ
௣௟ as “plastic shear strain”. 

Other components of the plastic strain tensor provide additional information. For 

example, the volumetric part shows areas of compression and dilatation, which can indicate the 

occurrence of tensile failure. Here, we study plastic shear strain since it better shows the amount 

of distortion generated by failure. In fact, tests we made show that the volumetric part of the 

plastic strain tensor generally followed the same distribution as 𝜖ூூ
௣௟, only one or two orders of 

magnitude below. Most of the plastic strain generated by our simulations is therefore plastic 

shear strain. 

 

Appendix B. Numerical method implemented by COMSOL 

Here, we present a succinct overview of the technical aspects of the solver functionalities 

we use in COMSOL. Full details can be found in the official COMSOL documentation. 

COMSOL Multiphysics® (v6.1) uses finite elements to solve ordinary differential 

equations over a user-defined mesh. We use the so called Stationary Study, which implements 

damped Newton iterations. The equations solved can be expressed as: 

 𝒇(𝑼) = 𝟎 (B.1) 
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with 𝑼 the solution vector and 𝒇(𝑼) the residual. The solver makes an initial guess 𝑼଴, and 

calculates its Jacobian 𝒇′(𝑼) such that: 

 𝒇′(𝑼଴)𝛿𝑼 =  −𝒇(𝑼଴) (B.2) 

The next iteration 𝑼ଵ is then calculated as follows: 

 𝑼ଵ = 𝑼଴ + 𝜆𝛿𝑼 (B.3) 

with 𝜆 ∈ [0,1] the damping factor. A new residual is calculated; if it is lower than that of 𝑼଴, 

𝑼ଵ  is accepted and iterations continue. If it is greater, 𝑼ଵ  is computed again with a smaller 

damping factor. Iterations are terminated either when the minimal set value of the residual is 

reached (i.e. the iterations stop since a satisfying solution has been found) or when the maximum 

set number of iterations is reached (i.e. the solver has not converged after a given number of 

iterations, hence it stops). 

We impose reservoir wall pressures progressively, as a succession of quasi-static steps. 

To do so, we select in the Stationary Study, the “auxiliary parametric sweep” option. Each 

pressure increment is solved with damped Newton iterations as described above. We define a 

maximum reservoir pressure, select an initial pressure step size, and allow the solver to 

automatically adjust the step size if necessary. In other words, when convergence cannot be 

achieved with the initial pressure step size, the solver tries again with a smaller pressure step. 

In our simulations, a drastic reduction in pressure step size typically characterizes the onset of 

the large deformation phase (see Results and Figure 4). 

The calculations stop either (1) when all pressure increments have been successfully 

computed (i.e. the prescribed maximum value has been reached), or (2) when no solution with 

a low enough residual was found even when using the smallest defined pressure step size. 

 

Appendix C. Comparison of results with meshed and unmeshed magma reservoirs 

In this study, we have chosen to model magma reservoirs as more compliant elastic 

subdomains, following the approach of, e.g., Gerbault et al. (2012) and Got et al. (2013). As 

described in Section 3.3, we have chosen our mechanical parameters so that the surface 

displacement in our models satisfyingly matched analytical predictions of calculations based on 

empty reservoirs (McTigue, 1987). In fact, other numerical modeling studies present models of 
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empty (i.e. unmeshed) magma reservoirs in an elastic (e.g., Grosfils et al., 2015; Cabaniss et al., 

2020) or elastoplastic (Gerbault et al., 2018; Ruz-Ginouves et al., 2021; Novoa et al., 2022) 

domain. 

The supplement of Gerbault (2012) shows a benchmark comparing both approaches. 

Below, we also propose a comparison between models with meshed and unmeshed reservoirs. 

We perform our tests with two spherical reservoirs, in the same framework used in Section 4.3 

(central depths 25 and 40 km, radii 3 and 4 km). We present the evolution of the vertical surface 

displacement and reservoir volume variation for 
௱௉ೠ೛

௱௉೗೚ೢ
= -1, -0.3, 0, 0.3 and 1 (Figure S8). We 

also show the evolution of the plastic shear strain for the two extreme cases (Figures S9 and 

S10). 

Figure S8 shows that models with meshed and unmeshed magma reservoirs produce 

very similar results in the early simulation stages. The difference between them progressively 

increases, since the unmeshed models seem to reach the rapid reservoir volume variation stage 

for slightly lower applied pressures. Without a meshed reservoir, the solver is also able to 

converge until larger values of surface displacement and volume variation are reached. 

Figures S9 and S10 also show that, for the displayed cases, the plastic shear strain fields 

produced are very similar between the two approaches. In particular, the generation of an axial 

shear zone for two deflating reservoirs and a conical shear zone with reservoirs of opposite signs 

remains valid. 

The conclusions of our study therefore seem uninfluenced by the choice of meshed or 

unmeshed magma reservoirs. In the latter approach, the solver seems able to converge even 

when very large amounts of deformation are produced (several tens of meters in ground 

displacement and tens of km3 in reservoir volume variation). This results in a longer simulation 

runtime, mostly to compute steps that are likely unrealistic when studying the Mayotte 2018-

2021 eruption. For that reason, we have opted for the approach presented in our study. 

Supplementary Reference 

Wojciechowski, M., 2018. A note on the differences between Drucker-Prager and Mohr-

Coulomb shear strength criteria. Studia Geotechnica et Mechanica 40, 163–169. URL: 
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Appendix D. Supplementary figures 

 

Figure S1: Parametric exploration of the critical pressure required for reservoir wall failure in an 

axisymmetric setting. A, B: tests with a spherical reservoir, varying the friction angle ϕ, corresponding to 

our modeled dimensions for the upper (A) and lower reservoir (B). C: tests for a spherical reservoir varying 

the cohesion C. D: tests with varying reservoir aspect ratios, from oblate to prolate shapes. Analytical 

solutions for A-C are calculated following Equation A.13. 
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Figure S2: Effect of the reservoir aspect ratio on τ and  distributions with a single deflating reservoir. A-

B: oblate reservoir (h/w = 1/2). C-D: sill-like reservoir (h/w = 1/4). The host rock is elastic (A, C), or elasto-

plastic with C = 10 MPa and ϕ = 1◦ (B, D). For elastic simulations, the applied ∆P is -250 MPa, whereas for 

elasto-plastic simulations, the last pressure step before solver outbreak is represented (hence the different 

values of ∆P). 

 

Figure S3: Displacement field produced by the reference simulation with two reservoirs (Section 4.2, 

Figure 4). A: plastic shear strain (Figure 4C). B: total displacement. C: horizontal displacement (positive 

outwards). D: vertical displacement (positive upwards). The conical plastic strain area delimits an area of 

subsidence between the reservoirs and accommodates inverse movement. 
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Figure S4: Plastic shear strain generated by different ∆Pup/∆Plow ratios, for two spherical reservoirs. Each 

subplot represents the final stage of a run shown as dots in Figure 5A. Subplots 

A, K and U correspond to Figures 5B, C and D, respectively. 
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Figure S5: Effect of the distance between reservoirs on the plastic strain field, for oblate reservoirs 

(h/w = 1/2). For every case, the presented step is the last before the solver fails to converge (hence the run 

stops). ∆Pup/∆Plow ratios are 0.3 for the top row, 0 for the middle row and -0.3 for the bottom row. dup and 

dlow differ from those of Figure 6 to ensure that reservoir separations remain the same (see the Table 1 

caption). Horizontal and vertical axes display radial distance and depth, in km. Reservoir separations are 

identical to Figure 6. Principal stress orientations are shown similarly to Figure 4. 
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Figure S6: Plastic shear strain generated by different ∆Pup/∆Plow ratios, for two sill-like reservoirs. Each 

subplot represents the final stage of a run shown as dots in Figure S7. Subplots A, K and U correspond to 

Figures S7B, C and D, respectively. Reservoir separations (height between the roof of the lower reservoir 

and the base of the upper reservoir) are identical to Figure S4. 
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Figure S7: Effect of magma reservoir pressurization, for two sill-like reservoirs. A: critical pressures for the 

different stages on a set of runs with varying ∆Pup/∆Plow. Solid blue curve: applied critical magma pressure 

at which plastic deformation initiates at the lower reservoir wall. Dashed blue curve: same for the upper 

reservoir. Red curve: onset of stage 4 (Figure 4). Here, unlike with spherical reservoirs (Figure 5), the 5-

km3 reservoir deflation is never reached. B-D: final stages of the end-member simulations (all intermediate 

cases are presented on Figure S6). 
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Figure S8: Vertical surface displacement and reservoir volume variation for simulations with meshed and 

unmeshed reservoirs. Left column: evolution of the vertical surface displacement. Dark red curves: last 

pressure increment (hence the different values between meshed and unmeshed reservoirs). Middle column: 

evolution of the vertical surface displacement at radial distances r 10 km and 20 km (since Mayotte lies 

between 10 and 20 km from the proximal cluster). The gray patch highlights the 10-20 cm subsidence 
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observed on Mayotte. The circles show the displacement obtained when ∆Vlow = -5 km3. Right column: 

reservoir volume variations during the simulations. 

 

Figure S9: Evolution of the plastic shear strain throughout a simulation with 1, with (A) and 

without (B) a meshed subdomain in the magma reservoirs. The pressure steps are chosen so that ∆Vlow are 

similar between the top and bottom row (approximately -1 km3, -3 km3, -5 km3) 
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Figure S10: Same as Figure S9, but with  


