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ABSTRACT Acoustic cameras are increasingly used for continuous, non-intrusive recording and counting 

of fish passage in natural environments and artificial structures such as fishways. However, analysing the 

large number of videos recorded is time consuming. Although automatic reading processes have been 

developed, the poor quality of acoustic images, including discontinuity of the signal for a single object, is 

challenging. We developed an innovative method for analysing acoustic videos. Unlike previous methods, 

it focuses on swimming locomotion instead of the morphological properties of fish. Each image of a fish is 

pre-processed to remove discontinuities and restore the entire fish body as a single cluster of pixels. The set 

of pixels is then tracked to retrieve movement, independent of the displacement of the fish, using a mesh 

and a solid deformable model. The deformation to which the mesh is subjected between each pair of frames 

(i.e., deformation of the fish body) is summarised in a deformation map for each fish passage. Testing the 

method using a dataset of four species strongly suggested that deformation maps are species-dependent. 

These results must be extended to other species to confirm the effectiveness of the method for automatic 

identification of fish species and characterisation of their behaviour using acoustic camera records. 

INDEX TERMS Acoustic video, Deformable model, Mathematical morphology, Species identification, 

Swimming mode 

I. INTRODUCTION 

Acoustic cameras (AC) are widely used for underwater 

surveillance, from military applications, for which they 

were initially designed, to monitoring of fish [1], [2] and 

other living organisms [3], [4]. Their high-frequency 

multi-beams can produce acoustic images that represent a 

top-down view of the ensonified volume of water, 

enabling two-dimensional representation of objects [5]. 

They can cover larger sections of water than optical 

cameras, while having little (e.g., turbidity) or no (e.g., 

luminosity) dependence on environmental conditions. 

Moreover, AC are non-intrusive for aquatic fauna and 

increasingly popular in ecological studies. They are 

widely used to estimate fish abundance [6], [7], [8], [9], 

monitor fish migration behaviour [10], [11], [12], [13], [14] 

and predation behaviour [15], [16] and track movement 

within habitats [16], [17], [18]. They provide valuable 

information for managing fish and fisheries, as well as 

hydropower plants, and for evaluating mitigation 

measures or assessing population stocks. However, the 

continuous recordings generate a large volume of data that 

makes reviewing them time consuming. Moreover, studies 

have highlighted potential bias of operators when 

counting fish [20], [21], [22] or measuring fish length [23], 

[24], [25]. In addition, the fish must be relatively large and 

have distinctive morphological features to be successfully 

identified by operators [26], [27]. Therefore, an automatic 

method that can analyse acoustic videos by identifying 

species is essential to fully exploit the potential of AC.  

    While automatic identification of species from optical 

images is already well advanced using deep-learning 

approaches [26], [27], [28], with some studies going as far 
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as identifying individual fish [31], most analysis of 

acoustic videos is manual [32], as computing methods are 

hampered by the few details available on the videos. Only 

characteristics related to morphology, motion and 

swimming locomotion can be recorded, as no information 

is provided on the colour or patterns of fish scales or fins. 

Most automated studies based on acoustic videos have 

focused on eel species (Anguilla anguilla and Anguilla 

rostrata). Because of their distinctive serpentine shape, 

they have been successfully distinguished from drifting 

debris and other species through morphological and 

motion analysis [33], [34], [35] and deep-learning 

algorithms [36], [37]. Other studies have focused on 

individuals of multiple species, distinguishing fish and 

other objects using deep-learning algorithms [38], [39], 

[40]. Conversely, only a few studies have distinguished 

multiple species with similar morphological 

characteristics through template matching, using acoustic 

shadows [41] or high-resolution images [42]. To date, 

these pilot studies have been conducted under controlled 

conditions with restrictive acquisition parameters and a 

range of less than 2 m, which may prevent their 

operational use. 

    These methods to automate species identification 

highlight the need to use another source of information 

available from acoustic videos: fish swimming 

locomotion. Hence, in addition to a diversity of 

morphologies, fish species also have varied modes of 

swimming. Studies have characterised modes of 

swimming based on the length and amplitude of wave 

propulsion [43], [44], [45]. Swimming modes can vary 

among species [46], although other factors can influence 

them, such as fish behaviour and life stage [43], [44]. For 

anguilliform fish, the wave propulsion pattern corresponds 

to a sinusoid, with nearly the entire body undulating [47]. 

Another major group of freshwater fish are the 

subcarangiforms, which undulate mainly the posterior half 

of the body [44]. Fish locomotion has been studied mainly 

in still water or steady flows [48], and current studies may 

increase understanding of fish movement in free-flowing 

water [49]. 

    Extracting information on fish swimming locomotion 

from in situ videos is technically challenging, especially 

when using acoustic videos. It requires tracking the fish 

and quantifying its body deformation each time it is 

detected in the AC field of view (FOV) (i.e., in successive 

images). Thus, for a given point on the body, the distance 

between its location at two successive time steps must be 

measured, independent of the displacement of the fish. In 

this study, we explored the potential to use deformable 

models to decrypt and quantify the swimming locomotion 

of fish passing through AC FOV.  

    Deformable models are curves or surfaces defined from 

an input image [50], [51]. The models change due to 

internal forces within the model and external forces 

calculated from the processed image [52]. Deformable 

models are used for many image-processing applications, 

including image segmentation [51], object tracking [53], 

[54], edge detection and shape modelling [52]. First 

introduced by [55], a variety of deformable models have 

since been developed [51], [52], [56], [57], in two 

categories: geometric and parametric. Geometric models 

track the deformation using geometric measures, 

independent of the parametrisation, which implicitly 

represents the curves and surfaces [58]. Despite their 

simple implementation and efficient computation time 

[59], geometric models do not rely on physical principles, 

which prevents them from considering natural 

deformations. In comparison, parametric models explicitly 

represent the curves and surfaces using prior information 

on shape [56], which ensures direct interactions with the 

model [58]. 

    Among parametric models, gradient domain mesh 

deformation is a surface-based, variational optimisation 

method (i.e., optimisation over a space of functions). It 

explicitly preserves local shape properties during 

deformation, thus avoiding the distortion that other mesh-

based models generally cause [52]. To do so, the method 

directly encodes geometric details of the object by 

calculating the Laplacian from the curve’s discrete points 

[52]. During deformation, preservation of the Laplacian 

coordinates also preserves the mesh details [52]. Like for 

many other parametric models [51], the deformation 

minimises energy, including internal and external terms. 

Internal energy terms aim to preserve the local shape 

properties, so that deformation of the mesh minimises 

divergence from the initial one. Conversely, external 

energy terms ensure that the mesh deforms to the desired 

output positions. To solve this energy-minimisation 

problem, nonlinear optimisation methods are usually used, 

as their nonlinear constraints can induce the expected 

deformations [52]. These gradient domain techniques have 

been used successfully in studies of mesh deformation 

[60], [61], [62]. 

    Here, we developed a new method for analysing 

acoustic videos that extends beyond analysing static 

images of objects. We combined deformable models with 

computer-vision methods to quantify and track body 

deformation of fish passing through AC FOV. Our aim 

was to develop a method that can retrieve features of fish 

swimming locomotion from acoustic videos and to 

evaluate their utility for identifying species. The method’s 

ability to distinguish species was tested using an acoustic 

video dataset with records of four fish species swimming 

through the FOV of an AC set in a free-flowing river. 

 
II. DATA DESCRIPTION 

The method was based on the passage of four individuals 

recorded using the Adaptive Resolution Imaging Sonar 

(ARIS, Sound Metrics Corp). The data were recorded at two 
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monitoring sites in France: the Sélune River [39], [63] and 

the intake canal of the Mauzac hydropower plant, on the 

Dordogne River [35]. Two ARIS models were used: an 

ARIS 1800 (96 beams) and an ARIS 3000 (128 beams). 

Although they had the same acquisition frequency, they had 

different resolutions and recording windows (9 and 14 m 

wide, respectively) (Table I). Due to lower water levels at the 

Sélune River, the videos recorded there included constant 

echoes from the river bottom. The AC were set up on one 

bank of the river, perpendicular to the water current, which 

projected fish passages apically on the videos and showed 

deformation of each fish's body as it swam (Fig. 1). 

 
TABLE I 

ACQUISITION PARAMETERS AND ACOUSTIC CAMERA SETTINGS 

Monitoring site Mauzac Sélune 

AC type ARIS 1800 ARIS 3000 

Acquisition mode High frequency Low frequency 

Frequency (MHz) 1.8  1.8  
Frame rate (frames/s) 7 5 

Number of beams 96 128 

Minimum range (m) 0.7 2.0 
Maximum range (m) 9.4 16.0 

Field-of-view opening (°) 28 × 14 28 × 15 

Frame height × width (px) 1276 × 664 1350 × 738 

 

  

 

 

 

 

 

 

 

 

 

 

    

FIGURE 1. Diagram of the acoustic camera installed on the right bank 
of a river. The camera’s recording volume is (green) determined by its 
multiple beams (white). Adapted from [64]. 

 

    An experienced operator reviewed all videos to identify 

the species or group of species of each individual that crossed 

the AC FOV by analysing its morphological and behavioural 

characteristics. Four species or group of species were chosen 

to develop the method: the European eel (A. anguilla, EEL), 

Atlantic salmon (Salmo salar, SAT), European catfish 

(Silurus glanis, SIL) and a cyprinid fish (CYP) that was 

either a common bream (Abramis brama) or common carp 

(Cyprinus carpio) (Fig. 2). Their differing morphology and 

swimming locomotion (Table II) provided the operator with 

a high degree of confidence. From the highest-quality videos 

of passages (i.e., the fish was easily distinguishable from the 

background), one individual of each species or group of 

species was selected that swam perpendicular to the AC 

beams, which helped to capture body undulation in the 

largest number of consecutive frames (Table III). 

TABLE II 

MORPHOLOGY AND SWIMMING LOCOMOTION OF THE GROUP 

STUDIED  

Group Morphology 
Swimming 

locomotion 

European 
eel 

Serpentine shape with uniform body 
distribution. Large individual (> 70 

cm). 

Anguilliform 

Atlantic 
salmon 

Ellipsoidal shape of the main body 
that becomes thinner at the caudal 

end. Large individual (> 70 cm). 

Subcarangiform 

European 
catfish  

Serpentine shape with a head wider 
than the main body, with a nearly 

triangular shape. Large individual 

(> 70 cm). 

Anguilliform 

Cyprinid Ellipsoidal shape of the main body 

that is becomes thinner at the caudal 

end. Small individual (< 70 cm). 

Subcarangiform 

 
TABLE III 

ACQUISITION CHARACTERISTICS OF THE INDIVIDUALS 

STUDIED 

Group 
Mean 

length (px) 
Measured 

length (cm) 
No. of 
frames 

Monito
ring site 

European eel  129 85.6 19 Mauzac 

Atlantic salmon  88 75.0 14 Sélune 

European 
catfish  

115 108.0 11 Sélune 

Cyprinid  70 63.8 17 Sélune 

 
III. METHOD DEVELOPED 

A. DETECTING THE TARGET’S IMAGES 

Successive binary images of the fish were detected, 

extracted, and tracked using the method of [35]. Moving 

objects were isolated by smoothing the acoustic image and 

subtracting the background. Dilation was then applied to 

identify the area of interest and extract the target’s binary 

image. However, the image of a target’s body is often 

defined as several clusters of pixels instead of a continuous 

representation [35]. To maximise image information, we 

developed a method to restore the target’s images (Fig. 3a) 

using a sequence of mathematical morphological filters [65] 

(Fig. 3). 

    First, a vignette with the binary image (BS) is extracted by 

applying the background-subtraction filter (Fig. 3b). A 

denoised image (F) is then obtained by removing small noise, 

and small occlusion through opening followed by closing, 

using a small (5 × 5 mm) structuring element (Fig. 3c). A 

clustered image (D) is then obtained by applying oriented 

dilation, whose structuring element has a shape that is set to 

follow the orientation of the target as much as possible, 

whether horizontal (a lying rectangle of 50 × 120 mm), 

vertical (a standing rectangle of 120 × 50 mm) or diagonal (a 

square of 120 × 120 mm) (Fig. 3d). Applying these three 

structuring elements to an example cluster of pixels, 

corresponding to a fish image with 65° orientation, highlights 

the benefit of using oriented dilation to exclude nearby noise 

(Fig. 4). The resulting noise-free targeted image (I) 

corresponds to the intersection of images BS and D (Fig. 3e). 

The processed image (R) is restored through dilation of 
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FIGURE 2. Examples of acoustic images (full-beam in middle, close-up 
at bottom) captured using acoustic cameras, by species: (a) EEL, (b) 
SAT, (c) SIL and (d) CYP.  

 

image I using a structuring element, of 120 × 120 mm, 

corresponding to M × M pixels as a function of the frame 

resolution r (M = 120/r), followed by erosion of (M-1) × (M-

1) pixels (Fig. 3f). 

 

A. FOLLOWING THE TARGET’S DEFORMATION 

OVER TIME 

To use a deformable model, the mesh to deform is first 

generated as a triangular mesh using the contour points of the 

binary shape. All coordinate points of the mesh are 

summarised in the scalar V. From the mesh, the N points on 

the outer edge of the mesh (Vb) are differentiated from the M 

points on the inside of the mesh (Vinner) (Fig. 5). Vector Vb is 

sorted so that the neighbours of vi ∈ Vb in the outer edge of 

the mesh are vi−1 and vi+1 (Fig. 5). For Vinner, a 2-column 

matrix (ED) is defined that contains all combinations of 

edges vi − vj ∈ Vinner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FIGURE 3. Method used to restore the target’s image. The (a) original 
image (red circle) was first processed using the method of [34]. 
Restoration begins with (b) the binary image after background 
subtraction. (c) Noise was filtered, and occlusion attenuated through 
opening followed by closing before applying (d) oriented dilation to the 
resulting binary image. The (e) targeted image is calculated as the 
intersection of the binary image and the clustered image. The (f) 
processed image is restored by dilating and eroding the targeted image. 
mesh 
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FIGURE 4. Example of (a) a noise-free vignette dilated with three 
structuring elements: (b) square, (c) lying rectangle or (d) standing 
rectangle. Because the target’s orientation target is 65°, oriented 
dilation is performed using the square structuring element (i.e., 45°). 

 

 

 

 

 

 

FIGURE 5. Definition of the scalars on the outer edge (Vb) (blue) and 
inside (Vinner) (pink) of the fish-image contour as well as the 2-column 
matrix ED. The black line corresponds to the zth item of the ED matrix 
such as EDz = (vn  vm). 

 

    The model of deformation deforms the mesh by 

minimising the energy of deformation (1) [61] based on the 

constraints set. The first three terms of (1) aim to preserve the 

local properties of the mesh, while the last one aims to 

provide the direction of the deformation. 

||LV- δ(V)||2 + ||MV||2 + ||HV-e(V)||2 + ||CV- U||2      (1) 

    with ||LV- δ(V)||2 aiming to preserve the overall curve of 

the mesh; ||MV||2 aiming to preserve local areas inside the 

mesh using mean value coordinates; ||HV-e(V)||2 aiming to 

preserve the local areas inside the mesh using edge lengths; 

and ||CV-U||2 representing the constraints on the positions for 

which the model must deform. These terms are explained 

below. 

    From [59]: 

              Lp(vi) = vi - (vi-1 + vi+1)/2                    (2) 

    with vi ∈ Vb, and vi-1 and vi+1 the two neighbours of vi in 

the curve. 

    From this, one can deduce: 

    ∀ i ∈ [1, N], ∀ j ∈ [1,N+M],  

Li,j = {
1    𝑖𝑓 𝑖 = 𝑗                                          

−0.5  𝑖𝑓 𝑖 =  𝑗 −  1 or 𝑖 =  𝑗 +  1
0   𝑒𝑙𝑠𝑒                                                

             (3) 

    Next, δ(V) is calculated as: 

 ∀ i ∈ [1, N], δi = Ti δ𝑖
𝑡−1 

    with T the transformed Laplacian calculated from t = t-1 to 

t = t [66]. 

    Regarding the second and third terms of (1), based on [61], 

one can deduce the following: 

 

    ∀ i ∈ [N+1, N+M], ∀ j ∈ [1, N+M], 

Mi,j = {
−𝑤𝑖,𝑗  𝑖𝑓 𝑗 𝜖 𝑇(𝑖)

0                𝑒𝑙𝑠𝑒
                       (4) 

    ∀ i ∈ [N+1, N+M],  

 Mi,i = − ∑ 𝑤𝑖,𝑗𝑗 ∈T(i)                                   (5)  

    with T(i) all points in the neighbourhood of vi (i.e., those 

in the triangles for which vi is an apex) and wi,j the mean 

value coordinates of vi with vj in the area formed by its 

neighbours and calculated from [67]: 

wi,j =  (tan(αj/2) + tan(αj+1/2)) / |vi-vj|                   (6)  

    with αj the angle 𝑣𝑗𝑣𝑖𝑣𝑗+1̂ , αj+1 the angle 𝑣𝑗+1𝑣𝑖𝑣𝑗+2̂  and 

vj+2 the next point in T(i) after vj. 

    Concerning the third term ||HV-e(V)||2, minimising it 

maintains the edge length between two points vn and vm from 

Vinner. From [59]: 

 ∑ ∥ (𝑣𝑖  −  𝑣𝑗)  −  𝑒(𝑣𝑖 , 𝑣𝑗) ∥ ²(𝑖,𝑗)𝜖𝐸𝑔
         (7) 

    with: 

     ∀ s ∈ [1, S], 

es = 𝑒(𝑣𝐸𝐷𝑖,1
, 𝑣𝐸𝐷𝑖,2

) =  
𝑙𝐸𝐷𝑖,1,𝐸𝐷𝑖,2

𝑙𝐸𝐷𝑖,1,𝐸𝐷𝑖,2

(𝑣𝐸𝐷𝑖,1
− 𝑣𝐸𝐷𝑖,2

) (8) 

    with 𝑙𝐸𝐷𝑖,1,𝐸𝐷𝑖,2
 the distance, before deformation, between the 

points of the ith edge whose indices in Vinner are EDi,1 and 

EDi,2, respectively, and 𝑙𝐸𝐷𝑖,1,𝐸𝐷𝑖,2
 the same distance but 

calculated at the current deformation step. Based on (7), 

matrix H is deduced: 

    ∀ i ∈ [1, S], ∀ j ∈ [1, N + M], 

Hi,j = {

   1  𝑖𝑓 𝐸𝐷𝑖,1 = 𝑗 

−1 𝑖𝑓 𝐸𝐷𝑖,2 = 𝑗 

0 𝑒𝑙𝑠𝑒              

                          (9) 

    Regarding the fourth term ||CV- U||2, the matrix U contains 

the coordinates of points to which the corresponding mesh’s 

points must tend. The method developed gives instructions 

only for the outer points (Vb) of the mesh: 

 ∀ vi ∈ Vb, vi= ui                                 (10) 

    with ui the constraint at the ith point of the mesh’s curve.  

From (14), one can deduce the following: 

∀ i, j ∈ [1, N + M], Ci,j= {
1 𝑖𝑓 𝑖 < 𝑁 𝑎𝑛𝑑 𝑖 = 𝑗
0 𝑒𝑙𝑠𝑒                           

    (11)                              

∀ i ∈ [1, N + M], Ui= {
𝑢𝑖  𝑖𝑓 𝑖 < 𝑁
0 𝑒𝑙𝑠𝑒        

                 (12) 

    All matrices of the deformable model are initialised before 

the process begins. Only matrices δ, ED, e and U are re-

defined at each iteration based on the associated value of V. 

    Weights (α, β, γ and λ) can be applied in front of each term 

of the deformation energy model depending on the 

importance given to the corresponding criteria: 

α||LV- δ(V)||2 + β||MV||2 + γ||HV-e(V)||2 + λ||CV- U||2    (13) 

 

B. SETTING UP POSITION CONSTRAINTS 

Matrix U of the deformation from t = k-1 to t = k is defined 

from the coordinates (Ck) at t = k of the contour to be 

deformed. The contour’s points that correspond to the 

curve’s points (Vb) of the mesh are identified by calculating 

the curvilinear distance of (i) each point of Vb to the mesh’s 
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origin and (ii) each point of Ck to the contour’s origin (14) 

(Fig. 6). 

𝑙𝐴,𝑖 =  ∑ ∥ 𝑝𝑗−1 −  𝑝𝑗 ∥2𝑖
𝑗=1              (14) 

with lA,i the curvilinear distance of the ith point of curve A, 

and pi-1 and pi+1 two neighbouring points of curve A. 

 

 

 

 

 

 

FIGURE 6. Graph of the curvilinear distance (dA,i) (pink) for the ith point 
(pi ) (dark blue) of curve A (light blue). 

 

    From the curvilinear distances, the matching points on Ck 

(Fig. 7) are identified, and matrix U of the deformation from 

t = k-1 to t = k is deduced: 

∀𝑣𝑖 ∈ 𝑉𝑏 , 𝑈𝑖 =  𝒞𝑗  if 𝑙𝒞,j =  𝑙𝑉𝑏,i                    (15) 

 

 

 

 

 

FIGURE 7. Matching of the curve’s mesh at t = k-1 (blue) to the 
corresponding points in the image’s contour at t = k+1 (pink). 

 

C. INITIALISING THE DEFORMATION  

Each deformation process is performed after the targets have 

been tracked. The mesh is initialised based on the target’s 

successive images before the deformation begins. The shape 

used for initialisation influences the mesh’s definition. To 

keep the method generic (i.e., disconnect the mesh’s 

definition from the target to deform to), an initial mesh is 

generated from an ellipse whose major and minor axes equal 

the maximum lengths of those of the target’s images (Fig. 

8a). Next, the mesh is deformed to fit the target’s reference 

(i.e., most representative) image (Fig. 8b, c). This image 

corresponds to the one whose target’s length equals the 3rd 

quartile of the target length of all images. The resulting 

coordinates of the mesh define V0, which is then used to 

initialise the deformation process (i.e., at t = k-1), and the 

process continues until it reaches the last detected image of 

the target. For mesh initialisation, we chose weights of the 

deformation energy model equal to α = β = γ = 0.8 and λ = 1. 

For deformation of the remaining images, the first three 

weights of the position constraints were changed to α = β = γ 

= 0.1. 

   A deformable model is not designed to address large 

differences, such as translation or rotation, between 

iterations. When these differences exist, they must be 

addressed separately before beginning the deformation 

process. First, one calculates the overall orientation of the 

object compared to the horizontal axis (θ), which process. 

First, one calculates the overall orientation of the object 

compared to the horizontal axis (θ), which corresponds to the 

ellipse that best fits the object. The object is then rotated 

using the corresponding matrix R (16) and translated so that 

its centroid (ct) matches that in the previous time step (ct-1). 

R = (
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 (1 − 𝑐𝑜𝑠 𝜃) × 𝑐𝑥 − 𝑠𝑖𝑛 𝜃 × 𝑐𝑦

−𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 × 𝑐𝑥 + (1 − 𝑐𝑜𝑠 𝜃) × 𝑐𝑦
)  (16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8. Steps used to initialise the model: (a) a mesh is generated 
from the ellipse, (b) the mesh is deformed to fit the contours of the 
reference image, (c) and the deformed mesh is used to initialise the 
matrices of the energy of deformation. 

 

D. CALCULATING THE DEFORMATION 

Before quantifying the deformation, the common area of the 

object at t = k and t = k-1 is maximised by translation to 

avoid incorrectly quantifying deformation due to a lack of 

precision during the previous iteration. Deformation between 

Vk-1 and Vk can be quantified by calculating the scalar d, 

which equals the distance between the each of the curve’s 

points at t = k-1 and t = k (Fig. 9): 

∀ i ∈ Vb, di = 𝑣𝑖
𝑘 − 𝑣𝑖

𝑘−1                     (17) 

with 𝑣𝑖
𝑘  and 𝑣𝑖

𝑘−1 the coordinates of the points at t = k and 

t = k-1, respectively. 

    Calculating d for each iteration generates a matrix (D), 

which is the deformation map of the method. Its vertical axis 

equals the number of detections (i.e., the time axis), while its 

horizontal axis equals the points on the upper curve from the 

head to the tail of the target plus those on the lower curve 

from the tail to the head. 

FIGURE 9. Example of two distances (dn and dm) between two sets of 
points 
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E. SIGNAL PROCESSING OF THE 

DEFORMATION MAPS  

Because AC have a higher acquisition frequency than optical 

cameras do (i.e., mean of 5-8 vs. 24 frames per second (fps), 

respectively), they have a shorter period between successive 

detections, which might prevent them from detecting certain 

deformation patterns. Consequently, m points along the time 

axis are linearly interpolated to obtain a frame rate similar to 

that of optical cameras: 

m = 24 × N / fps                            (18) 

with N the initial number of frames in the deformation 

map and fps the frame rate of the acoustic video available in 

the raw data and transferred to the AVI video. 

    To filter noise and highlight the main patterns in the 

deformation map, the correlation of the deformation signal 

with a Gaussian function (with σ = 1.5) is calculated at each 

time step. 

    Finally, the deformation map is decomposed using 

principal component analysis, whose first two components 

are used to reconstruct the map. Doing so removes secondary 

components and focuses on the predominant modes that 

explain more than 90% of the variance in deformation maps 

of the entire dataset. Combining the three signal-processing 

steps yields a smoother signal to process. 

 
IV. RESULTS 

Body deformation varied among the four individuals selected 

(Fig. 10). For each image in which fish are detected, the 

deformation is calculated at each point of the mesh contour 

and collected for all points in a one-dimensional array. 

Visually, the array corresponds to a one-row image whose 

colour becomes brighter as the deformation increases. When 

the deformation is towards the top of the image (i.e., the 

mesh point was higher in the image at t = k than at t = k-1), 

the colour tends towards yellow, and when the deformation is 

towards the bottom of the image, the colour tends towards 

blue. The one-row image can be read from the centre 

outwards: its left side corresponds to points on the upper 

curve of the fish silhouette (from head to tail), while its right 

side corresponds to points on the lower curve (from tail to 

head). The middle of the row thus corresponds to the caudal 

fin, while the ends correspond to the head. All one-row 

images are stacked along the time axis, which creates a 

deformation map that describes how a fish’s movement 

deforms its body. The deformation maps are then post-

processed to analyse them (Fig. 11).  

   Once they are post-processed, the distribution of 

deformation at each point can be summarised using boxplots 

(Fig. 12b, d, f, h). They provided initial information on body 

deformation for each of the four individuals selected. For SIL 

and EEL, deformation occurred mainly at the caudal fin, with 

deformation increasing towards the tail. For SAT and CYP, 

although deformation was observed at the head, it was largest 

in the last two-thirds of the body towards the tail.      

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10. Successive (a-c) Three successive images of a fish on 
which the mesh (red) is superposed and the corresponding one-row 
images of deformation from (d) Frame 1 to Frame 2 and (e) Frame 2 to 
Frame 3. The left side of the one-row image corresponds to points on 
the lower curve of the fish silhouette, while the right side corresponds 
to points on the upper curve.  

 
 
 
FIGURE 11. Successive processing steps of (a) a deformation map: (b) 
linear interpolation, (c) correlation of the signal at each time step with a 
Gaussian function and (d) reconstruction using the two first 
components of principal component analysis. The horizontal axis 
corresponds to the number of outer points of the deformation model, 
while the vertical axis corresponds to the time axis. 
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FIGURE 12. Deformation maps and corresponding boxplots for (a and b) 
European eel (EEL), (c and d) Atlantic salmon (SAT), (e and f) European 
catfish (SIL) and cyprinid fish (g and h) CYP. Whiskers equal 1.5 times 
the interquartile range. 

 

    Visual assessment of the deformation maps (Fig. 12a, c, d, 

e, g) extended these initial observations, revealing that the 

centre of the body of SAT and CYP regularly deformed in 

the direction opposite to that of the head and tail. The 

deformation of both individuals thus appeared similar to a 

beat cycle, although the CYP cycle was more heterogeneous. 

Conversely, each cycle of body deformation of SIL and EEL 

appeared to propagate, undulating along the body to the tip of 

the tail. The EEL cycle was longer, which reflected 

undulation with a larger amplitude. In addition, the 

deformation patterns differed between EEL and SIL (the 

latter more V-shaped) and between SAT and CYP (the 

former more diamond-shaped), although each pair had the 

same swimming modes. 

 
V. DISCUSSION 

Swimming locomotion is one of the main parameters with 

morphology that can distinguish one species from another on 

acoustic videos. The method we developed extracts 

swimming locomotion features using computer-vision 

methods, while applying the theory of deformable solids to 

acoustic images of fish. Computer-vision methods have been 

used for acoustic images [27], [32], similar to studies of 

optical images. Although deep-learning methods have been 

widely applied to optical images in recent years, their 

application to acoustic images remains limited, mainly due to 

the latter’s low quality [30] and few clear details. Thus, 

automatic feature-extraction methods for acoustic videos are 

an essential alternative to deep learning. To the best of our 

knowledge, the swimming locomotion of fish in acoustic 

videos has never been used to identify species, despite the 

relevant information it can provide. Shape modelling has 

been considered for optical images but has not been explored 

to study deformation [68]. To the best of our knowledge, 

applying deformable models to monitor the deformation of 

successive fish images is original and innovative. 

    We used the gradient domain mesh deformable model 

[61], which performed well for videos in the present study 

and can closely follow the body contours of each fish 

detected in the AC FOV. The accuracy of the calculated 

deformation relies on the reliability of the extracted binary 

images of the fish. The pre-processing to remove noise and 

avoid occlusion in the images is essential to the method, but 

it could oversimplify the target’s shape in the binary image or 

merge clusters of pixels that do not belong to an individual. If 

the binary image of the target is not accurate (i.e., includes 

pixels that do not belong to the target), the model will tend 

towards the wrong shape, and the calculated deformation will 

be inaccurate. This is a common problem due to the low 

quality of acoustic images, which makes them more complex 

to analyse than optical images. Thus, the image restoration of 

this method is crucial to prepare the binary images, because it 

reduces the disadvantages of low-quality images and 

negative effects on later steps of the analysis. 

    Post-treatment of the deformation maps is also essential to 

retrieve intelligible information and simplify species 

identification. Previous studies of swimming mode used 

videos from optical cameras, which have a high frame rate 

(24 fps, [69]) and satisfactorily follow fish body deformation 

during movement. Because the frame rates of the AC we 
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used varied from 5-8 fps, they captured body deformation 

erratically. Interpolating the deformation maps over time 

smoothed the transitions, while the filtering steps reduced 

noise and bias by focusing on the main characteristics of 

deformation. Technological research on AC has enabled 

manufacturers to increase the acquisition frequency of 

models. 

    Performing all steps of the method provides deformation 

maps that contain relevant information. The boxplots 

generated from the deformation maps clearly indicated that 

swimming modes of anguilliform species (eel and catfish) 

can be distinguished from those of subcarangiform species 

(salmon and cyprinids). Moreover, visual analysis of 

deformation maps highlighted the utility of studying 

deformation dynamics at each point and each time step, 

which can detect subtle differences in patterns, especially 

between eel and catfish and between salmon and cyprinids. 

Although the results are based on acoustic images of a single 

individual per species, they establish strong proof-of-concept 

and open encouraging perspectives for detecting fish species 

using AC records. Using deformation maps to identify 

species automatically requires further testing, and using 

larger datasets will help capture intra-species variability in 

fish-body deformation. Many factors can influence the 

deformation of a fish's body as it swims and its analysis on 

acoustic videos. Therefore, future research could focus on 

this domain, such as how swimming direction and intensity 

of water flow influence the propulsion energy required, and 

in turn how the latter deforms the body [48]. Fish behaviour, 

whether for hunting, migrating or foraging, modifies how the 

fish swims, which can influence the deformation maps. 

Finally, the orientation of the fish relative to the AC also 

influences the calculation of deformation, because it 

determines how much of the body length is recorded.   

    These factors must be considered in the analysis as they 

may influence the pattern, uniformity and regularity of the 

cycle of fish body deformation. Doing so enables reliable and 

useful analysis of deformation maps for identifying species 

as well as the study of fish swimming behaviour. Laboratory 

studies could help understand the main factors that influence 

deformation maps and provide deformation maps that could 

be considered as references. Finally, automating analysis of 

the deformation maps would help move toward automatic 

identification of fish species from AC records. 

 
VI. CONCLUSION 

The method developed is innovative and, to our knowledge, 

has never been used to identify fish species on acoustic 

videos. Applying deformable-solid techniques to these videos 

makes it possible to identify the fish's swimming mode, 

which is essential information that has never been used 

before in automatic identification methods. The information 

summarised in deformation maps is thus similar among 

individuals. We intend to enlarge our datasets and automate 

their analysis for identification. In addition, generating a 

mesh in each image in which the target is detected makes it 

possible to extract morphological characteristics of the fish, 

which is a two-for-one method for extracting features and an 

important advance for automatic identification of species on 

acoustic videos. 
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