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Figure S1. Best fit for ln(k) as a function of 1/RT to calculate the kinetic parameters A and Ea for the Guaymas Basin sites 
(red), the Sea of Japan Sites (green) and the Bering Sea site (blue); see Tab. 4 in the main text. The gray bands show the 
95% confidence intervals. 
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Figure S2. The figures shows the results of a subset of runs of the simulations to test the hypothesis that the rapid 
sedimentation rates are responsible for shuttling amorphous silica deeper/older than expected based on current kinetic 
models. For this purpose, the temperatures for opal-CT precipitation were calculated by simulating about one order of 
magnitude slower sedimentation rates. The latter was simulated by reducing the time factor (t) in k = -ln(0.9)/t to a value 
between 0.1 and 0.2. The best fit between observed and modeled data (expressed as the difference in temperature 
between the two; DTºC in the Y-axis) occurs when ~14% slower sedimentation rates are used (‘reduced sedimentation 
rate’ in x-axis; see also Tab. S4). 
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Figure S3. Saturation indexes with respect to the three main silica phases for Sites U1545 (red), U1546 (green) and 
U1547 (blue). The dotted lines represent the SI for opal-A, the dashed lines for opal-CT, and the solid lines for quartz. SI 
is the log of the ration between the Ion Activity Product (i.e. porewater silica concentration) and the solubility constant of 
the three main silica phases calculated using Gunnarsson and Arnorsson (2000) solubility equations. SI=0 indicates 
saturation, S>0 supersaturation and S<0 undersaturation. The minimum in the silica concentration profile near the 
seafloor is due to the fact that silica is strongly undersaturated in seawater. Lithological symbols: the letters represent the 
main silica phases (A = opal-A, CT = opal-CT, Q = quartz), and intrusive dolerite bodies (D). The vertical dashed lines 
show the approximate extent of the metamorphic contact aureole associated with the massive mafic sill at Site U1546. 
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Table S1. Concentration of porewater silica (in µM) obtained from IODP X385 Sites U1545, U1546, and 

U1547. 

Table S1 - Silica Porewater data
Site U1545^ 

(mbsf) Si (µM) Site U1546 
(mbsf)* Si (µM) Site U1547 

(mbsf)** Si (µM)
2.97 791.79 1.76 748.74 0.5 664.93
5.95 729.86 6.93 711.24 1 650.68

15.45 809.7 15.69 753.5 2 653.2
24.96 853.53 25.78 805.13 2.5 700.21
34.45 869.03 25.78 816.95 2.96 630.58
43.95 907.12 34.81 834.4 3.51 650.86
53.45 993.54 45.6 880.6 4.01 679.76
62.96 1019.91 53.7 908.77 4.81 698.88
72.36 1116.32 53.7 899.79 5.8 681.01
81.86 1224.61 63.94 963.85 6.3 700.48
91.59 1236.43 74.31 1085.52 7.3 644.23

122.39 1386.3 82.79 1145.82 7.8 736.19
141.46 1811.18 91.8 1244.61 8.26 707.22
165.92 1640.38 103.01 1288.74 8.81 731.31
191.28 1723.33 112.31 1358.84 9.31 744.32
218.25 1956.05 120.94 1397.99 10.31 765.33
245.85 1960.64 131.61 1448.64 10.81 771.09
274.71 2208.22 140.11 1428.35 11.81 782.11
285.82 2021.77 149.64 1447.5 12.31 802.8
326.73 1641.47 159.24 1609.72 13.31 816.76
329.62 1059.03 168.52 1573.49 13.81 825.04
392.85 984.74 177.54 1578.45 14.66 840.32
394.25 523.92 187.51 1635.43 15.55 836.41
427.73 958.95 197.73 1676.37 17.05 874.46
443.26 478.95 205.4 1708.73 17.76 896.03
463.97 338.34 212.12 1764.43 18.56 892.11
473.16 176.88 216.78 1787.06 20.06 916.65
485.34 408.67 226.17 1915.43 21.56 928.73

231.54 1733.07 23.06 939.2
238.48 1766.38 24.56 960.98
243.14 1784.71 27.26 1043.4
252.56 1798.47 36.76 1174.77
258.82 1932.86 46.25 1404.29
273.41 1922.36 55.76 1583.59
281.46 2017.27 57.03 1733.22
292.18 2011.93 66.11 1865.08
328.85 981.53 75.45 1943.55
438.35 566.02 84.81 2123.92
447.03 842.23 94.25 2222.69
505.09 735.33 103.85 2444.96

535.1 232.93 108.89 2371.18
113.1 2025.25

117.34 1959.89
127.3 1078.6

131.48 1126.59
145.93 1230.05
151.14 995.11

Notes: ^The dataset for Site U1545 is from Hole A;  *The dataset for Site U1546 combines 
porewater data from Holes B and C; **The datset for Site U1547 combines porewater data 
from Holes A and B
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Table S2. In situ temperature data for the IODP X385 drill sites presented in this study. APCT-3 = 

Advanced Piston Corer Temperature 3 tool; SET2 = Sediment Temperature 2 tool. 

 

  

Table S2 -  In situ t emperature data

Site 
U1545^ 
(mbsf)

TºC Tool
Site 

U1546* 
(mbsf)

TºC Tool
Site 

U1547** 
(mbsf)

TºC Tool

0 3.85 0 3.96
33.3 10.88 APCT-3 32.3 10.05 APCT-3 24.3 25.65 APCT-3
60.8 17.32 APCT-3 60.8 16.3 APCT-3 34.7 27.97 APCT-3
89.3 24.56 APCT-3 89.3 22.4 APCT-3 52.8 37.36 APCT-3

117.8 31.04 APCT-3 117.8 28.14 APCT-3 71.8 49.68 APCT-3
138.1 36.17 APCT-3 146.3 35.19 APCT-3 90.8 56.25 APCT-3
161.4 46.89 APCT-3 174.8 41.66 APCT-3 101.9 66.83 SET2
189.4 47.63 APCT-3 198.5 45.98 APCT-3 124.2 74.21 SET2
189.4 47.92 APCT-3 218.4 51.12 APCT-3
217.6 54.37 APCT-3 239.9 54.44 SET2
218.6 54.95 APCT-3 259.4 61.08 SET2
246.8 62.47 APCT-3 288.7 66.93 SET2

275 67.54 APCT-3
287.9 67.47 SET2
288.9 71.17 SET2
329.5 77.58 SET2
358.6 85.22 SET2

Notes: ^The dataset for Site U1545 is from Hole B;  *The dataset for Site U1546 is from Hole A; **The dataset for Site U1547 is 
from Hole B
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Table S3. Main statistics of the d-spacing values (Å) for the (101) peaks of quartz and opal-CT for repeated 

(n-6) XRD measurements (in the 15º-30º 2θ range) of selected Site U1545 samples. 
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Table S4. For each of the three IODP Expedition 385 sites examined in this paper we present a comparison 

between 'classic' (Mizutani et al., 1970) and new kinetic model (the one proposed in this paper) for opal-A/CT 

transformation. To test the hypothesis that the fast sedimentation rates are responsible for shuttling amorphous 

silica deeper/older than expected based on current kinetic models we calculated the temperatures for opal-CT 

precipitation by simulating slower sedimentation rates of about one order of magnitude. The latter was 

simulated by reducing the time factor (t) in k = -ln(0.9)/t to a value between 0.1 and 0.2. The best fit between 

observed and modeled data was obtained when we used ~14% slower sedimentation rates. 


