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Abstract. Aboveground biomass (AGB) is an essential component of the Earth’s carbon cycle. Yet, large uncer-
tainties remain in its spatial distribution and temporal evolution. Satellite remote sensing can help improve the
accuracy of AGB estimates. In particular, the L-band (1.41 GHz) vegetation optical depth (VOD) derived from
the SMOS (Soil Moisture and Ocean Salinity) mission is a good AGB proxy. Averaging the SMOS L-VOD over
a year and linking it to an existing AGB map constitute a well-established method to derive a spatial relationship
between the two quantities. Then, a temporal extrapolation of this spatial relation derives global and harmonized
AGB time series from the L-VOD. This study refines this protocol by analyzing the impact of three factors on the
AGB–VOD calibration. First, an analysis shows that ascending and descending VOD can be properly merged to
estimate the AGB. Second, the use of a single global spatial relationship is preferred over several regional ones.
Third, this new AGB dataset is compared with other published AGB datasets to assess the validity of the temporal
extrapolation. The produced dataset provides vegetation biomass values up to 300 Mg ha−1 from 2011 onward.
It shows more interannual variability than the other available time series and presents globally lower AGB es-
timates. In general, the resulting AGB is consistent with the AGB maps of the Climate Change Initiative (CCI)
Biomass version 5 (average Pearson’s correlation coefficient 0.87) and can be used in AGB studies. The AGB
dataset has been produced from the Level 2 SMOS products with one global VOD–AGB relationship, mixing
ascending and descending orbits. The AGB dataset, including the spatial bias, is open-access and the NetCDF
files are available at https://doi.org/10.12770/95f76ff0-5d89-430d-80db-95fbdd77f543 (Boitard et al., 2024).

1 Introduction

In the context of climate change and global warming caused
by anthropogenic activities, understanding, monitoring, and
managing the Earth’s carbon cycle are critical (Grace, 2004).
Vegetation biomass plays a key role in this cycle (Hese et al.,
2005; Houghton, 2005; Houghton et al., 2009). In particular,
the forest carbon biomass constitutes a large carbon reser-
voir as it contains most of the carbon stored in the vegeta-
tion (Pan et al., 2013). Up to date the world’s forests are a

global carbon sink (Pan et al., 2011). Yet locally, they can act
as either major sinks or prominent sources of atmospheric
carbon dioxide (CO2) depending on land use practices, me-
teorological conditions, and natural and anthropogenic wild-
fires (Clark, 2004; Wear and Coulston, 2015; Wigneron et al.,
2020). Globally, the ability of forests to absorb carbon un-
der a changing climate remains poorly known (Luyssaert
et al., 2007). The total aboveground biomass (AGB, which
accounts for the entire land vegetation biomass) is strongly
linked to the carbon content in the vegetation (Losi et al.,

Published by Copernicus Publications.

https://doi.org/10.12770/95f76ff0-5d89-430d-80db-95fbdd77f543


1102 S. Boitard et al.: Aboveground biomass dataset from SMOS L-band vegetation optical depth

2003; Djomo et al., 2011). Hence, mapping this essential cli-
mate variable and following its evolution in space and time
are fundamental for precise and reliable monitoring of the
Earth’s carbon balance.

Estimating the AGB from the ground is challenging, as
densely vegetated areas are often remote (tropical and boreal
forests) and hard to navigate through. In situ measurements
are by definition local, and global monitoring would involve
the installation and maintenance of a dense network of sta-
tions or multiple and frequent in situ measuring campaigns.

This is why deriving AGB from satellite remote sensing,
which provides global and regular coverage of the Earth’s
surface, complements AGB in situ data very well. Optical in-
dices have been used for decades to monitor terrestrial vege-
tation at medium and high resolutions (Zeng et al., 2022; Lu,
2006). Yet, such observations cannot be relied on to estimate
the AGB globally. They are mainly sensitive to the green
component of the top canopy layer (Purevdorj et al., 1998)
and tend to saturate over densely vegetated areas (Baret and
Guyot, 1991). They are also heavily affected by atmospheric
conditions such as clouds, aerosols, or haze (Lu et al., 2017),
which are common in moist tropical areas. For this reason,
spaceborne synthetic aperture radars (SARs), with their all-
weather capabilities, have proved useful to AGB estimation.
Numerous studies, both theoretical and experimental, have
demonstrated that SAR data respond to forest AGB up to a
certain saturation point (Mitchard et al., 2009; Le Toan et al.,
2011; Yu and Saatchi, 2016; Cartus and Santoro, 2019). This
saturation point increases with wavelength (i.e., the P- and
L-band are more sensitive to AGB than the C- and X-band).
Beyond this level, the sensitivity diminishes. Interestingly, in
the case of dense forests, there might be a negative corre-
lation observed between L-band backscatter and high AGB
values (Mermoz et al., 2015).

More recently, the data acquired by spaceborne passive
microwave radiometers at L-band have received great atten-
tion for AGB estimation and related applications. These in-
struments deliver information complementary to optical in-
dices and radar acquisitions. Despite their coarse spatial res-
olution (approximately 40 km), they benefit from a low emis-
sion contribution of the atmosphere. They can measure the
microwave radiation emitted by the Earth’s surface in all
weather and light conditions. The Soil Moisture and Ocean
Salinity (SMOS) mission (Kerr et al., 2010) was launched
in November 2009. Over land, the SMOS passive microwave
radiometer at L-band is used to retrieve the surface soil mois-
ture (SM) along with a vegetation optical depth (VOD). This
radiative parameter is also derived at L-band from the Soil
Moisture Active Passive (SMAP) mission (Entekhabi et al.,
2010; Konings et al., 2017; Chaubell et al., 2021). This L-
band VOD (or L-VOD; Wigneron et al., 2007) characterizes
how much the surface signal is attenuated by the vegetation,
as well as the vegetation’s own emission. It is then defined
as an optical depth. Theory and previous works (Jackson
and Schmugge, 1991; Grant et al., 2012) showed that the

L-band VOD is strongly influenced by the vegetation wa-
ter content (VWC). In addition, it is highly sensitive to AGB
(Rodríguez-Fernández et al., 2018; Mialon et al., 2020; Frap-
part et al., 2020; Vittucci et al., 2019) and does not saturate
as much as higher-frequency-band VOD (C, X, or Ka) over
dense forests (Rodríguez-Fernández et al., 2018; Chaparro
et al., 2019; Wang et al., 2021). Consequently, as recently
confirmed by Dou et al. (2023), the L-VOD is a good AGB
proxy when averaged over a long enough time period. This
time period typically covers a year to iron out the effects on
L-VOD of diurnal and seasonal variations of the water con-
tent in the vegetation.

However, up to date, there is no equation or model to di-
rectly compute the AGB from L-band acquisitions without
using pre-existing AGB maps. Liu et al. (2015), Rodríguez-
Fernández et al. (2018), Mialon et al. (2020), and Wigneron
et al. (2020) used several static AGB maps to derive spatial
relationships between VOD datasets and reference AGB es-
timates, while Prigent and Jimenez (2021) and Salazar-Neira
et al. (2023) directly established a link between these static
AGB maps and L-band brightness temperatures using neural
networks. These static AGB maps have high spatial resolu-
tions compared to SMOS, ranging from 100 m (Santoro and
Cartus, 2024) to 1000 m (Avitabile et al., 2016), but are re-
strained to a year or a couple of years of reference. These
maps may also present large discrepancies and uncertainties
(Mitchard et al., 2013).

To retrieve harmonized AGB time series from the L-
VOD, the published literature focuses on establishing a spa-
tial relationship that is later extrapolated over time. This
study capitalizes on the same method as already described in
Rodríguez-Fernández et al. (2018) and Mialon et al. (2020)
and goes further by evaluating the impact of three factors
on the SMOS L-VOD–AGB calibration. The work carefully
investigates the influence of mixing morning and afternoon
overpasses to maximize the number of observations per node,
calibrating a single global relationship or several local rela-
tionships, and extrapolating a spatial relationship over time.
Importantly, the derived AGB is provided with its associ-
ated error. The new AGB dataset is estimated from 12 years
of SMOS L-VOD and is freely accessible from the SMOS
French ground segment, CATDS (Centre Aval de Traitement
des Données SMOS).

Hereafter, Sect. 2 introduces the SMOS L-VOD prod-
ucts and the AGB reference maps. Section 3 describes the
methodology. Section 4 presents the obtained results and a
temporal analysis, further discussed in Sect. 5. Finally, the
conclusions are summarized in Sect. 7.

2 Data

This section presents the SMOS products used to estimate
the AGB and the existing AGB maps that are used to either
perform the AGB estimates or evaluate the results.
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2.1 SMOS products

SMOS (Kerr et al., 2010) is an Earth observation mission
managed by the European Space Agency (ESA) and the
Centre National d’Études Spatiales (CNES). This satellite,
launched in November 2009, measures the Earth’s thermal
emission as brightness temperatures (TBs) at a frequency of
1.41 GHz in full polarization, i.e., four Stokes parameters, for
a broad range of incidence angles (angles from 0 to 55° are
used for the SM–VOD retrievals). SMOS crosses the Equator
at 06:00 (18:00 LT) for ascending (descending) orbits.

The SMOS Level 2 (L2) products (Kerr et al., 2012) from
version 700 between 2011 and 2023 are used for this study.
The year 2010 is set aside for two reasons. The first 5 months
(January–May) were dedicated to the commissioning phase,
during which the instrument was stabilizing and extensive
tests and calibration were performed. This year was also ex-
tremely polluted with radio frequency interferences (RFIs).
These RFIs are emitted by human-built equipment and mask
the Earth’s natural emission over large areas. They prevent
SMOS from globally covering the Earth (Oliva et al., 2016).
The core processing L2 algorithm is based on the L-MEB
radiative model (Wigneron et al., 2007), which uses the τ–ω
model (Mo et al., 1982) to account for the vegetation layer. In
summary, on appropriate pixels, an initial couple (SM, VOD)
is fed to a forward model computing the corresponding theo-
retical TB at all incidence angles and for both horizontal and
vertical polarizations. The value of the (SM, VOD) couple
is iteratively modified. The iteration process stops when the
cost function derived from the sum of the squared weighted
differences between the modeled and measured TB reaches
a minimum. The value of (SM, VOD) which minimizes the
cost function is written out to the output product. The qual-
ity of the retrieval is evaluated by two variables reported in
the L2 data. The first is the probability of Chi2 (Chi2_P field
in the product) that measures how close the modeled TBs
are to the SMOS TB. The Chi2_P parameter ranges from
0 (poor quality) to 1 (excellent quality). The second one
is the quality index labeled as VODDQX. It translates how
the radiometric TB noise propagates through the retrieval
model, and constitutes the lower bound of the uncertainty. It
ranges from [0.02–0.06] for VOD between 0 and 0.6 to [0.2–
0.25] for VOD higher than 1.2. Another point worth mention-
ing is that the L2 algorithm does not output VOD for foot-
prints with little to no vegetation such as the Saharan desert,
Antarctica, or any wet surfaces with no vegetation reported
in the auxiliary datasets.

ESA freely distributes the L2 products (ESA, 2021) in a
binary format. The data are provided on an icosahedral Sny-
der equal-area (ISEA) 4H9 grid (Sahr et al., 2003) in swath
mode with an almost constant inter grid point distance of
15 km. Considering the L2 file format and spatial projec-
tion, the products are pre-processed to work with common
temporal and spatial grids for all input files. The SMOS or-
bit files are aggregated into daily ascending and descend-

ing maps. Where multiple measurements were acquired the
same day, the data with the highest quality and closest to
the sub-track are selected. These cases are mainly located in
the high (> 60° N) latitudes. Finally, the variables are repro-
jected to the Equal-Area Scalable Earth Grid (EASE grid)
version 2.0 (Brodzik et al., 2012, 2014) global equal-area
projection (EPSG: 6933), with a grid sampling of 25 km at
30° of latitude. The resampling is performed through a De-
launay triangle interpolation if possible (three valid inter-
polants exist) or linear if only two valid interpolants are avail-
able. The EASE 2 grid offers the advantage of being regular
and is the default spatial projection for the SMOS CATDS
ground segment products such as Level 3 (L3; Al Bitar et al.,
2017). An example of the 2018 averaged L2 v700 VOD val-
ues resampled to the EASE 2 grid at 25 km mixing ascending
and descending orbits (AD) is displayed in Fig. 1.

2.2 Aboveground biomass reference maps

This study involves the three AGB reference maps described
below. The AGB maps from the ESA Climate Change Ini-
tiative (CCI) (Santoro and Cartus, 2024) and Avitabile et al.
(2016) were used as calibration data for the production of
the SMOS-based AGB maps. The yearly AGB maps from
Xu et al. (2021a), covering the years 2000–2019, were used
to compare and contextualize the AGB time series result-
ing from this work. The AGB reference maps were regrid-
ded from their native sampling to the same EASE grid ver-
sion 2 (25 km) as the interpolated L2 products. The re-
gridding method was a weighted average of all meaningful
(“non-no-data”) pixels.

2.2.1 ESA Biomass CCI 2015–2021 global AGB map

The ESA Climate Change Initiative (CCI) Biomass maps
(Santoro and Cartus, 2024) are outputs of the ESA CCI
Biomass project. The AGB estimation was derived using
the radar backscatter intensity data captured by the Phased
Array-type L-band Synthetic Aperture Radar (PALSAR2) on
the Advanced Land Observing Satellite (ALOS2) and the
Sentinel-1 satellites. The process of AGB estimation was also
based on lidar metrics and surface reflectances. The AGB
map is updated annually with a pixel size of 100× 100 m.
Each CCI AGB map comes with its associated standard de-
viation, which is a combination of the standard deviations
from the input data, the modeling algorithms, and the merg-
ing procedure. Version 5.01 (v5) of the maps is used for
this work. Global maps for the years 2010 and 2015–2021
are distributed at several ground resolutions (100 m, 1, 10,
25, and 50 km). The aggregated resolution at 25 km is used
for the study and reprojected onto the EASE 2 grid (equal-
area, 25 km at 30° of latitude). The standard deviation of the
aggregated maps at 25 km is significantly lower than the stan-
dard deviation of the original-resolution (100 m) maps and
lies below 15 % of the AGB value for most pixels. The mean
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Figure 1. L-VOD from SMOS L2 v700 products averaged over 2018. Ascending and descending orbits are mixed. Values where RFI
contamination is higher than 20 %, where the Chi2_P is lower than 5 %, or where the air temperature is below 0 °C are filtered out. Pixels
with an AGB reference value equal to 0 are also filtered out, and outliers are discarded. The colored rectangles show the extent of the different
regions (see Sect. 3.1 for more details about the regions) considered in the study.

uncertainty ranges from 1 Mg ha−1 for AGB values below
50 to 25 Mg ha−1 for AGB values above 250 Mg ha−1. Fig-
ure 2a shows the distribution of AGB on Earth in 2018 ac-
cording to Santoro and Cartus (2024).

2.2.2 Avitabile 2010 pantropical AGB map

The 1 km pixel size AGB map from Avitabile et al. (2016),
limited to the pantropical region, was produced by integrat-
ing two pre-existing AGB maps from Saatchi et al. (2011)
and Baccini et al. (2012) for the year 2010. This integration
was achieved by employing an independent set of field ob-
servations and regionally adjusted high-resolution biomass
maps, which were then standardized and aggregated to pro-
duce almost 15 000 AGB reference data points at a 1 km
scale. The data fusion approach, involving bias correction
and a weighted linear averaging technique, was implemented
separately within distinct zones characterized by uniform er-
ror profiles in the Saatchi et al. (2011) and Baccini et al.
(2012) AGB maps. The map from Avitabile et al. (2016), re-
sampled onto the EASE grid 2 at 25 km, is shown in Fig. 2b.
Figure 2c exhibits the differences of the AGB from Avitabile
minus the one from CCI 2018 v5.

2.2.3 Xu 2000–2019 global AGB maps

Xu et al. (2021b) calculated the live (aboveground and be-
lowground) carbon biomass of global terrestrial ecosystems
on an annual basis, covering the years 2000 to 2019. Ref-
erence data, including 100 000 plots coupled with airborne
lidar data covering more than 1 Mha of tropical forests glob-
ally and satellite lidar survey detailing the height struc-
ture of global vegetation across over 8 million sample foot-
prints, were used to feed a machine learning model. Ref-

erence data were converted into estimates of both above-
ground and belowground biomass (BGB) using established
allometric models and the root-to-shoot ratio. These data are
used as training data for the machine learning algorithm, to-
gether with microwave and optical satellite imagery collected
from 2000 to 2019. The annual carbon density maps of live
woody vegetation are distributed in Xu et al. (2021a). For this
study, the live carbon density maps were converted to above-
ground carbon density thanks to the root-to-shoot ratio list
provided in the supplementary material of Xu et al. (2021b).
This aboveground carbon density is then converted to AGB
by dividing the carbon density by 0.49 (Xu et al., 2021b). The
Xu converted AGB map for 2018 reprojected to the EASE 2
grid at 25 km appears in Fig. 2d. Figure 2e shows the differ-
ence of the AGB from Xu minus the AGB from CCI v5 for
the year 2018.

3 Methods

3.1 Converting VOD to AGB

The methodology used to derive the AGB is detailed in
Fig. 3. It exhibits the input and output datasets and the setup.
The purpose of this workflow is to calibrate a relationship
between the L-VOD and the AGB and quantify the impact
of three factors on the calibration. The first factor is the rel-
evance of merging the SMOS overpasses with different lo-
cal time. SMOS has a polar sun-synchronous orbit. During
the ascending orbits (around 06:00 LT), thermal equilibrium
is reached and the vegetation temperature is supposed to be
close to the air temperature at 2 m height (Kerr et al., 2012).
This hypothesis is not valid for descending orbits (18:00 LT)
and may lead to a larger uncertainty in the VOD retrievals.
Nevertheless, descending orbits help fill the spatial gap in
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Figure 2. The reference maps used in this study and the spatial differences between them. (a) Aboveground biomass from CCI 2018 v5
(Santoro and Cartus, 2024), (b) aboveground biomass from Avitabile et al. (2016), (c) aboveground biomass difference for Avitabile et al.
(2016) minus CCI 2018 v5, (d) aboveground biomass in 2018 converted from Xu et al. (2021b), and (e) aboveground biomass difference for
Xu et al. (2021b) minus CCI 2018 v5. All units are in Mg ha−1 and all maps are resampled to the EASE 2 grid at 25 km.

areas strongly affected by RFI. If both orbit types can be
merged properly without impacting the quality of the cal-
ibration, the spatial extent of the AGB estimations will be
increased. The second factor is the impact of calibrating
one global relationship versus several regional ones. The re-
gions considered in this study appear in colored rectangles in
Fig. 1: the Amazon (25° S–15° N and 80–30° W), the trop-
ics (25° S–25° N and 90° W–150° E), the African continent
(37° S–37° N and 20° W–55° E), and the north region (50–
90° N). The third and last factor to be tested is the relevance
of extrapolating a spatial relationship over time.

For conciseness, this paper describes the methodology and
results with the ESA CCI Biomass 2018 map (CCI 2018;
Santoro and Cartus, 2024) as the calibration dataset. There-
fore, the relationship between these AGB reference values
and the SMOS VOD estimates acquired the same year (2018)
is described and discussed. Once the spatial calibration of

the AGB–LVOD relationship is thoroughly studied for the
reference year, it is extrapolated over time to all other SMOS
years. The same procedure is repeated to create AGB time se-
ries estimates from other AGB reference maps. For now, the
only other AGB reference map used in this study is the one
from Avitabile et al. (2016), representative of the year 2010.
This map is hence linked to SMOS L-VOD from 2011
as 2010 does not meet the quality requirements (see Sect. 2).
Ultimately, there are as many AGB time series estimates as
reference maps used. Currently, there is one NetCDF file
holding the AGB time series estimates from the CCI refer-
ence map and one NetCDF file holding the AGB time series
estimates from the Avitabile et al. (2016) reference map. Xu
et al. (2021b) maps are only used for comparison.

The workflow is divided into four steps numbered 1 to 4
in Fig. 3. During step 1 (pre-processing), the SMOS products
and AGB calibration maps are aggregated, resampled, and
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Figure 3. Overview of the methodology for estimating yearly AGB maps from the SMOS L-VOD and an AGB reference map.
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averaged for the common period (here 2018 for CCI used as
the reference) as described in Sect. 2. The L-VOD was ag-
gregated for ascending and descending orbits separately to
investigate the influence of the orbit local time on the cali-
bration.

In step 2 (processing) the SMOS L-VOD daily measure-
ments are masked, filtered, and temporally averaged. Only
pixels over continental surfaces are considered, as provided
in the 1 km USGS (US Geological Survey) land–sea mask
aggregated into the EASE 2 grid. Low-quality VODs are re-
moved based on the Chi2_P and the level of radio frequency
interferences (RFIs). The daily SMOS observations with
more than 20 % of SMOS TBs contaminated by RFI or where
Chi2_P is lower than 0.05 are filtered out. The VOD tempo-
ral series of each pixel are also checked for potential out-
liers: the values outside an interval of 2 standard deviations
around the yearly average are discarded. Moreover, if the me-
dian value of the RFI probability over the year is greater than
20 %, the pixel is dropped for that year. If after this filtering,
fewer than 10 measures remain, the pixel is also discarded.
The time series are also checked for spurious discontinuities
that are not induced by VOD or biomass changes. A small re-
gion of 85 EASE 2 grid pixels in the northeastern part of the
Amazon rainforest requires a particular filtering. Over this
area, identified in red in Fig. 1, the VOD times series experi-
ence a sudden jump in May 2015. This artifact is due to the
41r1 cycle update of the European Centre for Medium-Range
Weather Forecasts (ECMWF) surface model, which led to a
discontinuity in the skin temperature, as used in SMOS aux-
iliary files (Kerr et al., 2012). This region is masked out for
the analysis conducted in this study. No other affected areas
have been identified.

After cleaning, the VOD time series are then temporally
averaged on a yearly basis. This step is mandatory to iron
out the effects on L-VOD of the diurnal and seasonal varia-
tions of the vegetation water content. At this stage, footprints
with an AGB reference value equal to 0 are discarded, as
they are not useful to the AGB estimation. The region mask
is also applied to quantify the impact of calibrating several
local relations versus one global relation. Figure 1 shows an
example L2 VOD over the full globe for the year 2018 after
the processing described above.

In step 3 (fitting in Fig. 3), the AGB reference map is then
compared pixel-wise against the annual SMOS L-VOD map
(red points in the fitting part of Fig. 3) for the same year
(for example, SMOS L-VOD in 2018 against ESA Biomass
CCI AGB map for the year 2018) to check the relevance of
a logistic relationship. Following the methodology described
in Rodríguez-Fernández et al. (2018), the annual L-VOD is
binned into 0.05-width bins. In each bin, the mean AGB from
the reference map is computed (black points in the fitting
part of Fig. 3) and the set of parameters of the logistic func-
tion that best fits the mean AGB–L-VOD distribution is esti-
mated. This logistic function is defined in Eq. (1):

AGB=
a

1+ e−b(VOD−c) + d, (1)

where a, b, c, and d are the free parameters. In Eq. (1),
AGB is in Mg ha−1 and the L-VOD is dimensionless. Hence
a and d are in Mg ha−1 and b and c have no dimension. The
optimized logistic relationship is applied to the configured
(particular orbit, regional or global coverage) VOD to pro-
duce AGB estimates.

3.2 Uncertainty estimation

In step 3, the reliability of the AGB estimation is also com-
puted. Two quantifiable uncertainty sources were identified:
(i) the uncertainties associated with the input data that are
propagated through the process and (ii) the bias resulting
from the logistic fit between the AGB and the SMOS VOD.

For (i), the Monte Carlo method is used to propagate the
standard deviation of the reference AGB (available for the
CCI but not for the other calibration maps). The CCI uncer-
tainty (standard deviation) aggregated maps at 25 km from
Santoro and Cartus (2024) were resampled to the EASE 2
grid. A dataset of N = 10000 reference AGB maps is cre-
ated. For each pixel, the AGB value is extracted from the
Gaussian distribution characterized by its mean being the
reference AGB from the CCI and its standard deviation be-
ing the CCI uncertainty. From these N reference AGB maps,
N logistic fits and N AGB estimations are performed. The
standard deviation of theN estimated AGB can then be com-
puted per pixel. The same Monte Carlo method is applied
to propagate the uncertainty associated with the yearly aver-
aged VOD. For each footprint, the yearly VODDQX is ob-
tained through the quadratic mean of the daily VODDQX.
This value is further divided by the square root of the number
of observations, as the input TB radiometric noises are con-
sidered independent from one day to the other. The yearly
VOD and associated yearly VODDQX are then used to create
the dataset of N VOD maps.

For (ii), the dispersion (SD) of the estimated AGB for
the reference year is derived against the input AGB values.
The estimated AGB for the reference year is binned into
10 Mg ha−1 bins. The mean of the input AGB values is com-
puted within each bin (blue points in Fig. 4). The scatter-
ing of the estimated AGB values with respect to the input
AGB map is computed per bin as half of the gap between
the 84th and 16th percentiles of the differences between the
reference and estimated AGB. The result is a discrete spa-
tial bias distribution of approximately 30 values (blue bars
in Fig. 4). This distribution is propagated to other years. For
each year, the bias map is built by dispatching to all pixels
the reference bias value of the bin into which their estimated
AGB values fall (see Fig. 4).
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Figure 4. Computation of the SD (blue vertical bars) of the differences between estimated AGB and reference AGB in 10 Mg ha−1 bins
(blue dots).

3.3 AGB estimate evaluation

Finally, in step 4 (validation in Fig. 3), the resulting AGB is
evaluated against the calibration data. The AGB estimations
are compared to the calibration values through three classical
indicators: the Pearson’s correlation coefficient (R), the un-
biased root mean square difference (ubRMSD), and the mean
difference (bias). These statistics, complemented with maps
and time series comparisons, lead to the selection of one op-
timal parameterization. This optimal spatial relationship is
propagated to other annual VOD. The result is the AGB time
series estimation for all SMOS years from a reference map
(output data at the bottom of Fig. 3).

4 Results

This section presents the analysis of steps 3 and 4 from Fig. 3.
In particular, it details the evaluation of the impact of the
methods in terms of spatial and temporal scales. The derived
AGB values are then compared against the existing dataset to
assess their uncertainty.

4.1 Converting VOD to AGB

4.1.1 Relationship calibration

Prior to any AGB estimation, the calibration function be-
tween the L-VOD and the AGB is estimated. This calibra-
tion function (step 3 of Fig. 3) is presented in Fig. 5. The left
panel displays the logistic function fit between the 2018 L-
VOD average and the CCI 2018 for all pixels, mixing as-
cending and descending orbits. The right panel maps the
AGB estimated from the 2018 averaged L-VOD and the
calibrated logistic function. The estimated AGB reaches a
maximum of approximately 300 Mg ha−1 over the tropical

forests (Amazonia, Congo, Philippines). Boreal forests, in
the northern high latitudes, present AGB estimates around
100–150 Mg ha−1. Temperate and arid regions show an esti-
mated AGB lower than 50 Mg ha−1. The spatial distribution
is coherent with the CCI 2018 (see Fig. 2) and with the in-
put L-VOD (see Fig. 1). The Sahara does not present any
AGB estimate as no L-VOD retrieval is performed over this
region for the L2 product. The Middle East and central Asia
are masked out because of high RFI contamination and null
AGB calibration data. The white areas in central Australia,
southwestern Africa, southwestern America, northern Rus-
sia, northern Canada, and the central United States are caused
by the filtering of the AGB reference values set to 0.

The following sections detail the comparison of similar
regressions conducted under the different parameterizations
described in Sect. 3.

4.1.2 Relevance of merging ascending and descending
orbits

Considering ascending and descending orbits separately or
together gives very close calibrations of the parameters in
Eq. (1), as reported in Fig. 6. Most importantly, the estimated
AGB values with three orbital aggregations have similar per-
formances in terms of bias, R, and ubRMSD compared to the
CCI 2018 (Table 1).

The correlation coefficients between the estimated AGB
and the reference values from CCI 2018 are greater than 0.85
and are slightly higher when combining ascending and de-
scending orbits together. Merging both orbit types also
marginally decreases the ubRMSD, which is around 40–
45 Mg ha−1 in all configurations. The bias does not improve
when combining the orbit types but remains around the same
order of magnitude. This bias is below 2 Mg ha−1 in absolute
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Figure 5. The left panel shows the parameter values and the mean logistic fit between the CCI 2018 v5 map and the VOD from SMOS L2
products filtered and averaged over 2018. The right panel is the estimated AGB in Mg ha−1 by applying the logistic function with the
estimated a, b, c, and d parameters to the 2018 averaged VOD.

Figure 6. Logistic function fit calibrated with AGB from the CCI 2018 (Mg ha−1) and the L-VOD averaged over 2018 using ascending (ASC)
and descending (DESC) orbits separately or together. The table gathers the parameter values for the three logistic fits.

Table 1. R, bias (Mg ha−1), and ubRMSD (Mg ha−1) of the AGB
estimated with the VOD from different orbit types with respect to
CCI 2018.

Orbit ASC DESC ASC+DESC

R 0.85 0.85 0.87
Bias −1.10 −1.19 −1.60
ubRMSD 42.02 45.44 41.34

value. For this study, the bias is not the most important met-
ric as it does not necessarily reflect a deviation from the true
AGB value, which is unknown, as no benchmark AGB map
exists. Globally, the performances are not impacted by the or-
bit type. Considering these results, ascending and descending
orbits can properly be merged to compute the yearly L-VOD

maps. It increases the number of daily VODs to compute the
average and fills areas where one orbit or the other is affected
by RFI.

4.1.3 Impact of a regional calibration

One important feature of this study is assessing the impact of
using a single global relationship rather than several regional
ones. Four regions (north, tropics, Amazon, and Africa) are
considered in the analysis. They are displayed as colored
rectangles in Fig. 1. The AGB estimates obtained from the
calibrated global logistic function (left panel of Fig. 5) are
evaluated against the AGB estimates computed from the re-
gionally calibrated logistic functions.

The statistics in terms of R, bias, and ubRMSD obtained
with the regional and global calibrations for the four regions
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Figure 7. AGB differences between the estimation and the calibration data from CCI 2018 in the four regions identified in Fig. 1. In each
panel, the black histogram represents the distribution of the differences in the study region when estimating the AGB from the global fit
(global R, bias, and ubRmsd; black box), and the gray histogram represents the distribution of the differences when estimating the AGB
from the regional calibration (region R, bias, and ubRmsd; gray box).

with respect to CCI 2018 are displayed in Fig. 7. The re-
gional calibration does not impact R. As expected, the bias
and ubRMSD are always lower with the regional fits than the
global fit. The improvement is particularly important for the
African continent compared to the other three regions. For
Africa, the regional bias is close to zero, whereas the global
bias is equal to −20.86 Mg ha−1. This global bias still re-
mains low compared to the high AGB values in the region (up
to 400 Mg ha−1 according to the calibration map). The re-
gional ubRMSD is lower than the global one by 13 Mg ha−1.
Figure 7 also shows that the bin representing the differences
higher than 150 Mg ha−1 is not present with a regional cali-
bration for Africa, which explains the bias improvement.

For the other three regions, the regional and global
ubRMSD values are very close, the difference in ubRMSD
being less than 1.5 Mg ha−1. The regional and global differ-
ence distributions are also very similar. The bias improves by
11 and 7 Mg ha−1 between the regional and the global esti-
mations for the Amazon and the tropic regions, respectively.
Again, this bias improvement is small compared to the AGB
values over the tropical forests. A regional relationship is not
justified for these regions.

An additional test was conducted for the particular case of
the northern high latitudes (above 60° N). The boreal forests
are prone to strong seasonality with extensive snow cover in

winter. The impact of snow-covered acquisitions on the av-
eraged VOD and the calibration was then evaluated. To this
end, the VOD averaged over July and August was compared
to the full year average. The July–August averaged VOD
globally presents higher values than the full year average.
The maximum of the absolute VOD differences is 0.50 and
75 % of these differences lie under 0.042. Ultimately, these
differences do not significantly impact the logistic function
calibration but impact the AGB estimation variability from
one year to the other. In order to increase the VOD and AGB
stability in the northern high latitudes, it was decided to re-
move to VOD acquisitions when the air temperature was be-
low 0 °C.

4.2 Uncertainty estimation

The two sources of uncertainty discussed in Sect. 3.2 have
a different impact on the estimation. As shown by Figs. 8
and 9, the uncertainties inherited from the input data are neg-
ligible compared to the spatial bias component dominating
the logistic fit uncertainties. The propagation of the refer-
ence AGB standard deviation (blue shaded area in Fig. 9)
ranges from 0 to 1.5 Mg ha−1. Indeed, the AGB value may
vary significantly per pixel from one Gaussian draw to the
other, but on average, the mean AGB–VOD distribution re-
mains the same considering the number of points taken into
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Figure 8. Spatial bias (Mg ha−1) related to the logistic fit between the AGB values from the CCI 2018 and the 2018 SMOS L-VOD.

Figure 9. Standard deviation (Mg ha−1) of the 10 000 Monte Carlo draws for a Gaussian AGB distribution per pixel (blue) and a Gaussian
L-VOD distribution per pixel (red).

account. The same result prevails for the propagation of the
mean VODDQX (red shaded area in Fig. 9). The spatial bias
is much more dynamic and ranges from 0 to 100 Mg ha−1

(Fig. 8). As the standard deviation of the input AGB map
is not always available and does not impact the AGB estima-
tion, only the spatial bias component of the logistic fit (Fig. 8)
is written to the output product. This component corresponds
to half of the difference between the quantiles 84 and 16
and should be interpreted as a confidence interval around the
mean estimated AGB value provided in the product.

4.3 Temporal analysis

4.3.1 Comparison of the estimated AGB with CCI AGB

To assess the relevance of extrapolating a spatial relationship
over time, the VOD-derived AGB with a global calibration is
compared with the CCI AGB available from 2015 to 2021.
As shown in Table 2, the global statistics characterizing the
differences between the estimated AGB and the CCI AGB
values are uniform over the years. Spatially, the distribution
of the differences is similar across the 7 years as shown by
Fig. 10a–g. The region with the highest differences (more
than 300 pixels with differences greater than 200 Mg ha−1)
is the equatorial part of Africa.
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Figure 10. (a–g) Difference in Mg ha−1 between the yearly AGB estimated from the 2018 global logistic fit (Fig. 5) minus CCI AGB values
for the years 2015–2021. (h, i) For the global and Africa regions defined in Fig. 1, time series of the sum of the AGB from CCI (solid line)
and the estimation using LVOD and CCI-2018 (dashed line).
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Table 2. R, bias (Mg ha−1), and ubRMSD (Mg ha−1) between the estimated AGB and AGB values from CCI for the years 2015–2021. AGB
was estimated using the global logistic fit computed from the VOD and the CCI AGB for the year 2018. ∗ Year of reference.

2015 2016 2017 2018∗ 2019 2020 2021

R 0.88 0.88 0.88 0.87 0.86 0.87 0.87
Bias −1.73 −1.36 −2.13 −1.60 −1.28 −2.38 −2.81
ubRMSD 39.73 39.41 39.52 41.34 41.30 41.47 41.00

Additionally, the time series of the total AGB sum from
both datasets over the global area and the African continent
are compared against each other in Fig. 10h and i. The total
AGB sum corresponds to the AGB summed over all pixels
contained in a given region multiplied by the area of a pixel
(always 625 km2 for EASE 2 at 25 km). Only pixels com-
mon to both datasets and all 7 years are taken into account.
Comparing the sum of both AGB estimates is particularly
relevant, as the total AGB in a given area is often used as a
proxy for the live vegetation biomass carbon stock (Liu et al.,
2015; Xu et al., 2021b).

Overall, the CCI reference values are steady over time. On
the global scale, the SMOS-derived AGB shows a decreas-
ing trend, presents more variability, and has slightly lower
estimations compared to the CCI. This agrees with the nega-
tive biases from Table 2. For the African continent, the AGB
estimated from the VOD is on average 23 Pg lower than the
reference because of the spatial differences over the equato-
rial part of the region.

4.3.2 Comparison of the estimated AGB with Xu AGB

Besides the SMOS AGB estimates from this product, Xu
et al. (2021b) provide the only dataset covering more than
10 years (from 2000 to 2019). A comparison of the yearly
datasets over a 9-year time series (2011–2019) is performed.

The Xu et al. (2021a) estimates, converted to AGB and re-
sampled onto the EASE 2 grid at 25 km, are summed accord-
ing to the method presented in Sect. 4.3.1. The comparison of
the time series between Xu et al. (2021b) and the estimated
AGB using the global fit is displayed in Fig. 11 for all re-
gions of interest. For all cases but the Amazon, the AGB esti-
mates from the SMOS VOD are lower than Xu et al. (2021b)
with higher – though not significant – interannual variabil-
ity. Over the Amazonian rainforest, the AGB estimates from
the SMOS VOD are on average 10 Pg higher than Xu et al.
(2021b). This offset is caused by the differences between Xu
et al. (2021b) and the CCI AGB. The latter, being used to
calibrate the VOD, is higher than the former in most forested
areas in both tropical and boreal regions (see Fig. 2e). When
considering the full tropical belt, the L-VOD-derived AGB is
lower than the Xu et al. (2021b) one because of the equatorial
part of Africa, where the AGB estimated from SMOS does
not reach the high values of Xu et al. (2021b).

Table 3. R, bias (Mg ha−1), and ubRMSD (Mg ha−1) between the
AGB estimated with the VOD from L2, L3, and IC mixing ascend-
ing and descending orbits and the CCI 2018 calibration data.

Product L2 v700 L3 v339 IC v105

R 0.87 0.87 0.89
Bias −1.60 −1.33 −0.39
ubRMSD 41.34 39.12 36.43

5 Discussion

The paper describes a dataset which is a follow-up to the
work initiated by Liu et al. (2015) at high frequencies (X- and
C-band) and developed at L-band for SMOS by Rodríguez-
Fernández et al. (2018), Fan et al. (2019), and Mialon et al.
(2020). This analysis goes further and quantifies the effects
of different aspects of the method on the derived AGB, which
are (i) mixing the morning and afternoon overpasses, (ii) us-
ing a relationship at the global scale, (iii) extrapolating a spa-
tial relationship over time, and most importantly (iv) provid-
ing a confidence interval range of the estimated AGB. First,
the consistency of the approach is confirmed by comparing
the L2 product performances with two other SMOS-derived
VODs: the CATDS L3 product (Al Bitar et al., 2017) and
the INRA-CESBIO (IC) dataset (Fernandez-Moran et al.,
2017). This part is not detailed in the present analysis as
the results are very similar. Even though the three SMOS
VODs are derived with different algorithms (Kerr et al.,
2012; Al Bitar et al., 2017; Fernandez-Moran et al., 2017),
the approach developed in this paper leads to equivalent per-
formances, as shown in Table 3. The IC algorithm shows
higher R (0.89 versus 0.87 for L2 and L3) and slightly lower
ubRMSD and bias. Nevertheless, taking into account the or-
der of magnitude of the bias and ubRMSD differences across
the three products (0.9 Mg ha−1 in bias and 5 Mg ha−1 in
ubRMSD), they are completely negligible in comparison to
the order of magnitude of the spatial bias introduced by the
fitting of the logistic function (Fig. 4, 30–90 Mg ha−1).

The effect of the time of observation is also evaluated. It is
admitted that morning overpasses (06:00 LT for SMOS) offer
more stable surface conditions as the Earth’s surface reaches
a thermal equilibrium. Therefore, better SM and VOD re-
trievals are expected using the morning orbits. It has, how-
ever, no impact for the present application as the three cases
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Figure 11. Time series of the total sum of the AGB for the different regions defined in Fig. 1 from Xu et al. (2021b) (solid line) and the
estimation using SMOS and CCI-2018 (dashed line).

(i.e., only morning, only afternoon, and the two combined)
have similar performances at the timescale considered in this
study, with a correlation coefficient R ranging between 0.85
and 0.87 (see Table 1). The yearly averaging smooths the
daily variability caused by the vegetation water content. Both
overpasses (morning and afternoon) can be merged without
a strong impact on the calibration. This increases the number
of observations per pixel to compute the yearly VOD aver-
age and improves the coverage of regions that are either pol-
luted with RFI or have cold temperatures during wintertime
(Schwank et al., 2024).

Then, the impact of using a global relationship at the re-
gional scale is estimated. Across the four studied regions
(Fig. 1), only Africa presents a significant estimation im-
provement when using a regional relationship (Fig. 7). The
case of the African continent is specific, as the equatorial
part of the region has the highest CCI AGB values of up
to 400 Mg ha−1. Deriving a regional logistic relationship be-
tween the VOD and the AGB reproduces these high values
better. With the global calibration, the logistic fit does not
reach the 400 Mg ha−1 threshold (see left panel of Fig. 5) and
saturates around 300 Mg ha−1. This value corresponds to the
average AGB value in the Amazon rainforest according to
the CCI 2018 map. Hence, applying the global relationship
over Africa leads to lower estimated AGB than the CCI AGB.
Moreover, the VOD values are more scattered and present
more variability in central Africa compared to the VOD val-

ues in the Amazon rainforest. However, these derived AGB
estimates in the equatorial part of Africa are consistent with
other AGB datasets such as Avitabile et al. (2016). Adopt-
ing a single global logistic relationship between the SMOS
LVOD and the input AGB is a good trade-off between per-
formance, simplicity, and consistency.

Regarding the time dimension, the general method re-
lies on the hypothesis that a spatial relationship for a single
year is accurate enough to create the time series. Indeed, the
VOD–AGB relationship is defined for a particular year and
is propagated over time. This assumption, never evaluated by
any studies, is tested thanks to the 7 years of the CCI dataset.
The logistic relationship defined with the CCI 2018 was ap-
plied to the SMOS VOD for 2015, 2016, 2017, 2019, 2020,
and 2021. The estimated AGB values are then compared to
the CCI 2015–2017 and 2019–2021. The performances of the
SMOS-derived AGB are similar for all years in terms of coef-
ficient of correlation (between 0.86 and 0.88 according to Ta-
ble 2) and ubRMSD (between 39.4 and 41.5 Mg ha−1). The
biases are also very close (around −2 Mg ha−1), with bet-
ter results for 2016 and 2019 (−1.36 and −1.28 Mg ha−1).
It supports the consistency of the VOD–AGB relationship.
The main differences between the SMOS-derived AGB and
the CCI AGB are observed over the tropical forests in Africa
and the boreal forests of eastern Siberia. In Africa, the lower
estimates are consistent for all years and are caused by the
global VOD–AGB relationship (see previous comment). In
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this study, the CCI AGB map v5 for 2018 has been used to
optimize the spatial logistic relationship. As the CCI biomass
team applies a scaling factor to homogenize the yearly AGB
estimates and to limit abrupt changes at the pixel scale be-
tween years (Santoro et al., 2023), the dynamic of the CCI
AGB over time is low (steady black curves in Fig. 10h and i).
Spatially, the CCI AGB differences from one year to the other
do not exceed 2 Mg ha−1 in absolute value for 99 % of the
pixels. These differences fall well below the uncertainties as-
sociated with the CCI aggregated maps (up to 43 Mg ha−1),
which already have a low influence on the AGB estimates
as demonstrated by the Monte Carlo test (Sect. 4.2). Conse-
quently, fitting the relationship with the CCI map from an-
other year does not significantly impact the estimation of the
AGB time series.

To support the analysis, the derived time series is then
compared to Xu et al. (2021b), which is the only other dataset
covering more than 10 years. Differences between the two
datasets are expected as they were produced from differ-
ent inputs and with different methods. Xu et al. (2021b) in-
clude lidar, optical, and radar datasets, whereas SMOS is
a passive microwave sensor. Radar and passive microwaves
do saturate over dense vegetation but at different vegetation
densities. Radar is also more sensitive to the roughness at
the vegetation–air interface. For every studied region, the
SMOS-derived time series show more interannual variabil-
ity. This may be partly caused by the natural fluctuations of
the yearly averaged L-VOD due to changes in the vegeta-
tion water content to which the L-VOD is highly sensitive.
Thanks to the yearly averaging, this variability remains rel-
atively low at ∼ 3 % (difference of 13 Pg over an average
value of ∼ 424 Pg) at the global scale (left Fig. 11, dotted
line). Differences also exist between the trends. For exam-
ple, there is an opposite trend in the Amazon region and a
peak in the northern region in 2013 not observed in Xu et al.
(2021b) dataset. Such differences are expected due to the
abovementioned reasons, and further investigations and in-
tercomparisons between published and future AGB datasets
will be needed to explain and understand these divergences.

Finally, this new dataset provides a confidence interval on
the derived AGB, contrary to other similar databases. The
derived uncertainty is mostly dominated by spatial biases,
which highlights the inability of a single global model to
map all the relationships between the VOD and AGB. Fig-
ure 4 presents the estimated confidence interval per bin of
SMOS-derived AGB. Figure 8 is the same information pro-
jected on a map to better visualize the spatial distribution
of this bias. The propagation of the uncertainties of the input
data through the logistic function optimization was also care-
fully checked using a Monte Carlo approach. The impacts of
the VOD and CCI AGB uncertainties on the AGB estima-
tion were evaluated and found to be small (1.5 Mg ha−1 for
the highest AGB values) compared to the AGB spatial bias.
Figure 4 also emphasizes that strong AGB values may be un-
derestimated when computing AGB from the L-VOD and the

optimized logistic function. Indeed, L-VOD tends to saturate
over densely vegetated areas, even though it does not saturate
as much as optical indices or VOD in C- and X-bands.

6 Data availability

The dataset is available at https://doi.org/10.12770/95f76ff0-
5d89-430d-80db-95fbdd77f543 (Boitard et al., 2024).
The AGB estimates from SMOS L-VOD are open-
access and available at https://data.catds.fr/cecsm/Land_
products/L4_Above_Ground_Biomass/ (Boitard et al.,
2024). The data content description is available at https:
//data.catds.fr/cecsm/Land_products/L4_Above_Ground_
Biomass/documentation/NT_AGB_maps_from_VOD.pdf
(Boitard et al., 2023).

7 Conclusions

The paper presents the AGB dataset estimated from the
SMOS L-band passive microwave VOD, which is directly
related to the vegetation water content. When averaged over
a year, it nevertheless constitutes a good proxy for the AGB
and presents the advantage of covering a long time series,
starting in 2011.

This study focuses on the method and analyzes the robust-
ness of the approach to estimate the AGB from the SMOS
Level 2 VOD. In particular, it is shown that SMOS ascend-
ing and descending orbits can and should be merged at the
yearly timescale to estimate the AGB. It slightly improves
the correlation with the calibration AGB (0.87 when merg-
ing orbit types versus 0.85 for ascending or descending orbits
only) and decreases the ubRMSD to 41 Mg ha−1. Moreover,
even though a global relationship (VOD–AGB) is appropri-
ate, slight differences are observed over Africa compared to
using a dedicated relationship for this continent. Indeed, the
global calibration underestimates the high AGB in the trop-
ical region of Africa by up to 200 Mg ha−1 for 300 pixels.
The analysis also evaluates the multiyear dataset with two
global time series. The SMOS-derived AGB dataset is very
close to the CCI AGB used for its calibration (averageR 0.87
over 7 years). The estimated AGB is slightly lower than the
one from Xu et al. (2021b) and presents more interannual
variability. The latter is directly inherited from the interan-
nual variability of the yearly averaged SMOS L-VOD. Fi-
nally, this study provides an estimate of the uncertainties of
the derived AGB for the first time in order to better assess its
application in the context of biomass monitoring. This un-
certainty ranges from 10 Mg ha−1 for lower AGB values up
to 100 Mg ha−1 for AGB values around 200 Mg ha−1. The
present dataset is freely accessible from the CATDS website.
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