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A B S T R A C T

In a context of worldwide decline and given the critical ecological role of marine seagrasses to coastal ecosystem
structure and functioning, regional conservation initiatives have emerged over the past thirty years to protect
these important habitat-forming species. Yet, effective interventions need to account for site-specific processes
and stressors. Thus, our ability to accurately predict seagrass dynamics is pivotal to support management in-
terventions. To date, determinist process-based modelling has provided important insights on the drivers of
seagrass dynamics. Here, we developed an original model framework that combines a coastal hydrodynamics
ocean model with local data-driven models that rely on Boosted Regression Trees to predict seasonal dynamics of
patch-level and plant-level seagrass features as a function of site-specific environmental conditions. Based only
on a 12-month monitoring across nine sites, seagrass traits models successfully reproduce overall seasonal dy-
namics based mostly on inferred relationships with monthly light and temperature, and to a lesser extent,
exposure to physical stressors (i.e., currents and waves). While models fail to finely capture spatial discrepancies
across all sites (especially where seagrass demonstrates higher growth potential), spatially-explicit simulations
highlight how seagrass-hydrodynamics feedback across the whole bay can dampen seagrass potential for growth
due to exposure to shear stress. However, this original framework offers the potential to simulate long-term
changes in the extent and status of seagrass meadows in Arcachon Bay, explicit resolving hydro-sediment dy-
namics effects on light appears as a priority to better capture the range of feedback processes between seagrass
and coastal environmental conditions.

1. Introduction

Seagrasses, like other marine engineering species, have a key role in
the structure and functioning of coastal ecosystems. They directly
impact hydrodynamics and sediment dynamics by buffering waves
(Gambi et al., 1990) and currents (Bos et al., 2007; Nordlund et al.,
2017) and thus can effectively mitigate coastal erosion (Adriano et al.,
2005; Falco et al., 2000; Ramage and Schiel, 1999). Seagrass meadows
also offer important ecosystem services (Costanza et al., 1997) such as
stabilizing local sediments (Waycott et al., 2009), acting as nursery and
refuge habitats for species and promoting increases in biodiversity
(Hughes et al., 2009), taking part in the carbon cycle by producing and

storing carbon (Fourqurean et al., 2012) and being an edible resource for
some species (Orth et al., 2006). Seagrass meadows strongly contribute
to the structure of trophic networks and nutrient cycles (Hemminga and
Duarte, 2000).
Similar to other intertidal habitat-forming species, seagrass meadows

can vary in density and extent over multiple time scales in response to
seasonal or interannual variability in environmental conditions or
extreme events, and to anthropogenic stressors. They are under the in-
fluence of a broad range of environmental drivers including light
availability, tidal and wind currents, waves, or temperature (Duarte,
1991; Fonseca and Bell, 1998; Auby et al., 1999; Massa et al., 2009;
Balke et al., 2014). Seagrass decline has been globally documented
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across multiple regions and species (Waycott et al., 2009; Dunic et al.,
2021; Turschwell et al., 2021) and can be attributed to several stressors
(Orth et al., 2006) including: marine heatwaves, increased turbidity,
poor water quality, sea level rise, diseases, coastal development or
competition with other species. A meta-analysis of 215 published arti-
cles inferred a regression rate of 110 km2 per year since the 1980s for all
seagrass species and a 29 % loss of the known surface of seagrass
meadows since the first measurements of seagrass distributions in 1980
(Waycott et al., 2009).
While several global studies have identified site-specific hazards (e.g.

dredging or destruction by fisheries; Wu et al., 2017b; Krause-Jensen
et al., 2021) that can explain contrasted trends in seagrass meadows
across regions (e.g. Turschwell et al., 2021), a fine-scale understanding
of the drivers of decline or recovery within individual sites often remain
limited, albeit critical to support effective local management in-
terventions. Amongst the numerous regional examples of global seagrass
declines, on intertidal mudflats in Arcachon bay, southwestern France
(Fig 1), the largest dwarf eelgrass (Zostera noltii) meadow in Europe
(Auby et al., 2011) has dramatically declined over the past three decades
(Fig 1) (Dalloyau et al., 2009; Plus et al., 2010; Lafon, 2013; Rigouin
et al., 2022). Between 1989 and 2019, the total surface area of this
meadow declined by 44 %, from 68,5 km2 to 38,6 km2. In the meantime,
the eelgrass (Zostera marina), which also occurs in Arcachon Bay, along
the subtidal edges of tidal channels, has decreased by 85%, from 3,8 km2

to 0,56 km2 between 1989 and 2016. An initial decline in seagrass in the
early 2000s, which is likely due to a heat wave episode as well as
exposure to herbicides (Gamain et al., 2018), is assumed to have trig-
gered a vicious cycle that involves complex feedback mechanisms be-
tween seagrass extent and density and hydro-sediment dynamics
(Ganthy,2017; Cognat et al., 2018; Cognat, 2019; Fig 2). Specifically,
Z. marina decline induced a subsequent increase in suspended sediment
concentrations across the bay (Cognat et al., 2018) as well as muddy
sediment accumulation in the upstream parts of Arcachon Bay. Seagrass
regression induced a significant increase in both bottom currents, and
waves in the whole Bay (Cognat, 2019), which could directly increase
seabed erosion and the potential for shoot scouring or leaf tearing.
Additional increase in turbidity directly reduced the amount of light

available for photosynthesis, which reduced seagrass growth potential.
While feedback cycles between seagrass meadows and hydro-

sedimentary conditions are well-identified as influencing long-term
changes in Arcachon Bay, the relative contribution of individual pro-
cesses (e.g., light, temperature, exposure to tidal-driven shear stress or to
waves) to seagrass dynamics remains unknown. Such information is
however critical to effectively guide conservation or restoration man-
agement interventions in the context of global changes. As a comple-
mentary approach to field observations and monitoring of seagrass
meadows (Beca-Carretero et al., 2020) or to manipulative experiments
(Burkholder et al., 1992; Short et al., 1995), modelling can offer unique
insights on the processes that drive seagrass dynamics.
Both process-based and data-driven modelling approaches can help

capture ecological dynamics and ecosystem-level responses to pertur-
bations by accounting for complex interactions between biological and
environmental processes that drive changes in coastal marine habitats. A
broad range of modelling approaches types have been applied to assess
and predict changes in Zostera spp. meadows including: statistical dis-
tribution models (Beca-Carretero et al., 2020), mechanistic distribution
models (Greve and Krause-Jensen, 2005), seed dispersal models (Jahnke
et al., 2016) or individual tracking of seeds (Kuusemäe et al., 2018),
mechanistic growth model (Plus et al., 2003) and models for predicting
the long term effects of environmental variables on spatial distribution
of meadows (Ondiviela et al., 2014). Nevertheless, none of these models
can fully capture the complex feedback cycles between seagrass dy-
namics, hydrodynamics and sediment processes across different tem-
poral and spatial scales. While process-based approaches can account for
these complex interactions between biological and physical components
of coastal ecosystems (Ganthy et al., 2024), these data-hungry ap-
proaches are often limited by low data availability and high computa-
tional costs (Le Pevedic, 2024).
Here, so as to overcome technical constraints of existing modelling

approaches, we developed a hybrid modelling framework, which com-
bines (i) machine learning models and (ii) a spatially explicit coastal
hydrodynamics model, to capture major interactions between seagrass
and its hydro-sedimentary environment. (i) Boosted Regression Trees
(BRT; Elith et al., 2008) were selected to predict monthly changes in six

Fig. 1. Arcachon Bay’s location and Z. noltii beds extents and coverage in 1989, 2005, 2007, 2012 and 2019. The nine sampling sites (ANDE, HAUT, FONT, JACQ,
ILE, GARR, PASS, GAIL and ROCH) are plotted on the 2019 map.

H. Muller et al.



Ecological Modelling 495 (2024) 110802

3

seagrass biological traits (e.g., leaf density, length or shoot height) with
the associated uncertainties, as a function of local environmental con-
ditions at several contrasted locations in the Bay (Cognat et al., 2018).
BRT, which are particularly useful to model non-linear relationships,
can perform on limited datasets (Elith et al., 2008). Using the
permutation-importance heuristic (Linardatos et al., 2021), BRT can
robustly estimate covariates importance to model predictions model,
which facilitates model interpretation. (ii) The MARS3D coastal ocean
model captures the plant-flow interactions (Kombiadou et al., 2014;
Ganthy et al., 2024) to simulate the impacts of seagrass beds on hy-
drodynamics at the whole bay scale, which is relevant to study seagrass
regional dynamics. Using this framework at both the level of individual
seasonal monitoring sites and the scale of the whole Arcachon Bay, we
explicitly modelled six patch-level (i.e. leaf biomass and density, root
biomass) as well as plant-level (e.g. leaf length and width, shoot height)
seagrass traits at two spatial scales in order to (i) assess the relative
influence of local conditions (e.g. temperature, immersion time) versus
hydrodynamics (e.g. exposure to shear stress, waves) to seagrass sea-
sonal dynamics, and (ii) to better understand and predict seagrass
spatial variability in Arcachon Bay.

2. Materials and methods

2.1. Context

2.1.1. Seagrass meadows in Arcachon bay
Arcachon Bay, located on the south French Atlantic coast (Fig 1), is a

semi-enclosed mesotidal lagoon and 70 % of its surface is composed of
mudflats. Due to its configuration, the Bay contains a network of tidal
channels connecting the Bay to the Atlantic Ocean. Its hydro-sediment
dynamics are driven by semidiurnal tide, freshwater inputs, swell and
wind seas. Mean spring tidal range is 4,9 m and mean neap tidal range is
1,10 m (Cognat, 2019). Arcachon Bay contains two types of seagrass
species both belonging to the Zostera genus: Z. noltii and Z. marina. Z.
noltii is of small size (shoot height average: 9,5 cm, leaf width average: 1,
2 mm (Ribaudo et al., 2016)) and constitutes meadows on intertidal
mudflats in Arcachon bay. In contrast, Z. marina (shoot height average:
76,25 cm, leaf width average: 6 mm (Cognat, 2019)) mostly colonizes
shallow subtidal edges of tidal channels. The distribution of Z. marina
meadows is not as widespread as that of Z. noltii. Z. marina and Z. noltii

were mapped in Arcachon Bay in the summers of 1989, 2005, 2007,
2012, 2016 and 2019 (see Fig 1, Auby, 1991; Dalloyau et al., 2009; Plus
et al., 2010; Lafon, 2013; Rigouin et al., 2022) using satellite and aerial
data. However, seasonal field-based monitoring of meadows is only
available for Z. noltii for the year 2016 (Cognat et al., 2018), which
partially determined the focus on Z. noltii meadows for the seasonal
growth data-driven model.

2.1.2. Data

2.1.2.1. Study site observations. Cognat et al. (2018) performed a
monthly monitoring of biological and environmental parameters in
Z. noltii meadows at nine intertidal sites (see Fig 1) of Arcachon Bay,
between November 2015 and December 2016. This time period does not
contain any particular events (extreme meteorological or pesticide
release events) that could seriously impact the local seagrass dynamics.
The nine sites were selected along different gradients across depth,
environmental conditions and seagrass cover to represent overall vari-
ability in biological and environmental conditions in the Bay but they do
not exhaustively capture seagrass meadows in the bay.
At each site, multiple environmental variables described in Cognat

(2019), such as light received by plants (PAR for Photosynthetically
Active Radiation), mean temperature (Tmean), average immersion time
(Immersion) and wave exposure index (REIq75) were computed from
high frequency measurements (every ten minutes) in order to obtain one
value per month, i.e., per sampling of biological data. Regarding the
biological data, the seagrass biological parameters (see Fig 3), leaf
density which is the number of leaves per m2 (Ldens, m− 2), leaf biomass
(LBiom, g.m− 2), leaf length (Llength, m), leaf width (Lwidth, mm), shoot
height (Sheight, m) and root biomass (RBiom, g.m− 2)) were indeed
monthly monitored.

2.1.2.2. Coastal hydrodynamics model outputs. To complete the dataset,
additional environmental parameters were computed thanks to the
coastal hydrodynamic model MARS3D (Lazure and Dumas, 2008) which
computes ocean physical variables (currents, free surface elevation,
temperature and salinity) from the solutions of primitive equations
under the hydrostatic approximation and the Boussinesq hypothesis.
amongst the useful environmental parameters, a key parameter to

Fig. 2. Feedback processes between hydrodynamics, sediment dynamics and seagrass meadow development to illustrate the vicious cycle that can be triggered in
response to seagrass regression (adapted from Cognat et al., 2019).
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design the seagrass growth data-driven model is a theoretical metrics
which is representative of potential leaf tearing or seagrass scouring
F075). F075 is built as the integral over time of the adimensional shear
excess. The adimensional shear excess is expressed as f and stands for
the excess of bottom current shear stress (τF) relative to the critical bed
shear stress (τc) at which the leaves are torn off or scouring occurs.

F075 =
∑n

t=0
f(t)

With f(t) = 0 if τF(t) ≤ τc
f(t) = τF(t)

τc − 1 if τF(t) > τc
And τF(t) = 1

2ρwatCDU2bot(t) where ρwat is the water density equal to
1023 kg.m3, CD is the drag coefficient equal to 1,5 and Ubot the bottom
current.

τc is computed as τF by substitutingUbot by the critical bottom current
fixed to 0,075 m.s− 1 (Cognat, 2019). MARS3D computes online the
monthly value of F075 from the bottom current computed at a timestep of
a few seconds on a 235-m grid. The MARS3D configuration is described
in Cognat (2019) and Kombiadou et al. (2014). The 235-m 3D config-
uration is embedded in two successive 2D coarse resolution models
which provide the sea surface height at its boundary condition. The
initial 2D model is forced by the sea surface height from the FES 2012
global tidal model (Carrère et al., 2013). The whole modelling chain is
forced with hourly meteorological parameters from the AROMEweather
model (Seity et al., 2011) and real river discharges. The seagrass effect
on the waterflow is explicitly modelled in the hydrodynamics model
configuration (Kombiadou et al. (2014) via the activation of a module
called “obstruction” (Ganthy et al., 2024). Within this module, Zostera
leaves are represented as rectangular parallelepipeds characterized by a
length, a width, a thickness and a density per unit area, and can be
curved according to their flexibility and the current intensity. During 3D
computations, the drag effects and the modification of the turbulence
around the leaves are taken into account through (1) momentum
decrease because of the flow friction on the leaves and (2) the addition of
sink and source terms in the turbulent closure scheme to take into ac-
count the turbulent kinetic energy modification and turbulence dissi-
pation due to the seagrass presence.
The preliminary study of Cognat (2019) helped to choose respec-

tively the environmental dataset composed of the data PAR, REIq75,
Tmean, Immersion and F075 and the biological data composed of Ldens,
LBiom, Llength, Lwidth, Sheight and RBiom as features and target data
useful for the generic seagrass biological traits models (called the “local
models” in the study) development with a machine learning approach.

2.2. Local model of monthly changes in six Z. noltii traits

2.2.1. Overall structure
In order to establish the local 1D seasonal growth model for Z. noltii,

the knowledge of their past state is necessary to predict their new state.
In practice, it means that the biological variables describing the seagrass
(cf. Section 2.1.2) are used, at a previous time step, as features in a su-
pervised machine learning algorithm in order to predict biological
feature values for the next time step. It should be noted that some var-
iables of the Cognat et al. (2018) dataset contain missing data due to
field measurement issues on the first month of the survey in November
2015. Because duration between successive surveys varied from ~three
to six weeks, the model is set to predict time-standardized (i.e. daily)
rates of change for of the six biological features (see Fig 3a) of the sea-
grass meadows. These biological features monitored by Cognat et al.
(2018) are useful for the parameterization of the obstruction in the
coastal ocean model which will be used for the spatial model develop-
ment. These predicted daily rates of change are then used to estimate the
absolute values of the biological features at the next time step. There-
fore, the original survey dataset was restructured into a usable dataset
for the modelling, which contains for each of the nine sites, and each

month of the year: daily rates of change for each of the six biological
features, observed absolute values of each biological feature, and factors
describing environmental conditions. The biological features and the
environmental feature linked to hydrodynamics (F075) were
log-transformed to reduce skewness of data. As a result, the local growth
model issued from the machine learning process and described on
Fig. 3a, takes as inputs local environmental variables as well as the
previous time-step biological feature (ym) and predicts a daily variation
of this biological feature (Δym) on a specific time range. The predicted
variation (Δym) is then multiplied by the number of days (d) between
two timesteps and is added to the previous biological value (ym) in order
to obtain an updated value (ym+1).

Δym = f(ym)

ym+1 = ym + d× Δym

f is the Boosted Regression Trees (BRT), m is month
A time-series of biological predictions is obtained by recurrently

applying a local model using an initial biological value for the first-time
step and then using the previous prediction as the new biological
feature. The iteration process therefore simulates the local growth of
Z. noltii, through all six biological traits (Ldens, Llength, LBiom, Lwidth,
Sheight and RBiom), on a given period. The local models (one per bio-
logical traits) do not have explicit spatial and absolute time dimensions
in themselves, since neither spatial coordinates nor time values are used
as features. The spatial and time dimensions are inherent to the feature
values given to the models as well as the choice of timesteps for the
iterations.

2.2.2. Boosted regression trees
Within the context of Arcachon bay survey, the designed dataset

composed of 108 observations corresponding to 12 months X 9 sites and
12 variables corresponding to all computed or measured environmental
and biological parameters would not be enough to fit and test most of the
existing learning methods that require large amounts of data. Therefore,
BRTs were chosen based on their efficiency for the construction of the
local model in terms of predictive performance, the interpretability of
individual Regression Trees and appropriateness given the reduced
amount of data available. Six independent local models were built, fitted
and operated separately, to model each of the six biological variables of
interest to predict seasonal changes in Z. noltiimeadows properties. Each
model is optimized by identifying the best set of three influential pa-
rameters, namely: the number of estimators (i.e. trees), the learning rate
and the maximum depth. A grid search method is used to optimize each
of the six BRTs. Grid searching consists in testing every possible com-
bination of values of the three hyperparameters defined by an arbitrary
grid of possible values to fit models and evaluate the performance of
each model using cross-validation. We have chosen Root Mean Square
Error (RMSE) as the metric to evaluate performance. It is used to select
the best hyperparameters values. Since our dataset contains spatio-
temporal data, it is important to take into account autocorrelation
when choosing the folds of the cross-validation. Because of the absence
of replicates at each sampling site and season, cross-validation folds can
only take into account either the spatial or the temporal structure of our
dataset. It was chosen to use group folds with each group corresponding
to a sampling site in order to test the ability of the model to extrapolate
through space. This choice of focusing on spatial group folds instead of
time group folds makes the models better adapted to predict new sea-
grass meadow sites in 2016. This type of group fold consists in fitting a
BRT on eight of the nine sampling sites and predicting the seasonal
growth of the ninth site. The predicted and observed data are then used
to compute the RMSE for this ninth site. The process is repeated for all
other sites. Finally, the sets of optimal hyperparameters for the six BRT
models are those minimizing the mean value of RMSE computed on test
data of site-group-fold cross-validation.

H. Muller et al.
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Fig. 3. Schematic representations of both (a) the local and (b) the spatially-explicit models structure. (a) The Boosted Regression Tree (BRT) models that predict local
monthly changes in six seagrass traits, namely: leaf biomass, leaf density, leaf length, leaf width, root biomass and shoot height. Individual BRT models predict daily
rates of changes in each of the seagrass traits as a function of the previous state of each trait as well as local environmental conditions (e.g. temperature, available
light or Photosynthetic Available Radiation, Immersion time, exposure to waves and to tidal-driven shear stress). Estimated daily rates of change are then multiplied
in the local model to predict changes over monthly time steps; (b) Spatialized model framework.
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2.3. Spatial model

2.3.1. Hybrid model structure
The local models predict time series of the six biological variables

that characterize Z. noltii meadows (Fig 3a). They are used to spatially
predict changes in seagrass meadows using spatialized feature data. For
this reason, in order to spatially predict the seasonal growth of Z. noltii
meadows in the whole Arcachon Bay, a modelling framework combining
the local BRT models with the MARS3D coastal ocean hydrodynamics
model is developed. The spatially-explicit regional model framework for
Arcachon Bay (Fig 3b) is structured according to a regular grid with a
horizontal resolution of 235 m. Each cell of this grid is defined as a local
spatial unit in which environmental and biological values are considered
uniform. The MARS3D hydrodynamic numerical model predicts envi-
ronmental feature values over this grid covering the whole Arcachon
bay. A rasterized version of the 2016 distribution map of Z. noltii
(Dalloyau et al., 2009) issued from the extrapolation of the available
data (Fig 1), is used to obtain the presence/absence information of the
species over the model computation grid. It enables to initialize grid
cells for each biological feature of the meadows. For each of the bio-
logical features, the mean value of site-measured data of the first-time
step from the 2016 survey (Cognat et al., 2018) is assigned, for the
initial time, to each cell where the seagrass meadows were flagged as
present in the presence/absence grid. The rest of the cells were assigned
a value of 0. Then the local models fitted beforehand predict new bio-
logical values for each cell in the grid by iterating over the feature grids
cell by cell. The results consist in spatialized predictions of the biological
features at the next time step. Using the updated biological features grids
and new environmental features grids predicted by MARS3D, this pro-
cess is iterated at each time step to obtain a temporal succession of

spatialized prediction grids of biological features. Therefore, the global
model framework allows for obtaining spatio-temporal predictions of
Z. noltii meadow’s biological features.

2.3.2. Forcing vs. coupling mode
heMARS3D hydrodynamic numerical model has already been tested,

validated and improved in Arcachon bay (Kombiadou et al., 2014;
Ganthy et al., 2024) for environmental predictions. Therefore, in the
architecture of the seagrass dynamics spatial model developed here, it is
used to predict hydrodynamic environmental data, namely the Immer-
sion time, F075 and temperature at a spatial resolution of 235 m. The
model framework has two alternative pathways sharing common
structure. The first pathway corresponds to a forcing model, where the
computation of the environmental feature grids by MARS3D does not
capture feedback between Zostera on its environment. This implies that
the growth of the meadows depends on the previous biological and
environmental values but the environmental features themselves do not
depend on changes in Z. noltii meadows. The second pathway corre-
sponds to a coupling model where the feedback effects of the meadows
on their local environment are taken into consideration. In this case, the
predicted biological features modify the environmental predictions
made by MARS3D by modulating the amount of obstruction of bottom
currents (described in part 2.1.2) and requires the features of Z. noltii to
be contained in a grid usable by the model. The only environmental
variable considered to account for the effects of hydrodynamics on
seagrass development is the metrics F075 standing for the leaf tearing and
seagrass scouring potentials (see part 2.1.2).

Fig. 4. Predicted vs observed monthly estimates for a full year, for each of the six individual BRT models (distinguished in the different panels as corresponding to
the six seagrass features, namely Leaf biomass in gDW/m2, Leaf density in number of leaves/m2, Leaf length in m, Leaf width in mm, Root biomass in gDW /m2, Shoot
height in m). Each point corresponds to a given month for a given site (as colour-coded).

H. Muller et al.
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3. Results

3.1. Local model

Comparisons between monthly estimates of the six biological traits
by the local models and site-specific observations (Fig 4) highlight the
differences in model performance across the different seagrass traits and
individual sites. Estimates by the leaf density model best match with
observations (as indicated by the 0.57 correlation and the lowest Root
Mean Square Error of 0.65; Fig 4), whereas variability in leaf biomass
and root biomass are overall poorly estimated. While most models (e.g.,
leaf density; Fig 5) somehow capture the seasonal signal, monthly pre-
dictions for root biomass fail to track observed seasonal changes. This
likely reflects that the environmental covariates fail to capture below-
ground drivers of seasonal changes. We do not further discuss root
biomass predictions given low model performance and the fact that this
trait is not required to parameterise obstruction in the hydrodynamics
model.
In addition, whereas most models overall predict the seasonal range

experience by seagrass traits across the different sites, high observed
values at certain sites (e.g. GARR and FONT; Figs 4-5) are largely
underestimated for most variables (leaf biomass, leaf density, leaf
length, leaf width, shoot height). Fig. 5 illustrates these discrepancies in
site-specific estimates for two patch-level seagrass traits (Leaf density,
leaf biomass) across three contrasted locations (ROCH, FONT and
GARR). For instance, ROCH, FONT and GARR are located, respectively,
on the foreshore at the eastern end and at the southern end of the bay
and on the edge of a channel in the middle of the bay (Fig 1).
Fig. 5 presents observed (dotted black line) and predicted (colour-

coded solid lines) seasonal estimates for leaf density (top) and leaf
biomass (bottom). A leave-one-out cross-validation was performed by
fitting models on data collected at all sites but the one predicted. While
Fig. 5 only displays one-year simulations, stability of model predictions
was checked by running two-year simulations (under similar 2016
environmental conditions). For all sites, BRT model predictions for leaf
density overall successfully reproduce the observed seasonal variability.
Observed monthly leaf biomasses fall within the local model 95 %

prediction interval at seven of the nine sites. For instance, at ROCH
(bottom left panel in Fig 5), while predicted leaf biomass slightly un-
derestimate winter observations, model predictions are in good agree-
ment with spring-summer-autumn observations. Conversely, peak
summer values observed at the GARR and FONT sites are largely
underestimated. Similar results are obtained with the models for leaf
density, shoot height, leaf length and leaf width (see Fig. 4).
Estimates of covariates importance to individual model predictions

provide some insight on the key environmental factors driving seasonal
changes in modelled seagrass traits (Fig 6). Specifically, variable
importance estimates identify (i) standing values of modelled seagrass
traits in the previous month, (ii) light availability (PAR) and mean site
temperature as overall the most influential covariates contributing to
the six independent BRT model predictions of daily rate of change in the
considered features (Fig 6). The relative importance of temperature and
light however varies across models: mean temperature largely contrib-
utes (>60 %) to model predictions for seagrass trait growth rates (i.e.
leaf length and shoot height), while light availability is a relatively more
influential covariate to predict seasonal changes in patch-level seagrass
features (i.e. overall leaf biomass or leaf density) as well as leaf width.
Note that model-derived covariates related to local hydrodynamics have
a lesser influence to models predictions than light or temperature vari-
ables estimated from high frequency in situ monitoring, in particular:
exposure to wave (REIq75) overall contributes by ~25 % to predictions
of changes in leaf biomass (but only by ~6 % to other models). Potential
for leaf tearing due to bottom shear stress (F075) only influences pre-
dictions by ~6 % for both models associated with leaf density and leaf
width (that both share similar modelled relationships with most cova-
riates). Immersion time only contributes to predicted changes in leaf
biomass (by ~6%). Note that low influence of all covariates to predicted
changes suggests that available covariates are irrelevant to capture
variability in root biomass.
The Partial Dependence Plots (PDP; Fig 7) provide some further in-

sights on modelled relationships between predicted changes in seagrass
traits and monthly environmental conditions. For clarity, Fig. 7 exem-
plifies the nature of these relationships for only three models associated
with changes in two patch-level (i.e. total leaf density on the top row and

Fig. 5. Observed and predicted monthly estimates over 2016 for leaf density (top row, in number of leaves/m2) and leaf biomass (bottom row, in gDW/ m2) across
three contrasted sites in Arcachon Bay. Sites code names are indicated in the top left of each subplot (see Fig. 1 for site locations). The labels in the X axis correspond
to the date of the observed data (approximatively one observation per month at the middle of the month except for July, August and September where eJul stands for
early July, eAug, for early August, lAug for late August and lSep for late September).
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total leaf biomass on the bottom row) and one plant-level (i.e. shoot
height) seagrass traits. As observed across all six trait-specific models,
rates of change are negatively related to the relevant traits (panels in the
first column) in the previous month (here leaf density at the top, shoot
height in the middle and leaf biomass at the bottom), which may capture
mixed processes related to density-dependence and seasonal variability
(i.e. maximum scope for growth at low density versus sharpest decline
when seagrass reaches high leaf densities or individual sizes). Predicted
increase in total leaf density (top row in Fig 7) mostly depends on
availability of light, which partial effect becomes positive for PAR > 0.8
mol of photons/day/m2 and optimal for PAR >~ 1.6 mol of photons/
day/m2) and low to moderate temperatures (below 17 ◦C); high values
of shear stress (log(F075) > 1) are detrimental to increase in leaf density.
Conversely, mean temperature negatively influences change in mean
shoot height below 12 ◦C, has a neutral influence on predictions at in-
termediate temperatures and becomes optimal when temperatures
exceed 18 ◦C. Growth in shoot height is most facilitated by low shear
stress conditions (log(F075) < − 5). Predicted change in the other patch-
level seagrass trait (i.e. total leaf biomass; bottom row) mostly depends
on light availability, which positive effect follows similar thresholds as
for leaf density; but the relative influence of other covariates on leaf
biomass remains rather challenging to interpret.

3.2. Spatial model: forcing vs. coupling

The spatial model described in part 2.3, provides spatially-explicit
monthly estimates for the six biological variables that characterize
Z. noltii meadows, as illustrated in Fig 8. Both under forced or coupled
simulations, estimates for all biological variables display similar spatial
discrepancies that qualitatively match with known spatial dynamics in

Arcachon Bay over a seasonal cycle. Seasonality is also well predicted by
both frameworks as shown in Fig. 8, where leaf densities overall reach
their peak values in August (2nd column). The greatest differences in
spatial model predictions between coupled and forced model simula-
tions (Fig 8, middle row) occur in the spring (1st column) and summer
(2nd row) as the coupled simulation produces greater estimates of leaf
densities (by ~5000 leaves per m2) relative to the forced simulation on
the inshore parts of the mudflats towards the upper end of the tidal
channels. Besides, the coupling mode better captures autumn decline in
seagrass leaf density in the back of the bay. Spatial differences in the
computed potential for leaf tearing and seagrass scouring due to shear
stress, are anticorrelated with differences in leaf density estimates be-
tween the coupling and forcing modes (Fig 8, bottom row), which
overall reflects that lower leaf density estimates corresponds to higher
current energy areas. Indeed, the coupled mode more finely estimates
the local and bay-wide effects of seagrass distribution and status on
hydrodynamics, which directly modulates seagrass growth in return. In
mudflat areas neighbouring the major tidal channels, seagrass growth is
lowered in the coupling mode relative to the forcing mode as exposed to
higher potential for leaf tearing and seagrass scouring due to shear
stress.
When extracting predicted leaf density and leaf biomass data at the

nine sampling sites, coupled and forced simulations produce similar
estimates of monthly changes in seagrass traits (close RMSE values, see
table 1). However, as observed at the ROCH site (Fig. 5), occasional and
marginal differences in monthly estimates suggest that coupled simu-
lations may better capture local potential for growth (in the springtime)
or decay (in the autumn). Predictions with both forced or coupled spatial
models overall reproduce a smoother seasonal cycle than local model
estimates at individual sites (Table 1) which overall results in larger

Fig. 6. Relative influence of the six covariates (as x-axis) to the six independent Boosted Regression Tree model predictions of daily rate of change in individual
seagrass traits (as y-axis), i.e. Leaf density, Leaf biomass, Leaf length, Leaf width, Shoot height and Root biomass. Covariates include the modelled seagrass trait at the
previous time step, light availability (i.e. PAR for Photosynthetically Active Radiation), mean temperature (that captures both air and sea conditions as recorded
locally), potential for leaf tearing or seagrass scouring due to shear stress (F075), exposure to waves (REIq75), as well as mean immersion time.
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RMSE (as highlighted in green in Table 1), except at the ILE or the GAIL
sites where model predictions best match with observations using the
coupled, or the forced spatial models, respectively. Note that light
availability (i.e. PAR), which is the most influential environmental
feature to predict leaf density (Fig 6), is assumed to be homogenous
across the whole bay in the spatial model due to lack of spatially-explicit
data, which may explain the relative homogeneity in leaf density
monthly estimates across the nine monitoring sites.
Leaf biomass estimates are virtually identical in the forced and

coupled simulations at the FONT and GARR sites. Note that, relative to
the local model, both spatial models produce twice higher estimates for
the high spring and summer biomass values, which somehow matches
with observations. Such differences in leaf biomass estimates from
spatial versus local models are likely mostly driven by discrepancies in
mean temperature and immersion time covariates, which somehow in-
fluence leaf biomass prediction (see Fig. 7). Monthly values for these
covariates are indeed estimated by the MARS3D coastal ocean model in
the spatial-explicit simulations, as opposed to being sourced from in situ
observations in non-spatial local model simulations.

4. Discussion

Several studies have documented and quantified the major drivers of
seagrass decline at a global scale (Waycott et al., 2009; De Los Santos
et al., 2019) as well as heterogenous trends in seagrass meadow status at
a regional level (Turschwell et al., 2021; McMahon et al., 2022). How-
ever, site- and species-specific quantification of the local processes
driving seagrass fine-scale dynamics are rather limited, except for
correlative species distribution modelling studies (e.g. Adams et al.
2016a; Erftemeijer et al., 2023) that largely focus on projecting conse-
quences of climate-driven or human-mediated changes. Understanding
the role of fine-scale processes (acting at scales of 1–100 m) and pre-
dicting spatial and temporal changes in seagrass meadow at a local scale

(from 10m-10 km) is however pivotal to inform effective spatial con-
servation or restoration management strategies in a context of global
changes. In this paper, in order to better understand and predict the
drivers of space-time variability in seagrass features across Arcachon
Bay in southwestern France, we successfully developed a coupled
seagrass-hydrodynamics model in a stepwise manner: first, local models
of seasonal changes in six seagrass traits were fitted as a function of local
environmental conditions across nine sites distributed over the whole of
the bay; second, these local models coupled with a coastal ocean model
allowed for the spatially-explicit modelling of seagrass-hydrodynamics
feedback across the whole bay.
LOCAL MODELLING OF SIX SEAGRASS TRAITS SEASONAL DY-

NAMICS. Each of these modelling steps provides some complementary
insights on drivers of seasonal and spatial variability in seagrass traits
across Arcachon Bay. In the non-spatial site-specific models, tempera-
ture and light alongside with local site trajectories (i.e. the previous state
of each trait) are the most influential covariates to Boosted Regression
Tree (BRT) predictions of seasonal changes in seagrass traits, which is
consistent with well-documented aspects of seagrass ecology. First, as a
photosynthetic macrophyte, Z. noltii development largely depends on
light availability (Cognat et al., 2018) and underwater light attenuation
(Kombiadou et al., 2014; Plus et al., 2001, 2005). Moreover, tempera-
ture affects several physiological processes in seagrasses in general
(Collier et al. 2017), and in Z. noltii in particular, including photosyn-
thetic performance (Plus et al., 2005; Adams et al., 2016b) as well as
respiration rates (Plus et al., 2001). While modelled trait-environment
relationships can account for important non-linear effects, several of
the inferred relationships appear rather as spurious correlation: the re-
lationships between changes in leaf density (or biomass) and Photo-
synthetic Available Radiation (PAR; see Fig 8) capture meaningful
ecological thresholds related to photosynthetic activity: from no devel-
opment under low light conditions (PAR< 0.8 mol of photons/day/m2),
to a gradual increase in the potential for photosynthetic activity under

Fig. 7. Partial influence along the x-axes of (first column) modelled seagrass trait at previous time step (log-transformed), (2nd column) light availability (i.e. PAR in
mol photons.m− 2.day− 1), (3rd column) mean monthly temperature (in ◦C), (4th column) potential for leaf tearing and seagrass scouring due to shear stress
(expressed as log-transformed F075) or (5th column) due to waves (expressed as REIq75) on predicted daily changes in seagrass trait along the y-axis (i.e. leaf density
on the top row; log-transformed shoot height on the middle row; and log-transformed leaf biomass on the bottom row).

H. Muller et al.



Ecological Modelling 495 (2024) 110802

10

intermediate light level; and up to an optimum under high light condi-
tions. The relevance of these two light thresholds has been documented
in experiments as well as based on expert elicitation (Hatum et al.,
2022). However, inferred relationships related to exposure to waves, or
to tidal-driven shear stress are rather weak and difficult to meaningfully
interpret. Expectedly, monthly estimates of individual traits signifi-
cantly contribute to predictions of seasonal changes, as these somehow
capture the potential for increase in the winter months (when popula-
tion or individual plant metrics are low), and conversely for decline in
the late summer / autumn months (when traits reach their highest
annual values).
Thus, unexpectedly and contrary to the initial assumptions that hy-

drodynamics constraints significantly dampen the potential for seagrass
development in coastal ecosystems (Schanz and Asmus, 2003; Uhrin and
Turner, 2018; Kalra et al., 2020; Risandi et al., 2023), and in Arcachon
Bay in particular (Cognat 2019; Le Pevedic 2024), we only estimated a
marginal influence of shear stress (i.e. F075 index) or exposure to waves
(i.e. REIq75 index) on site-specific model predictions. Several reasons

can explain this low contribution of hydrodynamics to predicted
changes in seagrass traits. Scale mismatch between fine-scale changes in
seagrass traits (observed within 0.5m2 quadrats), and coarse estimates of
exposure to shear stress (at a 235 m horizontal model resolution), which
biases estimated relationships with covariates (Mourguiart et al., 2024).
Exposure to shear stress is also synthetised as a single expert-informed
index (F075), which simplifies time-integrated seagrass exposure to
bottom shear stress over a month based on a set tolerance threshold
(Cognat, 2019; Le Pelvedic, 2024). In this respect, further experimental
work would be key to accurately assess seagrass tolerance thresholds to
shear stress, or to wave exposure, and refine these thresholds. Impor-
tantly, model fitting was conducted on a single annual monitoring in
2016, which implies that, if local models overall reproduce mean 2016
seasonal changes in seagrass traits, they fail to capture interannual
variability and larger changes in local hydrodynamics conditions (rather
than within) in response to large bay-wide modification in seagrass
distribution and status (for instance between 1990s and 2000s condi-
tions, Fig. 1). Finally, rather than direct processes related to plant

Fig. 8. Comparison between spatially-explicit model predictions of monthly leaf densities in April (1st column), August (2nd column) and October 2016 (3rd
column) under a one-way forcing of seagrass dynamics versus a two-way coupling that captures seagrass-hydrodynamics feedback. The rows correspond respectively
to monthly leaf density estimates from a two-way coupled seagrass-hydrodynamics simulation (top row), to differences in leaf densities between coupled versus
forced simulations (middle row), and to differences in potential for leaf tearing and seagrass scouring due to shear stress (bottom row). Positive values correspond to
greater values in the two-way coupling than in the one-way forcing.

H. Muller et al.



Ecological Modelling 495 (2024) 110802

11

physical stress due to exposure to waves or tidal-driven shear stress,
major effects of hydrodynamics on seagrass might mostly act indirectly
via sediment resuspension (i.e. turbidity), which then induce some
light-mediated effects on seagrass traits (as emphasised by Musavi et al.
(2007)). Here, the model does not explicitly resolve spatial variability in
light availability, which does appear as a priority for future model
development given the high influence of light availability to model
predictions for several seagrass traits.
PERFORMANCE OF THE MODELS. Patch-level metrics (i.e. total leaf

biomass, leaf density and root biomass), which are most commonly re-
ported and monitored, are not the most accurately predicted. For
instance, root biomass is poorly predicted by the BRT. Conversely, plant-
level traits (i.e. leaf length or width) which are necessary to parame-
terize the seagrass obstruction in the hydrodynamics model, are rather
well-predicted with data-driven local models fed with light, tempera-
ture, waves, currents, immersion time and their past state in Arcachon
bay. With regards to root biomass, which is poorly predicted but irrel-
evant to parameterise obstruction on the hydrodynamics, selecting a
new set of predictors dedicated to below-ground processes (e.g. above-
ground biomass, sediment types or deposition rates; Collier et al.
(2021)) could improve model predictions.
While seasonal changes in most seagrass traits, in particular leaf

density, leaf width, leaf length and shoot height, are well-captured by
BRTs, spatial discrepancies across the bay, in particular at sites of higher
potential for seagrass development, are underestimated. Thus, both
collection of additional data across more sites as well as better charac-
terising of local sites specificities will be key to consolidate models
ability to mimic spatial variability in seagrass seasonal development. For
instance, underestimating of maximum summer densities at certain sites
could be due to not accounting for the presence of a thin water layer at
that can help maintain high photosynthesis rates low tide (Cognat et al.,
2018). More generally, downscaling model predictions to estimate
changes in hydrodynamics conditions at a scale that better matches
sampling resolution would also enhance models ability to capture
ecologically meaningful relationships between seagrass traits and hy-
drodynamics conditions (Mourguiart et al.., 2024).
SPATIALLY-EXPLICIT MODELLING OF SEAGRASS-

HYDRODYNAMICS FEEDBACK. While across the nine monitoring sites
the relative influence of hydrodynamics is marginal, spatially-explicit
modelling of seagrass-hydrodynamics feedback at the bay-wide scale
produces meaningful spatial differences in seagrass seasonal dynamics.
Modelling of biophysical interactions with submerged aquatic vegeta-
tion usually modifies seabed roughness and shear stress based only on
plant biomass density estimates (Milbradt and Schonert, 2008; Kalra

et al., 2020), whereas the proposed coupled framework finely captures
the tridimensional obstruction and buffering of waves and currents by
seagrass meadows (Ganthy et al. 2024; Le Pelvedic, 2024) based on
multiple seagrass traits (i.e. leaf density, shoot height, leaf width and
length). In the coupled relative to the forced simulations, higher shear
stress on the mudflats most exposed to tidal-driven currents reduces the
potential for seagrass density to build up. Conversely, when seagrass
meadows are denser in the summertime, lower shear stress allows for the
development of denser seagrass meadows in the upper parts of the
mudflats near the upper ends of the tidal channels. However, the dif-
ferences between coupling and forcing might be more contrasted with
an interannual modelling which takes into account strong seagrass
abundance changes induced by an extreme event.
While the coupled model finely captures some of the major processes

involved in feedback loops between the coastal environment and sea-
grass meadows (in particular buffering of hydrodynamics by seagrass),
the current framework, which can be updated as more data becomes
available, offers several avenues for improvement. Indeed, with this
modelling approach, we assumed plant physical stress due to exposure
to waves or high tidal-driven bottom currents as a major effect of hy-
drodynamics on seagrass, whereas it is likely the indirect effect of hy-
drodynamics via sediment resuspension and light availability plays a
greater role. Thus, given the relative importance of light (i.e. PAR) to
predict changes in key seagrass traits, explicitly resolving spatial het-
erogeneity in light conditions across Arcachon bay appears as a definite
priority. Indeed, a modification of the seagrass cover can impact light
availability for seagrass which can impact the seagrass cover back.
Developing a coupling between a hydro-sediment model that can
explicitly simulate sediment dynamics, estimate turbidity and light
received by seagrasses and the seagrass growth model would enable to
model more properly the feedback processes and therefore help to
provide long-term spatial predictions beyond the seasonal scale.
In this study, only local predictions were compared to observation

but longer-term simulations issued from the spatial model could be
assessed thanks to comparison with the seagrass percentage covers
plotted on Fig. 1. The lateral growth also called the clonal growth could
be included as an additional layer in the modelling framework: after the
prediction of the seagrass growth in each cell, lateral growth rules could
allow the colonization of neighbouring cells that do not contain seagrass
meadows at the first timestep and also extinction of seagrass. The spatial
rules could be based on thresholds of biological values at each cell to
initiate colonization or extinction of a cell. Alternatively, to overcome
data limitation, existing models using alternative framework that can
rely on expert knowledge (e.g. Dynamic Bayesian Network; Wu et al.,

Table 1
Normalized RMSE used to compare the predictions from the different models with the observations. Lowest RMSE scores for individual sites are highlighted in green to
reflect which model configurations best matches with observations.
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2017 a and b; Hatum et al., 2022) could be adapted to better capture
hydrodynamics-related effects on seagrass. Such probabilistic modelling
framework is also well-suited to capture ecological trajectories and
associated uncertainties.

5. Conclusion

Thanks to Boosted Regression Trees, we successfully modelled the
seasonal dynamics of multiple patch-level and plant-level seagrass traits,
which allows for a detailed tridimensional representation of seagrass
buffering effects on hydrodynamics (as opposed to most studies only
considering shoot or leaf density/biomass). Nonetheless, even if hy-
drodynamics is known to directly determine seagrass dynamics via
mechanical destruction, its influence is only secondary in local seagrass
traits models. Thus, future work should consolidate the representation of
the seagrass-hydrodynamics feedback by explicitly resolving sediment
dynamics and flow-on effects on sediment stability, as well as turbidity
and hence local light availability (one of the most important drivers
identified in the local seagrass trait models) for seagrass photosynthesis.
Capturing seagrass beds influence on sediment composition and its
stabilization would also improve the description of the biophysical in-
teractions in the model. Finally, the coupled model between a local
model of a habitat-forming species and a coastal ocean model provides
an original framework to understand and predict space-time variability,
which could be transposed to other ecosystem or habitat-forming species
(e.g. coral reefs, kelp beds).
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méditerranéens: Lagune de Thau et étang du Vaccarès. Colloque "Le milieu
aquatique: Interactions Des Facteurs Environnementaux Et Impacts Sur Les
Organismes Vivants. Brest, 30 septembre –1 octobre 1999. http://archimer.ifremer.
fr/doc/00152/26287/.

Auby I., Bost C.A., Budzinski H., Dalloyau S., Desternes A., Belles A., Trut G., Plus M.,
Pere C., Couzi L., Feigne C., Steinmetz J., 2011. Régression des herbiers de zostères
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télédétection spatiale. Rapport final.

Lazure, P., Dumas, F., 2008. An external–internal mode coupling for a 3D
hydrodynamical model for applications at regional scale (MARS). Adv. Water.
Resour. 31, 233–250. https://doi.org/10.1016/j.advwatres.2007.06.010.

Le Pevedic, A., 2024. Thèse de doctorat. Bordeaux.
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