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Abstract

Macroclimatic data are widely used to estimate the realized environmental

niche of species and predict the current or the future spatial distribution of

species. Because the realized niche is a subset of the fundamental niche—
constrained by biotic interactions and dispersal limitations—proxies of the

fundamental niche (e.g., thermal limits obtained from physiological experi-

ments) are sometimes combined with macroclimatic data under the assump-

tion that areas predicted as unsuitable from a realized niche perspective may

belong to the species’ fundamental niche. However, it is unclear whether this

assumption is valid and whether thermal limits can be combined with

macroclimatic data. Here, we explored these questions using available physio-

logical thermal limits measured for 151 ectotherms. Specifically, we explored

whether physiological thermal limits are larger than observed (realized) ther-

mal limits measured using macroclimatic data, and what would be the effect

of considering the physiological niche in addition to the realized niche for cur-

rent and future predictions. Our results confirm previously raised concerns, as

physiological limits can delimit a narrower range of thermal tolerance than

the realized niche, particularly at the cold end of the thermal gradient where

adaptive and/or facilitative mechanisms could allow species to survive in tem-

peratures below physiological limits. These findings show that combining data

on physiological thermal limits with macroclimatic data is dubious and that

spatial predictions should be interpreted with caution because data on physio-

logical thermal limits do not fit well with macroclimatic data that do not cap-

ture the conditions that organisms experience in the wild. While estimated

physiological thermal limits are likely of value to complement species distribu-

tion studies, they are likely more useful in biophysical models that account for

additional processes including the animal’s behavior.
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INTRODUCTION

The environmental niche (Austin, 1985; Grinnell, 1917;
Pulliam, 2000; Sober�on, 2007) is a key ecological concept
to understanding the distribution of species and their
response along environmental gradients, which has reg-
ained prominence in the context of climate change
(Guisan & Thuiller, 2005). Hutchinson (1957), in his con-
ceptual definition of the niche, distinguished (1) the
fundamental niche which defines the set of abiotic condi-
tions allowing individuals to survive and reproduce
(i.e., where the population growth rate is positive), and
(2) the realized (or ecological) niche which is the funda-
mental niche constrained by biotic interactions and dis-
persal limitations (Chase & Leibold, 2003; Pulliam, 2000).
The realized niche is therefore expected to be a subset of
the fundamental niche (Araujo & Guisan, 2006; Soberon
& Arroyo-Peña, 2017).

Overall, two strategies are commonly employed to
predict species distributions, one mechanistic based on
the fundamental niche and the other correlative based
on the realized niche. Mechanistic niche models based
on the principles of biophysical ecology use physiological
data to capture the balances of heat, water, and other
aspects of energy and mass exchange between organisms
and their microclimate to capture the processes behind
the species’ response to the environment (Briscoe et al.,
2023; Kearney & Porter, 2004). These mechanistic biophys-
ical models require data on the relationship between the
species’ environmental conditions and its performance
under the assumption that a particular set of processes
are influencing the phenomena of interest (e.g., the spa-
tial distribution of species and its response along environ-
mental gradients; Burrows et al., 2011). Because these
mechanistic niche models are based on experimental
data, explicitly account for physiological mechanisms,
and do not account for biotic interactions, it is usually
considered that they model the fundamental niche
(Briscoe et al., 2023). The second approach is phenomeno-
logical in nature and uses empirical species distribution
data together with macroclimatic data to find relationships
between the phenomena of interest and predictor variables
(Elith & Leathwick, 2009; Guisan & Zimmermann, 2000).
These correlative niche models are widely used to predict
distributional responses to changing climate (Guisan &
Thuiller, 2005). It is assumed that correlative models esti-
mate the realized niche since they rely on the current

distribution of species which is constrained by biotic inter-
actions and dispersal limitations (Guisan et al., 2017).
Both approaches have advantages and drawbacks. On the
one hand, biophysical models are supposedly more accu-
rate in predicting the response of species along environ-
mental gradients since they explicitly integrate the
physiological response of species to changing conditions
(Kearney & Porter, 2004; Urban et al., 2016). However, the
data necessary to calibrate such models are difficult and
costly to acquire, precluding their use to a large number of
species (Briscoe et al., 2023). On the other hand, while cor-
relative models are easy to use and can be applied to
numerous species, they mostly rely on macroclimatic data
although the effect of microclimatic conditions is increas-
ingly recognized as important (Haesen, Lenoir, et al., 2023),
and does not account for the physiological processes behind
species distribution changes (Guisan et al., 2017).

A main goal of both approaches is to provide predic-
tive maps of the effect of various anthropogenic pressures
(e.g., climate change) on species distribution (Briscoe
et al., 2023) at a macroecological scale under the assump-
tion that a drastic reduction in the species range implies
a higher risk of extinction (Guisan & Thuiller, 2005;
Kearney & Porter, 2004). Due to their spatial underpin-
nings, both approaches are frequently referred to as spe-
cies distribution models (SDMs) and some studies have
shown that they can yield similar predictions regarding,
for example, the effect of climate change on species
(e.g., Kearney et al., 2010). However, other studies have
shown the opposite. Specifically, because mechanistic
SDMs neglect the effect of biotic interactions and
dispersal limitations, they tend to overestimate species
ranges and therefore underestimate species extinction risks
(Kearney & Porter, 2009). In contrast, correlative SDMs
usually face extrapolation and transferability issues (Yates
et al., 2018) because biotic interactions and dispersal limi-
tations do not allow covering the full response of species
along environmental gradients (Broennimann et al., 2021;
Veloz et al., 2012). A related consequence is that correla-
tive SDMs cannot predict the distribution of species if
biotic interactions change (Jiménez et al., 2019; Wisz
et al., 2013) and therefore also assume that biotic interac-
tions are stable over time (Pearman et al., 2008).
However, under climate change, mounting empirical evi-
dence indicates that species are tracking suitable environ-
mental conditions at a different pace (Burrows
et al., 2011; Lenoir et al., 2020), implying potential
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changes in biotic interactions (Blois et al., 2013;
Montoya & Raffaelli, 2010). These changes may lead spe-
cies to occupy sites with abiotic conditions previously not
included within their realized niche but that belong to
their fundamental niche, for example, if there is a release
of the competition pressure that allows species to colonize
and thrive in new abiotic conditions (Catullo et al., 2015).
Such examples of niche shifts have been documented for a
number of invasive species (Broennimann et al., 2007;
Guisan et al., 2014; Petitpierre et al., 2012). Hence, the use
of the fundamental niche in correlative SDMs is increas-
ingly recognized as potentially useful for the interpretation
of distribution patterns (Catullo et al., 2015; Gong
et al., 2023; Gouveia et al., 2014; Kearney & Porter, 2009;
Martínez et al., 2015; Pearson & Dawson, 2003), and some
studies have shown that including physiological data
(e.g., estimated thermal limits, considered in this context
as a proxy for the fundamental niche) as predictors in cor-
relative SDMs can reduce the estimated impact climate
change can have on the distribution of species (Gamliel
et al., 2020). However, previous studies have raised con-
cern regarding this approach because it is unclear whether
physiological data accurately reflect the limits of the fun-
damental niche. Indeed, physiological limits are related to
particular aspects of the metabolism (e.g., for reptiles, ther-
mal requirements for egg development, thermal prefer-
ences and tolerances, metabolic and evaporative water loss
rates; Kearney & Porter, 2004), can vary throughout
the year (Bozinovic et al., 2011), the life stages (Pottier
et al., 2022), between individuals (Kearney, 2006), and are
measured under controlled conditions that do not account
for the covariation with other important factors (e.g.,
humidity; Briscoe et al., 2023). Despite these limitations,
physiological data are sometimes included as predictors
(or priors when models are fitted within the Bayesain
framework; Gamliel et al., 2020) in correlative SDMs
(Martínez et al., 2015; Rodríguez et al., 2019) or used to
set up parameter values in some mechanistic models
(e.g., CLIMEX models; Sutherst & Maywald, 1985) fitted
with macroclimatic data. Recently, physiological data were
also used to asses to which extent species overfill or
underfill their distribution limit by comparing physiological
limits to macroclimatic data (Kirk & Rahel, 2022).

Beyond these practical aspects, recent studies showed
that the realized niche estimated by correlative SDMs can
sometimes look larger than the putative fundamental
niche measured experimentally (Soberon & Arroyo-Peña,
2017). This contrasts with theory (Hutchinson, 1957) and
may happen if (1) there are suitable, but not quantifiable,
microhabitats nested within macrohabitats that are over-
all perceived as nonviable by the available data (e.g., too
coarse environmental data; Kennedy, 1997), (2) there
are sink populations outside the fundamental niche

(Pulliam, 2000), or (3) because of phenotypic plasticity or
local adaptation (Mottola et al., 2022). For instance, a
recent study showed that the physiological range of toler-
ance to aridity was narrower than the range of aridity
conditions experienced by eight water beetle species over
their range suggesting that other nonphysiological factors
(i.e., not related to aridity tolerance) can have an impor-
tant influence in shaping species distributions (Pallarés
et al., 2022). Overall, while the realized niche can seem
larger than the fundamental niche in real-case studies,
the conditions associated with this pattern are likely not
tailored to the intrinsic characteristic of the study system
in itself but rather to data features. From a theoretical
perspective, if one had access to appropriate biological
(e.g., only fit populations) and environmental data
(e.g., appropriate spatiotemporal resolution given the
study species), making it possible to accurately capture
the microclimatic conditions experienced by a given spe-
cies over its range and across its life cycle, then the
realized niche should always be narrower than the
fundamental niche (Araujo & Guisan, 2006; Pulliam,
2000; Sober�on, 2007). When this is not the case, com-
bining physiological data with macroclimatic data to
account for the fact that the environment can be suit-
able beyond realized niche limits no longer applies and
can lead to inappropriate predictions, notably by
increasing extinction risk predictions.

The GlobTherm database (Bennett et al., 2018) con-
tains information about the physiological thermal limits
(PTLs) of hundreds of species of plants, fungi, and ani-
mals collected from different studies. Given that tempera-
ture is at the basis of most ecological processes (Brown
et al., 2004) and is one of the main drivers of the distribu-
tion of animal and plant species (Rom�an-Palacios &
Wiens, 2020), this database represents a great opportunity
for exploring whether and to which extent physiological
limits estimated from experiments differ from realized
limits estimated from observed data and whether the lat-
ter can be used as a proxy for fundamental niche limits
in macroecological studies. In this study, we used glo-
bal geographic databases (GBIF [Global Biodiversity
Information Facility] and IUCN [International Union
for Conservation of Nature]) to estimate the realized
niche thermal limits of 151 ectotherms, while physiolog-
ical data were considered as putative estimates of the fun-
damental niche thermal limits of these species. By
comparing realized and putative fundamental niche limits,
we first tested whether the former is a subset of the latter,
considering separately the limits taking place at the cold
and the warm ends of the thermal gradient (Figure 1). We
then evaluated how and to which extent these differences
in thermal limits translated in the geographical space
(i.e., influenced the species distribution), and what would
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be the effect of considering physiological limits instead of
(or in addition to) realized niche limits for current and
future predictions. Under the assumption that the realized
niche is a subset of the fundamental niche, we predict that
some areas predicted as unsuitable in the future
according to the realized niche would be predicted as
suitable according to physiological limits. If true, this
would theoretically open up the possibility to define
geographic areas potentially suitable for species under
specific physiological assumptions, providing addi-
tional interpretation to traditional SDM outputs
(Kirk & Rahel, 2022; Rodríguez et al., 2019). However,
given the spatial (1�) and the temporal (average cli-
matic conditions over a period of 30 years) resolution
of the climatic data used in this study (and in studies
of the same type), departures from theoretical expecta-
tions (i.e., if the realized niche is larger than the fun-
damental niche) can be observed and call for caution.
In this case, it is unclear how spatial predictions
obtained by combining physiological data with
macroclimatic data should be interpreted spatial pre-
dictions obtained physiological data.

MATERIALS AND METHODS

Datasets

Physiological data

Physiological data were retrieved from the GlobTherm
database (Bennett et al., 2018). This dataset contains
information on PTLs for six taxonomic groups
(Actinopterygii, Amphibia, Gastropoda, Malacostraca,
Mammalia, Reptilia), collated from 567 studies. Several
metrics were used to determine PTLs depending on the
taxonomic group and study. The most common metric
was the “Critical Threshold” which is the temperature at
which individuals can no longer perform basic functions,
such as feeding or moving. For some species, “Lethal
Temperatures” (LT50, when 50% of the individuals died;
LT100, when 100% of the individuals died) were reported.
For mammals, the thermal limit was measured as the
“Thermal Neutral Zone” which is the limit above (for the
warm end) and below (for the cold end) which an individ-
ual must actively regulate its body temperature to main-
tain a fixed internal temperature. As noticed in previous
studies, the thermoneutral zone does not reflect tolerance
limits but rather describes the boundaries between which
homeothermic endotherms, living under basal-like condi-
tions, would have to react (e.g., by increasing food and
water intake), to maintain thermal homeostasis (Mitchell
et al., 2018). Hence, mammals were not considered in this

study. We also removed freshwater species because no
appropriate environmental layers (i.e., describing the
climatic conditions within lakes or rivers) exist to accurately
characterize the realized thermal range for these spe-
cies. For the remaining species, we extracted physiolog-
ical (i.e., putatively estimating the fundamental niche)
thermal limits (hereafter PTL) from the GlobTherm
database (see dashed red lines in Figure 1). Species for
which only information on the warm (PTLw) or cold
(PTLc) physiological limit was available were retained.

Observed spatial distribution data

Distribution data for the species present in the
GlobTherm database were recovered from two databases
widely used in the literature: IUCN (https://www.
iucnredlist.org/en) and GBIF (https://www.gbif.org/en/).
IUCN data are expert-based and come in the form of
coarse polygons representing the global geographic distri-
bution of a given species (Herkt et al., 2017; Hurlbert &
Jetz, 2007). GBIF data, on the other hand, are citizen
science based and come in the form of point coordinates
with a high resolution, but whose spatial coverage is
limited (Chandler et al., 2017). For each species, GBIF
data were cleaned by removing non-georeferenced occur-
rences, missing observations, duplicated coordinates, and
coordinates that had both a latitude and a longitude
equal to zero.

Temperature data at macroecological scale

To recover the observed thermal limits at the warm and
cold ends of the gradient for each species (i.e., realized
niche thermal limits), we used two different raster layers
representing the “maximum temperature of the warmest
month” (named BIO5 and Max for terrestrial and marine
realms, respectively) and the “minimum temperature of
the coldest month” (named BIO6 and Min for terrestrial
and marine realms, respectively). For terrestrial and
freshwater species, we downloaded “Worldclim” raster layers
at a 2.50 resolution (WorldClim; https://worldclim.org/)
whereas for marine species we downloaded surface raster
layers at a 50 resolution from “Bio-ORACLE” (Bio-ORACLE:
Marine data layers for ecological modeling; https://www.
bio-oracle.org/).

To study species range changes from realized or PTLs
in the future, we used the same temperature layers as for
the current period (i.e., BIO5 and BIO6 for terrestrial spe-
cies; Max and Min for marine species) considering two
Representative Concentration Pathways (RCP) by 2100:
RCP 2.6 and RCP 8.5. RCP 2.6 predicts the weakest
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changes (i.e., mitigation scenario), whereas RCP 8.5 is
the scenario that predicts the most significant changes
(i.e., business as usual scenario; van Vuuren et al., 2011).
For terrestrial environments, we used climatic layers
for the years 2081–2100 at 2.50 resolution derived from
the Climate System Model of Beijing Climate Center
(BCC-CSM2-MR retrieved from WorldClim). For
marine environments, we used layers at 50 resolution
recovered from Bio-ORACLE for the years 2090–2100.

Statistical analyses

Overall, data from 151 species were used in this study.
Yet, not all species had information on PTLs at both ends
of the thermal gradient. Hence, 135 species were consid-
ered to compare PTLs and realized thermal limits (RTL) at
the warm end of the thermal gradient, whereas 92 species
were considered regarding the cold end. When considering
both ends, 76 species were considered. All analyses were
performed in R version 4.0.4 (R Core Team, 2019) using the
raster package version 3.5 (Hijmans, 2021).

Determining realized niche thermal limits

To determine RTLs from IUCN polygons, we extracted
the temperature values of pixels contained within the
polygon of each species—thus assuming that the species
is present everywhere within the polygon—for both the
raster of minimum (to determine the limit at the cold
end of the gradient) and maximum (to determine the
limit at the warm end of the gradient) temperatures
(see Figure 1). The highest and lowest values were then
retrieved to determine the RTL at the warm (RTLw) and
the cold end (RTLc) of the thermal gradient, respectively
(dashed blue lines in Figure 1). Due to their low precision
(Akçakaya et al., 2006), IUCN polygons were rasterized
at a low spatial resolution (1�) for both terrestrial and
marine environments (Hurlbert & Jetz, 2007). For GBIF
data, occurrences were projected on higher resolution
temperature rasters (2.50 for terrestrial species, 50 for
marine species) and maximum and minimum tempera-
ture values extracted.

We tested differences between PTL and RTL
(for IUCN and GBIF data) considering both the cold
and warm ends of the thermal gradient using Wilcoxon
paired tests. Regarding terminology, we use the term
“larger” (resp. “narrower”) to describe a larger (resp.
lower) tolerance to temperature at both ends of the
thermal gradient (e.g., a value of −25�C for RTLc rela-
tive to +2�C for PTLc would translate as RTLc being
larger than PTLc).

Determining thermally tolerable geographic
ranges from RTL, PTL, and both

In order to measure how the geographic range of each
species would change in the future, we computed the
proportions of pixels of the current range of species that
was included within thermal limits (i.e., the thermal tol-
erance range) under each projection (current, RCP 2.6,
and RCP 8.5) using rasters of 2.50 resolution (or 50 for
marine species). Indeed, while a coarse resolution is
needed to determine RTL owing to the coarse resolution
of IUCN polygons, spatial projection can be done at any
resolution. This was done separately for both RTL and
PTL. Pixels were then classified in three categories: ther-
mally tolerable according to both RTL and PTL (green
horizontal arrows in Figure 2), thermally tolerable
according to RTL only (yellow horizontal arrows in
Figure 2), and thermally tolerable according to PTL only
(light-blue horizontal arrows in Figure 2). We also distin-
guished whether differences in the thermal tolerance
range emerged from differences at the cold or at the
warm end of the thermal gradient (Figure 2).

For each of the three above-defined categories, we
tested differences in the thermal tolerance range (i.e., the
proportion of pixels of the species distribution within
thermal limits) across the three climatic scenarios
(current, RCP 2.6, and RCP 8.5) using Kruskal–Wallis
nonparametric tests considering separately the cold and
the warm ends of the thermal gradient.

RESULTS

Comparing thermal limits

We found that RTL is on average narrower than PTL at the
warm end of the thermal gradient (PTLw: mean = 41.4�C,
SD = 3.4�C; RTLw: mean = 35.9�C, SD = 4.2�C; paired
Wilcoxon test, p < 0.001) whereas the opposite occurred at
the cold end of the gradient (PTLc: mean = 7.1�C,
SD = 3.6; RTLc: mean = −4.3�C, SD = 11.3�C; paired
Wilcoxon test, p < 0.001; Figure 3). Similar results were
obtained when RTL were estimated with GBIF data
(Appendix S1: Figure S1).

Predicted changes in species’ thermal
tolerance range under climate warming

A typical example

Considering as an example the species Pseudonaja textilis,
we illustrate how combining information on RTL and
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PTL translates in the geographic space (Figure 4). This
species is representative of the set of species considered,
presenting a larger PTL than RTL at the warm end of the
gradient but a narrower PTL than RTL at the cold end of
the gradient. Under current climatic conditions, a higher
proportion of the IUCN geographic range (98.01%) is
thermally tolerable according to RTL relative to both PTL
(82.65% of the geographic range) and the combination of
PTL and RTL (81.1% of the geographic range). By 2100,
and under RCP 2.6, the thermal tolerance range of
P. textilis is predicted to increase by 10.57% according to
PTL, whereas it is predicted to decrease for both RTL
(30.69% decrease) and the combination of PTL and

RTL (17.42% decrease). Under RCP 8.5, the thermal toler-
ance range is predicted to decrease with regard to RTL
(61.05%), PTL (17.07%), and their combination (56.97%)
owing to a decrease in the proportion of pixels included
within thermal limits at the warm end of the gradient
(61.12% for RTLw, 29.2% for PTLw, 61.23% for their com-
bination) not compensated by a similar increase at the
cold end of the gradient (0.47% increase in the proportion
of pixels included within thermal limits for RTLc, 18.26%
for PTLc, 18.26% for their combination). Note that some
pixels (2.45% of the IUCN geographic range) currently
too cold are predicted to become too warm by 2100, con-
sidering the combination of RTL and PTL.

F I GURE 2 Determination of the thermal tolerance range from thermal tolerance values according to physiological thermal limits

(PTL) and realized thermal limits (RTL) determined from IUCN (International Union for Conservation of Nature) data. Following theory,

PTL should be larger than RTL. Yellow, light-blue, and green horizontal arrows show the thermal tolerance range used to compute the

proportion of pixels included within RTL, PTL, and both, respectively. If data are in line with theory, the thermal tolerance range obtained

when combining PTL and RTL should equal the thermal tolerance range of RTL (because PTL is expected to be larger than RTL at both

ends of the thermal gradient). PTLc, PTL at the cold end; PTLw, PTL at the warm end; RCP, Representative Concentration Pathways; RTLc,

RTL at the cold end; RTLw, RTL at the warm end.
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General trends

The thermal tolerance range is predicted to increase sig-
nificantly in the future at the cold end of the gradient
for RTL (p < 0.01) but not for PTL (p = 0.07) or the
combination of RTL and PTL (p = 0.06; Figure 5). In
contrast, a significant decrease is predicted to occur in
the future at the warm end of the gradient for RTL,
PTL, and their combination (all p < 0.001; Figure 5).
Thermal stress is therefore predicted to decrease in the
coldest areas (pixels currently too cold will become
thermally tolerable in the future), but to increase in
the warmest areas (pixels currently thermally tolerable
will become too warm) by 2100. Considering both
ends of the gradient, the thermal tolerance range is
predicted to decrease significantly for RTL (p < 0.001)
but not for PTL (where the trend is rather toward an
increase; p = 0.24) or the combination of PTL and
RTL (p = 0.88).

DISCUSSION

Physiological data on thermal limits have been widely
used to calibrate biophysical models fitted with microcli-
matic data to account for the physiological processes
driving species distributions and related changes (Briscoe
et al., 2023). However, these data have also been used as
surrogates for fundamental niche limits in correlative
SDMs (Gamliel et al., 2020; Martínez et al., 2015;
Rodríguez et al., 2019) or in mechanistic SDMs fitted
with macroclimatic data (e.g., CLIMEX; Ramirez-Cabral
et al., 2017) under the assumption that they can account
for environmental conditions existing beyond realized
niche limits that can potentially become available to spe-
cies under climate change, for example, through a release
of the competition pressure (Bush et al., 2019; Catullo
et al., 2015; Gong et al., 2023; Kearney & Porter, 2009). In
this study, we first aimed to assess whether available estimates
of PTLs (taken as a proxy for fundamental niche limits)

F I GURE 3 Comparison of species’ physiological thermal limits (PTLs) and realized thermal limits (RTLs) at both ends of the thermal

gradient. PTLs are shown in blue and RTLs are shown in orange. Red points represent average values. For the boxplots, the center line

represents the median, the box limits define the upper and lower quartiles, the whiskers define 1.5× the interquartile range, and the points

represent outliers. RTL were estimated from IUCN (International Union for Conservation of Nature) polygons rasterized at a 1� resolution.
For a similar figure with RTL estimated from GBIF (Global Biodiversity Information Facility) data see Appendix S1: Figure S1.

****p < 0.0001.
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F I GURE 4 Legend on next page.
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for 151 ectotherms were expectedly larger than RTLs
estimated by coupling distribution data with macroclimatic
data (as done in correlative SDMs). Second, we aimed to
assess how differences between RTLs and PTLs translate in
the geographical space and whether PTL can be used to
provide additional insights regarding species current
and future distributions, as recently done (Hoffmann
et al., 2021; Kirk & Rahel, 2022). At the warm end of the
thermal gradient, we found that PTL is, as expected, larger
than RTL. However, for the cold end of the thermal
gradient, we found that PTL is narrower than RTL which
contradicts theory stating that the fundamental niche
should be larger than the realized niche. This result
invalidates the main motivation for considering physio-
logical data in combination with macroclimatic data
to account for the fact that the environment can still be
suitable beyond realized niche limits, for example,
through a release of the competitive pressure.

At least three reasons can explain why RTL can be
larger than PTL in real case studies. First, PTL may be
a poor proxy of fundamental limits for several reasons.
For instance, the fundamental niche is essentially
multidimensional, and should ideally be estimated con-
sidering all environmental variables (e.g., water availability)
affecting the fitness of species (Kearney & Porter, 2004).
Unfortunately, these aspects of the fundamental niche are
usually not considered owing to a lack of data (Soberon &
Arroyo-Peña, 2017). Furthermore, most studies do not
account for (1) the environmental requirements (including
thermal limits) associated with different components of
the life cycle (e.g., juvenile or adult survival), (2) the
demographic parameters directly related to fitness
(e.g., fecundity, survival, but see Pironon et al., 2018), or
(3) niche differentiation and local adaptation that can
exist between races/ecotypes/subspecies (Kearney &
Porter, 2004; Pearman et al., 2010). However, whether
incorporating these various aspects would lead to a better
estimate of the fundamental niche is unclear. Second,
our estimates of RTL are conditioned on the environmen-
tal data considered and it would be interesting to con-
sider data that better approximate the actual temperature
experienced by species across their range. For instance,
the coarse resolution of the raster classically used in
macroecological studies does not allow accounting for

the microclimatic conditions that can act as refugia and
allow species to survive in areas estimated as unsuitable
from a macroclimatic perspective (Scheffers et al., 2014;
Sunday et al., 2012). Furthermore, even if considered at
the highest possible resolution (1 km2), global climatic
data (e.g., Worldclim) can still fail to represent the condi-
tions individual species face in reality because these data
are produced by interpolating climatic measurements
(e.g., rainfall, temperature) from climate stations that
measure parameters at standardized heights (2 m above
ground) and which are averaged over a 30-year period
(Fick & Hijmans, 2017). However, in many situations,
ground temperature can deviate from the temperature
measured 2 m above ground by more than 10�C (Foken
& Napo, 2008) which is problematic for the numerous
species that live close to the ground. Hence, although
very powerful for species distribution modeling, global
climatic data may fail to represent the temperature indi-
vidual species experience in reality which can lead one to
overestimate the magnitude of range shifts under climate
change (Maclean & Early, 2023). One way to account for
microclimatic conditions would be to use mechanistic
microclimatic modeling approaches (e.g., NicheMapR)
that calculate the microclimates to which organisms are
exposed using principles of micrometerology, soil phys-
ics, and hydrology (Kearney et al., 2014). However, these
models are extremely data-demanding, requiring as
inputs the maximum and minimum daily values of air
temperature, wind speed, relative humidity, and cloud
cover, the timing of the maxima and minima relative to
dawn or solar noon, soil properties as well as the rough-
ness height, slope, and aspect. As such, their applicability
remains limited. Another possibility would be to use
increasingly available new microclimate datasets such as
soilTemp (Lembrechts et al., 2022) or forestTemp (Haesen,
Lembrechts, et al., 2023) that correct macroclimate tem-
perature interpolated from weather station records at 2 m
height with a temperature offset map derived from tem-
perature loggers placed at different heights on the field
(Zellweger et al., 2019). However, although datasets com-
piled at the continental scale are starting to emerge (Haesen,
Lenoir, et al., 2023), their applicability is so far limited owing
to a limited temporal or spatial extent and their accuracy
remains to be seen (but see Haesen, Lenoir, et al., 2023).

F I GURE 4 Spatial transcription of the thermal tolerance range of Pseudonaja textilis according to physiological thermal limits (PTL),

realized thermal limits (RTL), and their combination under three climatic scenarios (current, Representative Concentration Pathways [RCP]

2.6 and RCP 8.5). Thermal tolerance range projection obtained from RTLs, PTLs, and their combination under the three projections (current,

RCP 2.6, RCP 8.5; first three rows) are represented. The predicted difference in thermal tolerance range between the present and 2100

according to RCP 8.5 is also provided (last row). Thermally unsuitable areas are differentiated according to whether pixels are unsuitable

with regards to the cold or the warm end of the thermal gradient. Some pixels currently predicted as too cold are predicted to become too

warm by 2100.
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F I GURE 5 Legend on next page.
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To be conservative in our assessment of RTL, we focused
on the coldest/warmest temperatures of the coldest/
warmest month which potentially inflated the thermal
limits for most species (84 out of 92 with a RTLc larger
than PTLc; 9 out of 135 with a larger RTLw than PTLw).
Beyond methodological issues, a third reason that can
explain why RTL can be larger than PTL relates to behav-
ioral, physiological, and/or evolutionary mechanisms.
For example, some amphibians have behavioral adapta-
tions to overwinter in water (Boutilier et al., 1997), while
others have physiological adaptations allowing them
to endure periods of freezing by storing cryoprotective
molecules (Storey & Storey, 1986). Marine actinopter-
ygians have also been shown to migrate to avoid cold tem-
peratures (Hurst, 2007; Jansen & Gislason, 2011) but we
have not considered (and most distributional studies do not)
seasonal changes in geographical distribution which can
affect estimates of RTL (Zurell et al., 2018). Similarly, rep-
tiles can migrate over short distances to find overwintering
habitats (Southwood & Avens, 2010) where temperatures
remain above their PTLc. These various strategies, only
measurable at the microscale, and thus undetectable
given the coarse resolution used in this study (and in
most SDM studies), probably explain why our results
indicate that RTLc is globally larger than PTLc.

Data on PTL are used for various purposes such as
informing species distributions (Gamliel et al., 2020),
evaluating the ability of SDM to inform species funda-
mental niche limits (Paz & Guarnizo, 2020), assessing
species vulnerability to climate change (Hoffmann
et al., 2021; Wagner et al., 2023), estimating the funda-
mental niche (Jiménez et al., 2019), understanding bio-
geographical patterns (Sklen�ař et al., 2023), or evaluating
the extent to which species overfill or underfill their dis-
tribution (Kirk & Rahel, 2022). Most of these studies rely
on the assumption that physiological limits are a proxy
for fundamental niche limits and that these limits can
be used to refine predictions obtained from macro-
climatic data. Yet, our results show that combining
physiological data with macroclimatic data can lead to
inappropriate predictions and erroneous conclusions. This
is because critical temperatures obtained from laboratory

experiments are not easy to compare to macroclimatic
data, as temperature estimates from coarse-grained
macroclimatic data do not correlate well with the
temperatures organisms actually experience in the wild
(Kennedy, 1997). Overall, physiological data are rele-
vant to characterize when individuals are active (daily
and seasonally) and how they respond to local-scale
microhabitats (e.g., sun vs. shade), an information that
is crucial in biophysical models and that can be used to
inform large-scale distributions and how species ranges
will change under climate change since these models
rely on microclimatic data (Briscoe et al., 2023;
Kearney & Porter, 2004). These physiological data are,
however, of limited use to inform large-scale patterns
estimated with macroclimatic data because they do
not necessarily represent climatic conditions that exist
beyond realized niche limits.

Given that the main motivation behind the inclusion
of physiological data in correlative SDMs or in some
mechanistic SDMs (e.g., CLIMEX) does not hold for most
of the species considered in this study, it is unclear whether
differences between PTL and RTL can be used to interpret
the spatial structure of species geographical ranges under
current and future environmental conditions. For instance,
areas currently predicted as unsuitable according to PTL
but as suitable according to RTL have recently been
interpreted as “distribution overfilling,” and suggest that
factors unrelated to temperature are affecting species’ distri-
bution limits (Kirk & Rahel, 2022). Yet, these factors can be
of multiple origins, providing limited insights regarding the
mechanisms at play. For instance, while physiological
(e.g., thermoregulation) and/or behavioral (e.g., hiberna-
tion) mechanisms can explain why populations are found
in areas presenting conditions outside PTLs, an alternative
explanation could be that these areas are inhabited by sink
populations (Pulliam, 2000; Soberon & Arroyo-Peña, 2017)
or that populations have locally adapted to the conditions
prevailing in the area (Eliason et al., 2011). Regarding areas
currently predicted as suitable according to PTL but not
RTL, this could suggest that changes in biotic settings
(e.g., release of competition or predation pressures) could
allow some species to take advantage of existing

F I GURE 5 Estimated thermally tolerable geographic ranges. Proportion of pixels within species IUCN (International Union for

Conservation of Nature) geographic ranges classified as thermally suitable according to realized thermal limits (RTL, first row), physiological

thermal limits (PTL, second row), and both (RTL–PTL, third row) across all species under the three projections (current, Representative

Concentration Pathways [RCP] 2.6, RCP 8.5), considering both ends (left panels), the cold end (middle panels), and the warm end (right

panels) of the thermal gradient. The realized thermal tolerance geographic range was estimated using IUCN polygons rasterized at a 1�

resolution. For the boxplots, the center line represents the median, the box limits define the upper and lower quartiles, the whiskers define

1.5× the interquartile range, and the points represent outliers. Red points highlight average values. For a similar figure with the realized

thermal tolerance range estimated from GBIF (Global Biodiversity Information Facility) data, see Appendix S1: Figure S2. ns, not significant.

****p < 0.0001.
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resources (Brose et al., 2017) and extend their geographic
range. For future changes, areas presenting a higher suit-
ability according to PTLw than RTLw imply that species
could theoretically survive over a larger portion of their
geographic range, provided that competition (Bolnick
et al., 2010) or predation (Antiqueira et al., 2018) pres-
sures do not change in the future. Yet, it could also point
to areas that could become suitable (i.e., pixels currently
too cold that become warm enough to be within PTL),
provided biotic settings are suitable. Overall, the myriad
possible interpretations associated with differences
between PTL and RTL make their comparison unlikely
to provide any useful insights about the mechanisms at
play within species geographical ranges (e.g., dispersal,
biotic interactions) or regarding how ranges will evolve
under climate change, unless additional information is
available to disentangle the potential causes underlying
differences between PTL and RTL.

Overall, we showed that RTL is not necessarily more
restrictive than currently available estimates of PTL. This
result can be explained by several non-mutually exclusive
explanations including adaptive/behavioral mechanisms,
inflated RTL estimates, inappropriate measures of PTL,
the coarse resolution of the environmental data, or the
presence of sink populations. This does not mean that
one measure is better than another, but rather that their
combination with macroclimatic data may lead to an
inappropriate interpretation of distribution patterns.
Hence, if one wants to model species distributions using
physiological measurements, the best way would be to
use biophysical models that go into the details of the
actual behavior of the species and that explicitly consider
the microclimatic and microhabitat conditions experi-
enced by the species (Kearney et al., 2014; Lembrechts
et al., 2019), while also accounting for all aspects of the
thermal (and other abiotic such as hydric) relationship
across the species life cycle (Briscoe et al., 2023). The use
of these models is however restricted to some well-known
species making SDMs fitted with macroclimatic data still a
useful alternative to illuminate global trends across taxa.
Such SDMs should however not consider physiological
data to refine predictions unless combined with microcli-
matic data to generate a predictor that reasonably appr-
oximates the conditions experienced by the species
(see e.g., Gong et al., 2023).
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