Annex to: EFSA's BIOHAZ Panel Scientific opinion "Public health aspects of *Vibrio* spp. related to the consumption of seafood in the EU". doi:10.2903/j.efsa.2024.8896

© European Food Safety Authority, 2024

Annex F – Effect of temperature on *Vibrio* spp. in seafood

Table F.1: Models describing the effect of storage temperatures of seafood between 0 and 40°C on growth and inactivation of *Vibrio* parahaemolyticus and *Vibrio* vulnificus

<i>Vibrio</i>	Seafood	Seafood type	Detail	Analytical method	T (°C)	Growth / inactivation rates (units)		Reference
зррі	category			meenou		Primary model	Secondary model	-
Vp	Bivalve	Blacklip Rock Oysters (<i>Saccostrea</i> glomerata)	Shellstock. Injection in live oysters. Pool of 4 strains isolated from oysters	Direct plating on chromogeni c agar	4 13 18 25	Linear model; inactivation rate /h (log ₁₀ CFU) -0.0013 \pm 0.0007 0.0029 \pm 0.0009 Modified Gompertz model; specific growth rate, μ /h (log ₁₀ CFU) 0.032 \pm 0.011 0.047 \pm 0.021		Padovan et al. (2023)
Vp	Bivalve	Oysters (<i>Crassostrea</i> gigas)	Shellstock. Injection in live oysters. Pool of three ST36 strains	MPN-PCR	15 20 25 30	Linear model; specific growth rate, μ /h (log ₁₀ MPN) 0.091 0.062 0.188 0.263		Ellett et al. (2022)
Vp	Bivalve	Oysters (<i>C.</i> gigas)	Shellstock. Injection in live oysters. Pool of four non-ST36 strains	MPN-PCR	15 20 25 30	Linear model; specific growth rate, μ /h (log ₁₀ MPN) 0.043 0.057 0.300 0.352		Ellett et al. (2022)
Vp	Bivalve	Oysters (<i>C.</i> gigas)	Shellstock. Natural occurrence.	MPN-PCR	15 20	Linear model; specific growth rate, μ /h (log ₁₀ MPN) 0.050 0.080		Ellett et al. (2022)

					25	0.120		
Vp	Bivalve	Oysters (Crassostrea spp.)	Inoculation of sterilised oyster samples with ATCC 17802	Direct plating on TCBS	37	Modified Gompertz model; maximum specific growth rate, μ_{max} /h (log CFU) 2.15		Wang et al. (2018)
Vp	Bivalve	Oysters (Crassostrea spp.)	Inoculation of sterilised oyster samples with ATCC 33847	Direct plating on TCBS	37	Modified Gompertz; maximum specific growth rate, μ_{max} /h (log CFU) 1.51		Wang et al. (2018)
Vp	Bivalve	Oysters (<i>C.</i> gigas)	Shellstock. Injection. Pool of six strains.	Direct plating on TCBS	3.6 6.2 9.6 12.6 18.4 20.0 25.7 30.4	Linear model; inactivation rate /h (\log_{10} CFU) -0.006 -0.004 -0.005 -0.003 Baranyi model; specific growth rate, μ /h (\log_{10} CFU) 0.030 0.075 0.095 0.282	Arrhenius model Ln μ = ln 1.81×10 ⁻⁹ + 4131.2×[1/(T+273.15)] Square root model SQRT(μ) = 0.0303 × (T- 13.37)	Fernandez- Piquer et al. (2011)ª
Vp	Bivalve	Oysters (<i>Crassostrea</i> <i>virginica</i>)	Shellstock. Natural occurrence. Two sets of observation s (2 years).	Colony hybridizatio n	5 10 15 20 25 30	Baranyi model; inactivation rate /h (log CFU) -0.0036 / -0.0012 -0.0009 / -0.0019 Baranyi model; specific growth rate, μ /h (log CFU) 0.054 / 0.022 0.107 / 0.058 0.280 / 0.177 0.264 / 0.175	Square root model SQRT(μ) = 0.0203×(T- 5.105)	Parveen et al. (2013)
Vp	Bivalve	Oysters (C. virginica)	Shellstock. Inoculum with pool of five strains.	rt RT-PCR (RNA)	0 4 10	Baranyi model; minimum value of inactivation rate, μ _{min} /day (log10 CFU) -0.134 -0.0886 -0.073	Arrhenius model Ln μ = ln 7.503×10 ⁻⁹ + 4543.456/(T+273.15)	Liao et al. (2017)
Vp	Bivalve	Oysters (C. virginica)	Shellstock. Inoculum with pool of five strains.	Direct plating on TCBS	0 4 10	Baranyi model, minimum value of inactivation rate, μmin /day (log10 CFU) -0.245 -0.152 -0.121	Arrhenius model Ln μ = ln 9.156×10 ⁻¹⁰ + 5280.115/(T+273.15)	Liao et al. (2017)

Vp	Bivalve	Oysters (<i>C. gigas</i>)	Slurry from frozen oysters. Non- pathogenic strain.	Direct plating on TCBS	10 15 20 25 30	Modified Gompertz; specific growth rate, μ /h (log CFU) 0.063 NR NR NR NR NR	Square root model SQRT(μ) = 0.084735×(Τ- 17.79)	Yoon et al. (2008)
Vp	Bivalve	Oysters (<i>C. gigas</i>)	Slurry from frozen oysters. TRH+ strain.	Direct plating on TCBS	10 15 20 25 30	Modified Gompertz; specific growth rate, μ /h (log CFU) 0.032 NR NR NR NR NR	Square root model SQRT(μ) = 0.085029×(T- 20.31)	Yoon et al. (2008)
Vp	Bivalve	Oysters (<i>C. gigas</i>)	Shellstock. Natural occurrence. Three sets of observation s (3 years)	MPN-PCR	5 10 15 20 25 30	Log-Linear model; inactivation rate /h (log ₁₀ MPN) -0.00863 / -0.00118 / -0.00060 Log-Linear model; specific growth rate, μ /h (log ₁₀ MPN) 0.00158 / -0.00126 / 0.00088 0.00419 / 0.00110 / 0.00150 0.01477 / 0.01066 / 0.01135 0.02228 / 0.01975 / 0.01851 0.04636 / 0.04671 / 0.04521	Square root model SQRT(μ) = 0.0096 × (T- 8.44)	Fletcher et al. (2024)
Vp	Crustacean	Shrimps (Litopenaeus vannamei)	Natural occurrence.	PMA-qPCR	4 7 15 20 25 30	Baranyi model; inactivation rate /h (log CFU) -0.019 -0.025 Baranyi model; maximum specific growth rate, μ_{max} /h (log CFU) 0.044 0.105 0.179 0.336	Square root model SQRT(μ_{max}) = 0.026 × (T- 7.664)	Wu et al. (2023)
Vp	Crustacean	Shrimp (<i>L. vannamei</i>)	Boiled. Inoculum by immersion. O3:K6 TDH+ strain.	Direct plating on TCBS	12 15 20 25 30 35 37 40	Linear model; maximum specific growth rate, μ_{max} /h (log ₁₀ CFU) 0.11 0.17 0.46 0.71 0.82 1.33 1.47 1.44	Square root model SQRT(μ_{max}) = 0.03 × (T- 1.0)	Tang et al. (2015)

Public health aspects of Vibrio spp. related to the consumption of seafood in the EU

Vp	Crustacean	Shrimp (L. vannamei)	Gamma irradiated. Inoculum with pool of two strains.	Direct plating on TCBS	8 10 15 20 23 25 30 32 35	No growth No growth Huang model; maximum specific growth rate, μ_{max} /h (In CFU) NR NR NR NR NR NR NR NR NR NR NR NR	Suboptimal Huang square- root SQRT(μ_{max}) = 0.144×(T- 10.8) ^{0.75}	Chen et al. (2019)
Vp	Crustacean	Shrimp (L. vannamei)	Inoculation of sterilised shrimp samples with ATCC 17802.	Direct plating on TCBS	37	Modified Gompertz; maximum specific growth rate, μ_{max} /h (log CFU) 2.82		Wang et al. (2018)
Vp	Crustacean	Shrimp (<i>L. vannamei</i>)	Inoculation of sterilised shrimp samples with ATCC 33847.	Direct plating on TCBS	37	Modified Gompertz model; maximum specific growth rate, μ _{max} /h (log CFU) 2.04		Wang et al. (2018)
Vp	Crustacean	Prawn (<i>L. vannamei</i>)	Frozen, ready-to- cook product. Inoculum by immersion. TDH+ strain.	MPN-PCR	0 4 10 15 20 25 37 44	Modified Gompertz model; inactivation rate /h (ln MPN) NR NR NR Baranyi model; maximum specific growth rate, μ_{max} /h (ln MPN) NR NR NR NR NR NR	Kohler model Maximum growth/death rate = $0.0066^2(T-(-40.2))^2(1-exp((4.1133)(T-10.1)))^2$ Modified Ratkowsky model Maximum growth/death rate = $6.5528(T-10.1)^2(1-exp((0.0001)(T-47.1)))^2$	Boonyawant ang et al. (2012)
Vp	Crustacean	Crab	Soy sauce marinated ("ganjang- gejang"). Inoculum with pool of	Spiral plating on TCBS	5 10 15	Baranyi model; specific growth rate, μ_{max} /h (log CFU) < 0.00 < 0.00 Baranyi model; specific growth rate, μ_{max} /h (log CFU) 0.14	Four-parameter polynomial μ_{max} = -6.5 + (0.8687×T) +	Chung et al. (2019)

			three strains.		20 25 30	0.50 0.55 0.66	(-0.0358×T ²) + (0.000493×T ³)	
νр	Crustacean	Shrimp	Boiled. Inoculum by immersion with a pool of four strains.	Direct plating on TCBS	4 7 15 20 25 30	Log-linear model; maximum specific inactivation rate; $K_{max B}$ /min (log ₁₀ CFU) 4.73 4.42 Modified Gompertz model; maximum specific growth rate, μ_{max} /h (log ₁₀ CFU) 0.23 0.85 1.10 1.16	Non-linear Arrhenius model. Parameter estimates not provided.	Ma et al. (2016)
Vp	Finfish	Salmon (Oncorhynchus spp.)	Salmon meat. Inoculum by immersion	Direct plating on TCBS	0 3 6 9 12 16 20 25 30 35	Weibull model; $log_{10} R = -b \times t^n$ with b=0.00063; n=1.6093 b=0.00048; n=1.5913 b=0.00035; n=1.5425 b=0.00028; n=1.5279 b=0.00011; n=1.5122 Modified Gompertz model; maximum specific growth rate, μ_{max} /h (log_{10} CFU) 0.0205 0.1192 0.3330 0.5583 0.9121	Linear regression of Weibull b and n versus T with $b = -4.2667 \times 10^5 \times T +$ 0.0006 $n = -0.0086 \times T + 1.6082$ Square root model SQRT(μ max) = 0.0421×(T- 12.0570)	Yang et al. (2009)
Vp	Finfish	Tilapia (Tilapia spp.)	Inoculation of sterilised tilapia samples with ATCC 17802	Direct plating on TCBS	37	Modified Gompertz model; maximum specific growth rate, μ_{max} /h (log CFU) 2.28		Wang et al. (2018)
Vp	Finfish	Tilapia (Tilapia spp.)	Inoculation of sterilised tilapia samples with ATCC 33847	Direct plating on TCBS	37	Modified Gompertz model; maximum specific growth rate, μ_{max} /h (log CFU) 1.84		Wang et al. (2018)
Vp	Finfish	Salmon (<i>Salmonidae</i> spp.)	Sashimi. Inoculum with ATCC 33844.	Direct plating on TCBS	13 18 24	Modified Gompertz model; maximum specific growth rate, μ_{max} /h (log CFU) 0.059±0.02 0.103±0.12 0.185±0.27	Square root model SQRT(μ_{max}) = 0.01052×(T+13.52)	Kim et al. (2012)

					30 36	0.219±0.76 0.256±0.24		
Vp	Finfish	Flounder (<i>Paralichthys</i> spp.)	Sashimi. Inoculum with ATCC 33844.	Direct plating on TCBS	13 18 24 30 36	Modified Gompertz model; maximum specific growth rate, μ _{max} /h (log CFU) 0.037±0.04 0.105±0.09 0.152±0.21 0.304±0.02 0.435±0.21	Square root model SQRT(μ_{max}) = 0.02017×(T-3.223)	Kim et al. (2012)
Vv	Bivalve	Oysters (<i>C. gigas</i>)	Shucked. Natural occurrence.	Direct plating on chromogeni c agar	16 18 24 30 36	Modified Gompertz model; maximum specific growth rate, μ _{max} /h (log CFU) 0.125 0.083 0.138 0.260 0.328	Square root model SQRT(μ_{max}) = 0.01380×(T+5.604)	Kim et al. (2012)
Vv	Bivalve	Oysters (<i>C. virginica</i>)	Shellstock. Natural occurrence. Three sets of observation s (spring, summer, fall)	MPN- hybridisatio n	5 10 15 20 25 30	Baranyi model; specific growth rate, μ /h (log MPN) -0.002 / -0.007 / ND -0.004 / -0.005 / -0.004 0.016 / 0.028 / ND Baranyi model; specific growth rate, μ /h (log MPN) 0.049 / ND / 0.035 0.091 / 0.098 / 0.073 0.064 / 0.095 / 0.121	Square root model SQRT(µ) = 0.0109×(T- 0.7005)	DaSilva et al. (2012)

Abbreviations: CFU, colony forming unit; MPN, most probable number; ND, not determined; NR, not reported; TCBS, Thiosulfate Citrate Bile Sucrose agar; PMA-qPCR, qPCR combined with pretreatment with propidium monoazide; b, scale factor, n, shape factor of Weibull distribution.

Note: the models herein summaried are expressed in the units as reported in the source references. In some instances, there are potential ambiguities on which type of logarithmic transformations are used in the papers, since log can refer to either the natural logarithm or the decimal logarithm. Generally, the use of log, log₁₀ or ln is not always consistent or easy to deduce from reading papers. It is therefore recommended to contact authors to clarify this before using the models since mixing them up will result in a factor of 2.3 difference.

^aData in ComBase (<u>https://www.combase.cc/</u>) accessed in April 2024.

References

- Boonyawantang, A., Mahakarnchanakul, W., Rachtanapun, C., & Boonsupthip, W. (2012). Behavior of pathogenic Vibrio parahaemolyticus in prawn in response to temperature in laboratory and factory. Food Control, 26(2), 479–485. <u>https://doi.org/10.1016/j.foodcont.2012.02.009</u>
- Chen, Y.-R., Hwang, C.-A., Huang, L., Wu, V. C. H., & Hsiao, H.-I. (2019). Kinetic analysis and dynamic prediction of growth of *Vibrio parahaemolyticus* in raw white shrimp at refrigerated and abuse temperatures. *Food Control*, *100*, 204–211. <u>https://doi.org/10.1016/j.foodcont.2019.01.013</u>
- Chung, K.-H., Park, M. S., Kim, H.-Y., & Bahk, G. J. (2019). Growth prediction and time-temperature criteria model of *Vibrio parahaemolyticus* on traditional Korean raw crab marinated in soy sauce (ganjang-gejang) at different storage temperatures. *Food Control*, 98:187-193. https://doi.org/10.1016/j.foodcont.2018.11.021
- DaSilva, L., Parveen, S., DePaola, A., Bowers, J., Brohawn, K., & Tamplin, M. L. (2012). Development and validation of a predictive model for the growth of *Vibrio vulnificus* in postharvest shellstock oysters. *Applied* and Environmental Microbiology, 78(6), 1675–1681. <u>https://doi.org/10.1128/aem.07304-11</u>
- Ellett, A. N., Rosales, D., Jacobs, J.M., Paranjpye, R., & Parveen, S. (2022). Growth rates of Vibrio parahaemolyticus sequence type 36 strains in live oysters and in culture medium. *Microbiology Spectrum*, 10(6), e0211222. <u>https://doi.org/10.1128/spectrum.02112-22</u>
- Fernandez-Piquer, J., Bowman, J. P., Ross, T., & Tamplin, M. L. (2011). Predictive models for the effect of storage temperature on Vibrio parahaemolyticus viability and counts of total viable bacteria in Pacific oysters (Crassostrea gigas). Applied and Environmental Microbiology, 77(24), 8687–8695. https://doi.org/10.1128/aem.05568-11
- Fletcher, G. C., Cruz, C. D., & Hedderley, D. I. (2024). Vibrio parahaemolyticus: Predicting effects of storage temperature on growth in Crassostrea gigas harvested in New Zealand. Aquaculture, 579, 740128. <u>https://doi.org/10.1016/j.aquaculture.2023.740128</u>
- Kim, Y. W., Lee, S. H., Hwang, I. G., & Yoon, K. S. (2012). Effect of temperature on growth of Vibrio parahaemolyticus [corrected] and Vibrio vulnificus in flounder, salmon sashimi and oyster meat. International Journal of Environmental Research and Public Health, 9(12), 4662–4675. https://doi.org/10.3390/ijerph9124662
- Liao, C., Zhao, Y., & Wang, L., (2017). Establishment and validation of RNA-based predictive models for understanding survival of *Vibrio parahaemolyticus* in oysters stored at low temperatures. Applied and Environmental Microbiology, *83*(6), e02765-16. <u>https://doi.org/10.1128/aem.02765-16</u>
- Ma, F., Liu, H., Wang, J., Zhang, Z., Sun, X., Pan, Y., & Zhao, Y. (2016). Behavior of *Vibrio parahemolyticus* cocktail including pathogenic and nonpathogenic strains on cooked shrimp. *Food Control*, 68, 124-132. <u>https://doi.org/10.1016/j.foodcont.2016.02.035</u>
- Padovan, A. C., Turnbull, A. R., Nowland, S. J., Osborne, M. W. J., Kaestli, M., Seymour, J. R., & Gibb, K. S. (2023). Growth of *V. parahaemolyticus* in Tropical Blacklip Rock Oysters. *Pathogens*, 12(6), 834. <u>https://doi.org/10.3390/pathogens12060834</u>
- Parveen, S., DaSilva, L., DePaola, A., Bowers, J., White, C., Munasinghe, K. A., Brohawn, K., Mudoh, M., & Tamplin, M. (2013). Development and validation of a predictive model for the growth of *Vibrio parahaemolyticus* in post-harvest shellstock oysters. *International Journal of Food Microbiology*, 161(1), 1–6. <u>https://doi.org/10.1016/j.ijfoodmicro.2012.11.010</u>
- Tang, X., Zhao, Y., Sun, X., Xie, J., Pan, Y., & Malakar, P. K. (2015). Predictive model of Vibrio parahaemolyticus O3:K6 growth on cooked Litopenaeus vannamei. Annals of Microbiology, 65(1), 487–493. <u>https://doi.org/10.1007/s13213-014-0884-1</u>
- Wang, R., Sun, L., Wang, Y., Deng, Y., Fang, Z., Liu, Y., Liu, Y., Sun, D., Deng, Q., & Gooneratne, R. (2018). Growth and hemolysin production behavior of *Vibrio parahaemolyticus* in different food matrices. *Journal of Food Protection*, 81(2), 246-253. <u>https://doi.org/10.4315/0362-028x.Jfp-17-308</u>
- Wu, Q., Liu, J., Malakar, P. K., Pan, Y., Zhao, Y., & Zhang, Z. (2023). Modeling naturally-occurring Vibrio parahaemolyticus in post-harvest raw shrimps. Food Research International, 173, 113462. https://doi.org/10.1016/j.foodres.2023.113462
- Yang, Z. Q., Jiao, X. A., Li, P., Pan, Z. M., Huang, J. L., Gu, R. X., Fang, W. M., & Chao, G. X. (2009). Predictive model of *Vibrio parahaemolyticus* growth and survival on salmon meat as a function of temperature. *Food Microbiology*, 26(6), 606–614. <u>https://doi.org/10.1016/j.fm.2009.04.004</u>
- Yoon, K. S., Min, K. J., Jung, Y. J., Kwon, K. Y., Lee, J. K., & Oh, S. W. (2008). A model of the effect of temperature on the growth of pathogenic and nonpathogenic *Vibrio parahaemolyticus* isolated from oysters in Korea. *Food Microbiology*, 25(5), 635–641. <u>https://doi.org/10.1016/j.fm.2008.04.007</u>