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Unveiling the global influence of tropical
cyclones on extreme waves approaching
coastal areas

Swen Jullien 1 , Jérôme Aucan 2, Elodie Kestenare3,
Matthieu Lengaigne 4 & Christophe Menkes 2

Tropical and extra-tropical storms generate extreme waves, impacting both
nearby and remote regions through swell propagation. Despite their devas-
tating effects in tropical areas, the contribution of tropical cyclones (TCs) to
global wave-induced coastal risk remains unknown. Here, we enable a quan-
titative assessment of TC’s role in extreme waves approaching global coast-
lines, by designing twin oceanic wave simulationswith andwithout realistic TC
wind forcing. We find that TCs substantially contribute to extreme breaking
heights in tropical regions (35-50% on average), reaching 100% in high-density
TC areas like theNorth Pacific. TCs also impact remoteTC-free regions, such as
the equatorial Pacific experiencing in average 30% of its extreme wave events
due to TCs. Interannual variability amplifies TC-inducedwave hazards, notably
during El Niño in the Central Pacific, and La Niña in the South China Sea,
Caribbean Arc, and South Indian Ocean coastlines. This research offers critical
insights for global risk management and preparedness.

Extreme waves and storm surges driven by both extra-tropical and
tropical storms are primary factors contributing to extreme coastal
water levels. In low-lying coastal areas, floods induced by tropical
cyclones (TCs) account for over 90% of human and property losses1.
TCs are therefore recognized to be among the most devastating nat-
ural hazards globally2. With the looming threat of climate change,
marked by accelerated sea-level rise, intensification of the most
extreme events, and diminished coastal resilience, hazards and
impacts posed by cyclones are expected to further exacerbate3–6. It is
becoming increasingly urgent to provide a comprehensive quantita-
tive assessment of TC-related coastal risk.

However, two significant gaps are hindering such assessment.
Firstly, existing global models lack the requisite spatial resolution to
accurately represent TC wind fields7–10. Secondly, the contribution of
waves to extreme water level, i.e. the wave setup, is often
overlooked2,3,11–13. This stems from the fact that coastal observations
are primarily obtained from tide gauges, which, often located in wave-
sheltered areas like ports, do not allow for an accurate estimation of

wave setup. Past studies estimating extreme water levels at the coasts
have thus relied on empirical formulations of the wave contribution,
drawing from offshore wave heights, wavelengths, and foreshore
slopes (see ref. 14 for a review). They suggested that waves could
significantly contribute to extreme coastal water levels, with their
contribution potentially exceeding 50%15–21. However, these studies
also underlined the unreliability of these estimates in the case of TCs,
due to the inadequate representation of TC winds and waves in global
hindcasts or reanalyses. A few case studies attempted to gauge TC-
induced wave setup using high-resolution coastal models, reporting
contributions of waves to coastal water elevation ranging from 20 to
100%, depending on local wind and wave forcing, or coastal
morphology22,23. Yet, a comprehensive, realistic global assessment of
the incident wave conditions associated with TCs is still lacking.
Addressing this gap is the central objective of the present study.

Furthermore, there is a pressing need to quantify the relative
contribution of TCs compared with other phenomena that may gen-
erate extreme waves propagating towards coastlines. For example, in
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the Western Pacific islands, instances of flooding or high sea levels
were linked to remote extratropical swells24,25, while other were asso-
ciated to local23 or distant TCs26. In the tropical Atlantic, both Southern
and remote TC-induced swells were suggested to impact sea level
anomalies along the Senegalese coast during boreal summer27. Addi-
tionally, climate modes of variability, such as El Niño/Southern Oscil-
lation (ENSO), the North Atlantic Oscillation (NAO) or the Southern
Annular Mode (SAM), strongly modulate TC and extra-tropical storm
distributions28–30, impacting wave climate variability in the mid-
latitudes29,31 and TC-induced wave height distributions in the
Pacific32–34. Evaluating coastal hazards thus requires accounting for
locally and remotely generated wave systems, along with their inter-
annual and seasonal variability.

To address these challenges, we present an innovative study
based on twin ocean wave simulations, one incorporating realistic TC
forcing and the otherwithout, aiming to achieve twokey objectives: (1)
assessing the contribution of TCs compared to the contribution of
other remotely generated swells to extreme incident waves along
global coastlines, including an examination of their interannual varia-
bility, and thereby (2) providing reliable extreme offshore wave con-
ditions, essential for evaluating wave-induced setup along global
coastlines.

Results
Contribution of TCs to extreme waves approaching coastlines
The spatial distribution of extreme wave heights (Hs) along coastlines
is illustrated in Fig. 1a with the 98th percentile of Hs at the closest deep-
water location for each coastal point, derived from the WAVEWATCH
IIImodel’s “CYCL” simulation. The highestwaves are primarily found in
the extra-tropical regions. However, in the tropics, notably in TC-prone
regions like the tropical North Pacific, where TC densities are the
highest, extreme waves of 4–6m are also encountered. The “CYCL”
simulation, forced with a wind field including observed TC wind
amplitude (see Methods for details), closely captures these extreme
wave conditions, as indicated by the high correlation coefficient of
0.91 and smallmeanbias of−0.20m (~10%underestimation) relative to
altimetry observations (Fig. 1b, blue curve, see also Supplementary Fig.
S1). When compared to a twin simulation that excludes TC forcing,
referred to as “NOCYCL” (see Methods), the simulation accounting for
realistic TC forcing is shown to decrease the extremeHs bias by ~4%, at
global scale. Focusing on locations affected by TCs (identified as
locations where CYCL and NOCYCL extreme Hs differs) reveals that
TC-induced extreme waves are remarkably well represented by CYCL
(Fig. 1b, red curve), while the simulation without TCs strongly under-
estimates extreme waves in these areas.

Fig. 1 | Validation of modeled extreme waves. a Map of the 98th percentile of
significant wave height, Hs (m), at extracted coastal locations (colored dots along
the coasts) in the simulation forced with a wind field including observed Tropical
Cyclone (TC) wind amplitude (CYCL); b simulated versus altimeter 98th percentile
of Hs at the extracted coastal locations; c simulated versus buoy 98th percentile of
breakingwave height, Hb (m), at available buoy locations. In b and c dots represent

the binned median and shading represents the lower-upper quartile interval; all
locations are considered for the blue (CYCL, simulation that includes TC forcing)
and black (NOCYCL, simulation that excludes TC forcing) curves, while only loca-
tions affected by TCs (i.e. when Hs or Hb in CYCL is at least 0.1m greater than in
NOCYCL) are considered for the red (CYCL) and orange (NOCYCL) curves; the
density of points is indicated in the side plot.
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As waves propagate and approach the coasts, their energy flux
rather than energy is conserved35. To assess wave coastal incident
conditions, we therefore use thewave breaking height (Hb), ameasure
of the wave energy flux (seeMethods). A comparison with available in-
situ buoys in theNorth-East Pacific andNorthAtlantic indicates thatHb
is also very well represented by the model (Fig. 1c), with a very weak
bias of −0.6% overall and a slightly positive bias of 4.3% in locations
affected by TCs. Larger biases arise in the NOCYCL simulation (−6.0%
and −8.6%) for respectively all and TC-affected locations. The less
pronounced difference between CYCL and NOCYCL than that
observed for Hs (Fig. 1b) stems from the fewer number of buoy loca-
tions representing the TC-affected areas, in contrast to the numerous
coastal locations used for comparisonwith altimetry (Fig. 1b, c, see also
Supplementary Fig. S1).

The TC contribution to extreme wave events approaching the
coasts (number of wave occurrences above Hb 98th percentile, Fig. 2a)
is then evaluated by comparing the simulations with and without TC
forcing. This contribution is shown to be the strongest in the tropical
North-Western and North-Eastern Pacific regions, where TCs are par-
ticularly frequent and intense. In the core of these regions, incident
extreme waves are entirely attributed to TCs. TCs further contribute
up to 40–75% in other regions prone to strong cyclonic activity (North-
Western Atlantic, China Sea, South IndianOcean, Bay of Bengal, North-
West Australian Coast, South-West Pacific, Hawaii), and to 10–25% in
areas where TCs are relatively infrequent (French Polynesia, Arabian
Sea). On average, TCs account for 43% of the extreme breaking height
events in the tropical band. This contribution is naturally sensitive to

the percentile chosen to define extreme waves: it ranges from 30% for
a 95th percentile threshold to 64%when considering a 99.5th percentile
threshold (see also Supplementary Fig. S2), emphasizing the growing
role of TCs in wave hazards as higher extremes are considered.

TC remote impacts
It is worth noting that the impact of TCs on wave extremes is not
limited to TC-prone regions. Notably, in the equatorial area (10°S-
10°N), where TCs are mainly absent, 30% of wave extremes are asso-
ciated with TCs on average (Fig. 2a). That contribution locally varies
from 10 to 90%, being most pronounced along the coasts of the
Western equatorial Pacific islands, and the coasts of Papua New Gui-
nea, Indonesia, Ecuador, and Colombia. The East coasts of Africa,
stretching fromMozambique to Somalia, are also remotely affected by
TCs aswell as theNorthern coast of Brazil, andof theCapVerde islands
albeit to a lesser extent. This highlights the far-reaching andpotentially
destructive influence of TCs, even in remote areas.

TC wave-induced hazards as measured by Hb, reflecting the total
wave energy flux, significantly differ from hazards solely measured by
Hs (Fig. 2b). Indeed, in the TC-prone regions, there is an increase of
5–10%ofTC contributionwhen considering the energyflux rather than
Hs. In the inter-tropical region, this difference can be as high as 40%
(Fig. 2b). This finding carries strong implications for assessing wave-
induced coastal hazards. While wave energy flux is the appropriate
metric, Hs is the most globally accessible and validated wave para-
meter, and represents the most rigorously constrained variable in
wavemodels. On the other hand, Tpmeasurements are availablemore

Fig. 2 | Contribution of Tropical Cyclones (TCs) to extreme wave events. a The
contribution is computed as the relative difference (in %) between the simulation
including TC forcing (CYCL) and the simulation excluding TC forcing (NOCYCL) in
the number of occurrences above the 98th percentile of breakingwave heights (Hb)

over 1990–2017; in b the difference in TC contribution when considering Hb
(representing thewave energyflux)or significantwave height (Hs) 98th percentile is
illustrated. Side plots on the right represent zonal averages of the corresponding
map on the left. The cyclone density is indicated with gray shading.
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sparsely, only for some buoys or from satellite instruments with a
lower temporal resolution.

Interannual variability of TC and non-TC wave hazards
Finally, we investigate the interannual variability of extreme coastal
wave events. Table 1 provides the global averaged correlations
between key climate modes of interannual variability, and yearly
numbers of extreme wave events categorized into TC and non-TC
origins. Extreme wave events exhibit a significant correlation with
ENSO (0.53, p-value = 0.006), especially those associated with TCs
(significant correlation of 0.57, increasing to 0.65 when considering
the ENSO peak period, November to April, only). During El Niño pha-
ses, the Central Pacific faces a significantly higher threat from wave
extremes (Fig. 3a), with twice as many events compared to La Niña or
Neutral phases. Conversely, regions such as the South China Sea, the
Indonesian archipelago, the tropical Atlantic basin, or the northern tip
of the Pacific experience an increase in extreme wave events during La
Niña phases (Fig. 3a). Changes in TC densities associated to ENSO
largely drives the spatial pattern of this interannual variability in
coastal wave extremes (Fig. 3b). The area of TC occurrence is shifted
eastward in the North-Western Pacific, eastward and equatorward in
the South-West Pacific in response to the South Pacific Convergence
Zone shift during El Niño28,36, increasing the exposure of the Micro-
nesian, Melanesian, Polynesian, and Central Pacific Archipelagos.
These results align with previous regional studies by Lin et al.32 and
Stephens and Ramsay33. During La Niña phases, TC densities and
associated extreme waves increase along the North West coasts of
Australia, in the Mozambique channel, in the South China Sea, and in
the Caribbean region. Wave extremes of non-TC origin are although
also modulated by ENSO (Fig. 3c), with an increase of Southern swells
propagating across the Pacific basin observed during El Niño phases37,
and an increased number of extreme waves in the Northern Pacific,
Eastern Atlantic, and along the Indonesian coasts during La Niña.

While the other modes of interannual variability show globally
lower and non-significant correlations with TC wave extremes, it can
be noted that the Southern Annular Mode (SAM) exhibits a significant
correlation coefficient of 0.43 (p-value = 0.03) with extreme wave
events of non-TC origin (Table 1). This correlation is particularly sig-
nificant in the Central Pacific (Fig. 4b), where Southern ocean swells
have been shown to significantly contribute to the wave climate38 and
its extremes24,25. A negative correlation with TC-induced waves in the
low latitudes of theWestern Pacific is also observed (Fig. 4a), related to
a lower density of TCs in the North-Western Pacific during SAM posi-
tive phases. These results are consistent with those of Marshall et al.39.
Finally, the North Atlantic Oscillation (NAO), which does not hold
significant correlation with wave extremes on a global scale, locally
exhibits significant impacts. NAO features negative correlations with
extreme events in the Caribbean and Southern Europe regions, for
both TC and non-TC related events, and a positive correlation at high

latitudes (Fig. 4a, b). These results are in agreement with the regional
studies by McCloskey et al.30 for TCs and Dodet et al.31 for extra-
tropical storms. A positive correlation between TC-induced wave
extremes and NAO index is also observed in the North-Western tro-
pical Pacific, in agreement with Choi and Cha40, who found a positive
correlation of TC frequency with NAO in that region, associated with
weakermid and low-tropospheric streamflows and vertical wind shear
in the TC-prone area favouring TCgenesis during positiveNAOphases.

Discussion
Assessing coastal hazards associated with TCs and extra-tropical
storms is vital for effective risk management and preparedness.
However, this task presents significant challenges due to amultitudeof
influencing factors, encompassing wind forcing characteristics, ocea-
nic and wave background conditions, geomorphological factors3,41,
and human aspects11. Our study draws a quantitative picture of wave
extremes offshore global coastlines, evaluating the respective con-
tributions of TC and non-TC events, along with their interannual
variability. Transitioning from offshore wave characteristics to storm
inundationon land involves assessingwave transformation at the coast
and in shallow water environments, considering factors such as
coastline types and morphologies, beach slopes, wave-current inter-
actions, and individual wavemotions. Given the heterogeneity of these
factors worldwide, such a study cannot be generically conducted on a
global scale, and is instead location-dependent. However, while these
coastal aspects extend beyond the scope of our study, our findings
offer key forcing conditions for coastal dynamical models or statistical
parameterizations addressing this issue.

An important highlight from our study is that relying solely on Hs
fails to fully capture the incoming wave extremes, especially when
dealing with remotely generated swells from both TC and non-TC
events. We demonstrate that considering the full energy flux, derived
from both the significant wave height and the peak period, enhances
the TC contribution to extreme wave events by 5–50% compared to
considering Hs alone. Regions untouched by TCs, such as the equa-
torial band, are consequently found to experience significant impacts
from remotely generated extreme waves originating from TCs. This
bears important implications regarding the development of future
data acquisition strategies. Currently, the most commonly available
wave measurements stem from satellite altimetry that provides Hs
data.Our results underscore the need for spectralwavemeasurements
to more accurately assess the threats posed by wave extremes. Those
are increasingly accessible through recent satellite sensors such as
CFOSAT-SWIM42,43, but remain with a low revisit period (13 days). In-
situ direct observing systems also need to be extended, being cur-
rently limited to buoys mostly distributed along the coasts of North
America and almost absent in the tropics elsewhere (see Supplemen-
tary Fig. S1b).

Our study also stresses out the sensitivity of wave extremes to the
representation of TCs. Reanalyses such as ERA5 strongly under-
estimate TC winds (see Supplementary Fig. S3). This leads to a weaker
but persistent underestimation of TC-induced waves approaching the
coasts. Alternatively, using a wind forcing built by blending reanalysis
winds with a parametric TC formulation scaled on TC best-track
observations provides extreme waves along coastlines in good
agreement with observations. Some limitations remain to be noted.
The slight overestimations for waves exceeding 7m (Fig. 1b) may be
attributed to limitations inherent to the TC wind parametric formula-
tion, such as the reconstruction of the radius of maximum winds as a
function of latitude and maximum wind44, as direct estimates are
lacking at global scale and over the long period of our study, or the
inability to account for fine-scale asymmetries and heterogeneities
observed in actual TCs45. The horizontal resolution of our wave model
(½°) may also smooth and overestimate TC sizes, particularly for the
strongest TCs, which have typically smaller sizes. This could result in

Table 1 | Global averaged Pearson’s correlations of the yearly
number of extreme wave events with the El Nino-Southern
Oscillation (ENSO) Nino3.4 index, Southern Annular Mode
(SAM) index, andNorthAtlanticOscillation (NAO) index in the
CYCL simulation, in the NOCYCL simulation, and those only
associated to Tropical Cyclones (TCs; CYCL-NOCYCL)

Correlations of the number of extreme wave events with climate mode
indices

ENSO SAM NAO

TCs 0.57 (0.002) −0.15 (0.47) 0.19 (0.35)

CYCL 0.53 (0.006) 0.21 (0.29) 0.03 (0.89)

NOCYCL 0.11 (0.59) 0.43 (0.03) −0.16 (0.45)

P-values are indicated into brackets. Significant correlations are in bold.
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overestimated fetches and an excess of energy available for wave
growth46. Despite these challenges, our approach provides valuable
insights into TC-induced wave extremes, laying the foundation for
future research to refine modeling techniques and to enhance our
understanding of TC-related hazards under climate change scenarios.
Studies attempting to assess projected changes in wave extremes in
the future47 faced the issue of the poor representation of TCs in global
climate models. They found diverging results regarding the relative

importance of TC or non-TC wave changes depending on the model
ability to represent TCs. According to Shimura et al.47, models with
better TC skill suggested twice larger changes for TC than for non-TC
waves, the largest change in TC-wave extremes being associated to
large changes in TC frequency and intensity. These future TC char-
acteristics however strongly depend on the synoptic conditions
favorable to TC genesis and intensification (see for instance Dutheil
et al.48), which suffer from strong biases in state-of-the art climate

Fig. 3 | Contribution of El Niño-Southern oscillation (ENSO) phases to extreme
wave events. a Relative fraction of extreme breaking wave height (Hb) events
(>98th percentile) associated to Niño (yellow), Niña (blue), or Neutral (violet) pha-
ses; b increased probability (%) of Tropical Cyclone (TC)-induced Hb extremes
during Niño vs. Niña phases; the cyclone density difference between Niño and Niña

phases is shaded in gold/lightblue colors; c increased probability (%) of non-
cyclonic Hb extremes during Niño vs. Niña phases. In a, pie-charts are averaged
every 200 points for each coastal polygon (see Methods for details on coastal
points extraction).
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models. Given these limitations there is still ample work to be per-
formed to gain confidence in the future extreme wave climate under
different future scenarios. Bias correction methods may help
improving the representation of TC distributions48, along with
increased resolution. Statistical studies based on future large-scale
conditions49 andwind blending techniquesmay also help to effectively
anticipate and mitigate the impacts of TC-induced hazards on coastal
communities worldwide.

Methods
Model
The global wave simulations are conducted with the WAVEWATCH III
spectral wave model version 6.07 (https://github.com/NOAA-EMC/
WW3/releases/tag/6.07.150) on a 0.5° rectangular grid (limited to 78°S
and 80°N). The compulsion of using a relatively coarse grid resolution
arose from the limitation of high computational cost of the model
running globally for a long duration (1990–2017). The spectral space is
discretized in 24 directions (15° resolution), and 32 frequencies ran-
ging from 0.0373 to 0.7159Hz with an increment factor of 1.1. The
frequency range allows to solve the main swell peaks and wind-
induced waves. A diagnostic tail following a f−5 power law51 is added at
higher frequencies. Beyond the lower frequency, we use the para-
meterization of Ardhuin et al. 52, which has been shown to effectively
represent the characteristics of free infra-gravity (IG) waves, particu-
larly relevant for highly energetic events like those examined in our
study. The ultimate quickest third order propagation scheme is used
for both spatial and spectral advection,with the garden sprinkler effect
correction proposed by Tolman53, limiting the impact of the

directional discretization. Non-linear wave-wave interactions are
modeled using the discrete interaction approximation of Hasselman
et al. 54. The bathymetry used is GEBCO 30” in its 2014 version (http://
www.gebco.net/data_and_products/gridded_bathymetry_data/). Sub-
grid scale islands are addressed through an obstruction para-
meterization, which effectively reduces the wave energy of the cell in
proportion to the obstruction55,56. Reflection at the coast is accounted
for with a coefficient of 0.1 and with a dependence to frequency57.
SHOWEX bottom friction58 and depth-induced breaking
parameterization59 with a Miche-style shallow water limiter for max-
imum energy are used. For wave growth and wave dissipation the
ST4 source term package60 is chosen, with the wind-wave growth
parameter, βmax, adjusted to 1.6, the sheltering coefficient set to 0.3,
and the swell dissipation parameters set to SWELLF =0.69,
SWELLF3 =0.022, SWELLF4= 150000, SWELLF7 = 468000. The wind
forcing is detailed in the following section.We do not use any wave-ice
interactions as the focus of the study is on the tropical and extra-
tropical regions, but we use a daily evolving icemask from the Climate
Forecast System Reanalysis (CFSR61,). We focus on the 60°S-60°N
region for our analyses. WAVEWATCH III uses a fractional time step
method with 4 time steps. The global time step treating temporal
variations of the depth is set to 2400 s, the time step for spatial pro-
pagation is 480 s, the time step for refraction is 300 s, and the mini-
mum time step for integrating the source terms is 10 s.

Experiments
The forcing wind fields are based on the European Centre forMedium-
Range Weather Forecasts fifth generation atmospheric reanalysis of

Fig. 4 | Correlations between climate modes of variability and extreme wave
events.Correlations, when significant above 95%, of the yearly number of extreme
events a associated to Tropical Cyclones (TCs),b associated to non-TC events, with
the El Niño-Southern Oscillation (ENSO) Niño3.4 index (red), Southern Annual

Mode (SAM) index (cyan), andNorthAtlanticOscillation (NAO) index (orange). Bars
are displayed averaged every 200 points for each coastal polygon (seeMethods for
details on coastal points extraction), and only if correlations exceed 95%
significance.
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the global climate (ERA5, DOI: 10.24381/cds.adbb2d47). ERA5 is dis-
tributed on a 0.25° atmospheric grid and with hourly frequency. This
reanalysis features a reduced negative bias inwind speed compared to
previous reanalyses62, and was shown to improve TC storm surge
simulations. However, a significant bias still remains for intense, small
size, and fast moving TCs. The overall bias in cyclone maximum wind
speeds provided in the ERA5 reanalysis is −37% compared to the Best
Tracks observations (see Supplementary Fig. S3). To better represent
the effects of TCs, we replaced the ERA5 surface wind in TCs by a
parametric structure reconstructed from the observedmaximumwind
speed following a procedure similar to that of Vincent et al. 63. We first
filtered out the weaker than observed TCs in ERA5 with an 11-day time
running-mean filter within 600-km of each TC track position. Then a
2D surface parametric wind field, reconstructed using the observed
maximum wind speed in TCs provided by K. Emanuel Best Tracks
database (ftp://texmex.mit.edu/pub/emanuel/HURR/tracks/) and the
parametricmodel ofWilloughby et al.44, was added to the filteredwind
field at each cyclone position between 0 and 600 km from the track.
The parametricmodel was calculated so that the amplitude reached at
the TC center in the reconstructed forcing was equal to the observed
intensity, and using a radius of maximumTCwinds ideally derived as a
function of latitude and maximum wind44. To avoid a rough transition
at 600 kmbetween thenewwindfield including theTCwinds (referred
to as windnew in the following) and the ERA5 native wind field, a linear
transition was applied between 600 and 1200 km, such aswind = (1-α)
windnew + α.windERA5, with α being a linear function ranging from 0 at
600 km from the TC track to 1 at 1200 km. ERA5 wind field remains
untouched off 1200 km of the TC tracks. Such procedure has been
shown to be very successful in reproducing the observed ocean
hydrodynamics under TCs63.

Two WAVEWATCH III simulations are performed over the
1990–2017 period with two different forcing fields: the ERA5 surface
winds merged with parametric TCs of observed amplitudes (refer-
red to as “CYCL”), and the ERA5 surface winds with filtered TCs
(referred to as “NOCYCL”). The difference between CYCL and
NOCYCL simulations is used to isolate the impact of TCs on coastal
extreme sea states, while NOCYCL simulation is used to assess the
impact of non-TC events.

Extraction of coastal locations
As the shoreline morphology is poorly known in numerous locations
and additionally may evolve in time (erosion, deposition), the assess-
ment of the contribution of waves to the water level at a global scale is
very difficult (e.g. see discussions of refs. 19,64–67). We therefore only
consider deep-water incident wave conditions, hence avoiding any
other hypothesis.

The simulation results are depicted along global coastlines and
islands as defined by Smith and Sandwell68, albeit sub-sampled to
enhance visual clarity and accommodate the relatively coarse resolu-
tion of our model. Sub-sampling is performed as follows: the coastline
data68 are first re-gridded on a 1/24° grid, followed by sub-sampling of
the coastline based on the size of each coastal polygon. For large
polygons (more than 60 points), every 6 points (~25 km) are retained,
while for medium-sized polygons (between 15 and 60 points), every
3 points (~13 km) are retained. All locations (~4 km) are preserved for
small polygons (less than 15 points). Subsequently, the resulting
coastline undergoes meticulous visual inspection to eliminate any
undesired closed contours that may have appear in rugged coastline
areas. Finally, wave fields are extracted at the nearest deep-water
location for each of these coastal points. Typical offshore distance
along major continents is about 50km according to our ½° model
resolution, with a few points showing larger distance due to specific
rugged coastlines not properly accounted for in our relatively coarse
resolution model mask.

Wave energy flux and parameters of interest
Themain parameters used are the significant wave height (Hs), and the
peak period (Tp). Hs represents the integral of the wave spectrum
energy E: Hs = 4

ffiffiffi

E
p

.
The wave energy flux (WEF), quantifying the amount of energy

carried by ocean waves as they propagate, is computed as:

WEF= ECg ð1Þ

with E = 1
2ρga

2 the wave energy, a being the wave amplitude,
ρ = 1025 kg.m−3 the water density, g = 9.81m.s−2 the gravitational
acceleration, and Cg the wave group velocity. When waves propagate
and approach the shore, the flux, rather than the energy, is conserved,
making WEF a more relevant variable than Hs to assess wave coastal
incident conditions. For an easier comparison of Hs and WEF at our
coastal points, we use the breaking wave height, Hb, as a measure of
the wave energy flux (WEF). It is computed assuming that wave breaks
at a depth equal to the wave height69, and considering that WEF is
conserved from deep water to the depth of breaking:

WEFoffshore = WEFb ð2Þ

with WEFoffshore the WEF of deep water offshore condition, computed
with Cg =

g
4π Tp the group velocity in deep-water, and a= Hs

2
ffiffi

2
p the wave

amplitude in deep-water:

WEFoffshore = ECg =
ρg2

64π
Hs

2Tp
ð3Þ

andWEFb theWEF at the depthof breaking, computedwithCg =
ffiffiffiffiffiffiffiffiffi

gHb

p

the group velocity in shallow-water, and a= Hb

2
ffiffi

2
p the wave amplitude at

the breaking depth:

WEFb = ECg =
ρg3=2

16
Hb

5=2 ð4Þ

Therefore, Hb writes:

Hb =
Hs

2 ffiffiffi

g
p

4π
Tp

 !2
5

ð5Þ

Statistical estimations and contributions
The98th percentileof afield F is used as a threshold for extremeevents,
and referred hereafter to as FREF. The choice of this threshold is dis-
cussed in the results. This threshold is computed in the CYCL simula-
tion. Then, the occurrence of extremes in a simulation is computed as
the number of time steps N where F reaches or exceeds FREF.

The contribution of TCs to extreme events is then evaluated by
computing the relative difference in the number of occurrences above
the threshold in the CYCL (NCYCL) and NOCYCL (NNOCYCL) simulations,
and is given in percentage:

TCcontrib = ðNCYCL � NNOCYCLÞ=NCYCL * 100 ð6Þ

Indices of climate mode of variability
The correlation between the TC contribution to extreme waves and
various modes of climate variability is computed. The North Atlantic
Oscillation (NAO) index is extracted over the period of the simulations
from https://www.cpc.ncep.noaa.gov/products/precip/Cwlink/pna/
nao.shtml, the Southern Annular Mode (SAM) index from https://
www.cpc.ncep.noaa.gov/products/precip/Cwlink/daily_ao_index/aao/

Article https://doi.org/10.1038/s41467-024-50929-2

Nature Communications |         (2024) 15:6593 7

ftp://texmex.mit.edu/pub/emanuel/HURR/tracks/
https://www.cpc.ncep.noaa.gov/products/precip/Cwlink/pna/nao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/Cwlink/pna/nao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/Cwlink/daily_ao_index/aao/aao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/Cwlink/daily_ao_index/aao/aao.shtml


aao.shtml, and the Nino3.4 index from https://www.esrl.noaa.gov/psd/
data/climateindices/list/. Yearly values of the indices and of the TC
contribution are used to compute the correlations. The relative TC
contribution to wave extremes during Niño vs. Niña years is also
evaluated. To do so, the monthly values of the Nino3.4 index are
considered. ENSO phases are computed as Niño (resp. Niña) phases
defined for Nino3.4 > 0.4 (resp. Nino3.4 < −0.4) and neutral phases for
Nino3.4 in [−0.4, 0.4]. Each simulation time-step is then attributed to
an ENSO phase, and the number of events are summed for each phase.
For comparing TC contribution to extreme waves during El Niño and
La Niña phases, the number of time-steps are weighted by the total
number of respective Niño and Niña phases.

TC densities
A probability density function (PDF) is used to illustrate the spatial
distribution of TC occurrence. The PDF is computed as the normalized
sum of anisotropic Gaussian functions for each TC occurrence, with
standarddeviations in themeridional and zonal directions respectively
of 1.5° and 3°, as in refs. 70,71.

The cyclone density difference between El Niño and La Niña
phases is computed as the difference between TC densities summed
over Niño and Niña phases, and weighted by the total number of
respective phases.

Observed Hs and Hb
The sea state Climate Change Initiative satellite dataset72 is used for
validation of the model significant wave height (Hs). This dataset
provides along-track inter-calibrated and denoised73 estimations of Hs
from all available altimeter measurements over the 1992–2017 period.
Coastal values in a 50km along-shore area are flagged out because of
the poor reliability of the data due to land interference with the signal.
Inaccurately measured values are also flagged out based on the noise
of the retrieved signals. In order to perform aproper comparison, both
model outputs and along-track satelliteHs are extracted in a0.5° × 0.5°
box on our coastal-extracted points (which are ~50 km offshore).
Model points are considered only when a satellite measurement is
available. The annualmean and 98th percentile of Hs are computed for
each coastal point and each simulated year, aswell as their correlation,
bias, normalized bias, normalized root mean square error, and
scatter index.

The Copernicus Marine Service (CMEMS) In Situ Thematic
Assembly Center (INSTAC) buoy data (http://www.marineinsitu.eu/)
are used for validation of the model breaking height (Hb). Among all
the in situ wave buoys available, not all of them record both theHs and
Tp parameters, required to compute Hb.We therefore uses a subset of
buoys which were recording both variables during at least one year
over the period 2012–2016. We also keep only buoys located at least
50 km offshore, and moored in more than 50m water depth to be
consistent with our modeled data. 70–80 buoys were fitting these
criteria for the 5-year period of validation.

Data availability
All data used in this study are available online or from the corre-
sponding author upon request. Simulationwave fields extracted at the
nearest deep-water location for each of the coastal points are available
at: https://doi.org/10.12770/25312128-f0b5-46ca-9f14-3bb38469ff05
along with the processed data used in the Figures. Observational
data are available from the different providers: for K. Emanuel TC Best
Tracks data at ftp://texmex.mit.edu/pub/emanuel/HURR/tracks/, for
theCCI satellite dataset at: ftp://anon-ftp.ceda.ac.uk/neodc/esacci/sea_
state/data/v1.1_release/, for the CMEMS INSTAC buoy data at http://
www.marineinsitu.eu/. The climate indices are available: for NAO at
https://www.cpc.ncep.noaa.gov/products/precip/Cwlink/pna/nao.
shtml, for SAM at https://www.cpc.ncep.noaa.gov/products/precip/

Cwlink/daily_ao_index/aao/aao.shtml, and for Nino3.4 at https://www.
esrl.noaa.gov/psd/data/climateindices/list/.

Code availability
The simulations were run with the WAVEWATCH III spectral wave
model version 6.07.150, publicly available at https://github.com/NOAA-
EMC/WW3/releases/tag/6.07.1. Parameterizations and settings used in
the study are described in the Method section. The analyses and fig-
ures were performed with Matlab and Python scripts, available from
the corresponding author upon request.
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