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1 INTRODUCTION 

 
Concerns related to fluid emissions from the seabed are relevant to both the biosphere and the geo-

sphere. They include marine geohazards such as earthquakes, sedimentary instabilities, and the re-

lease of large amounts of methane. These fluids escape from the seafloor and could potentially mi-

grate to the ocean-atmosphere interface through the water column. In addition, precipitation from 

hydrothermal sources (e.g., metal sulphides)1 can offer mineral resources. For the above reasons, it 

is crucial to detect and locate fluid emissions. Methane is produced through thermogenic and biogenic 

processes2 and methane seeps can be found worldwide in different geological environments. The 

gas is either dissolved or present as isolated bubbles or "megaplumes".  

 

Multibeam Echo Sounders (MBESs) are underwater mapping devices used to capture acoustic 

backscatter data from targets within the water column. MBESs, active sonars equipped with transmit-

ting and receiving antennas, are primarily utilized for bathymetric surveys3. These sonars are typically 

mounted on the hull of ships and can create a substantial number of beams (e.g., 288 and 880 beams 

for the EM302 and EM122 Kongsberg and the Reson Seabat 7150 MBES, respectively). With their 

wide swath (usually between 120 and 170 degrees), MBESs can effectively cover extensive areas of 

the seabed and large volumes within the water column. This process creates Water Column Images 

(WCIs) depicting the acoustic backscatter from the water column during each ping cycle (Fig. 1). The 

utilization of water column data for fluid detection has been gaining traction since 20094. However, 

the substantial amount of recorded data makes manual interpretation a time-consuming task. In ad-

dition, automatic methods are challenged in the region under the top specular sidelobe in WCIs, 

namely the Minimum Slant Range (MSR)5 (Figs. 1 and 2). Finally, automated methods must be able 

to adapt to WCIs from various sounders with different acoustic configurations, resulting in distinct fluid 

features and WCI acoustic characteristics. 

 

To address this challenge, convolutional neural networks, like YOLOv56, are increasingly used to 

detect objects in images due to their ability to learn features and classifiers from large datasets7. 

Perret et al. (2023)8 conducted a study exploring the use of YOLOv5 to detect fluids in images of 

water column, intending to develop a versatile and transferable approach to this issue. It has also 

shown interesting detection performances when learning the model with WCIs from two different 

MBESs. Based on this latter conclusion, the present study aims to investigate how to train a YOLOv5 

model based on: i) a small number of WCIs without fluid, acquired at the start of a marine expedition 

operated with a MBES Kongsberg EM122, and ii) a set of labelled WCIs with and without fluids ac-

quired with other MBESs (i.e. Kongsberg EM302 and Reson Seabat 7150). 
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The first set of WCIs is composed of non-fluid related echoes from the first acquired lines of the 

PAMELA-MOZ01 marine expedition (first day of this one-month-long marine expedition). The latter 

WCIs are those used in Perret et al. (2023). The aim was to train the neural network on WCIs with 

the acoustic characteristics of the EM122. This network was thus used for inference over the entire 

PAMELA-MOZ01 EM122 data, including challenging data acquired during coring operations and un-

synchronized acoustic surveys (i.e. SubBottom Profiler, SBP). Our results show that the YOLOv5 

trained with this method can effectively extract fluid features from other sounders without making too 

many false detections, facilitating its use during marine expeditions. 

 

2 MATERIAL AND PROCEDURES 

2.1 Water Column MBES Data 

 
A MBES uses wide-beam emission for coverage and a narrow beam for high resolution along the 

track. The signals are processed to form beams on the port and starboard angles and are then digit-

ised and reprojected in polar geometry. In this study, the water column images are obtained by cutting 

the water column data below seafloor detection. These images are successively captured as the 

vessel progresses. 

 

Marine expedition GAZCOGNE1 GHASS2 PAMELA-MOZ1 

Survey information Aquitaine Basin (Bay 

of Biscay) 

07-08 2013 
 

Offshore Romania 

(Black Sea) 

08-09 2021 

Mozambique 

Channel 

09-10 2014 

MBES Kongsberg 

EM302 
 

Reson Seabat 

7150 

Kongsberg 

EM122 

Frequency (kHz) [28.25-29.5] [22.5–24.5] [12-12.125] 

WC sampling frequency (Hz) 1623 6022 [78-202] 

Number of beams 288 880 288 

Total pulse length [ms] [1.1-7.5] [2-4.6] [6.8-11] 

Beam aperture (°) 1 (Tx) x 2 (Rx) 0.5 (Tx) x 0.5 (Rx) 1 (Tx) x 1 (Rx) 

Mean depth (+std) (m) 532 ±354 1022 ±452 2992 ±860 
 

Acoustic and environmental 
conditions 

multiple transmission 
sectors, presence of 

biomass 

presence of dolphins, 
strong backscattering 

seabed 

multiple transmission 
sectors, interference 

with subbottom profiler 
and coring operations 

Table 1: Key information on the GAZCOGNE1, GHASS2 and PAMELA-MOZ1 MBES dataset. 

This study utilises data from three campaigns (Table 1). The first two campaigns (GAZCOGNE1 and 

GHASS2) involved the observation and labelling of fluids (methane bubbles). The GAZCOGNE1 pro-

ject9 facilitated exhaustive acoustic mapping of gas seeps in the Aquitaine Basin (Bay of Biscay). 

During this expedition, a 30 kHz Kongsberg EM302 MBES was operated. The GHASS2 marine ex-

pedition10 investigated the dynamics of gas emissions in the Black Sea and the relationship between 

gas hydrates, sedimentary deformations, and submarine instabilities. A 24 kHz Reson Seabat 7150 

was employed accordingly. These two sets of data were used exclusively to detect potential fluids on 

the third dataset from the PAMELA-MOZ111 campaign exploring seamounts, carbonate platforms, 

and fluid systems in the Mozambique Channel. The Kongsberg EM122 (12 kHz) was used during this 

marine expedition for seafloor mapping and fluid detection purposes. During PAMELA-MOZ1, the 

EM122 MBES insonified a wide seafloor area of nearly 5 000 km2 corresponding to 477 847 acquired 

water column pings. 
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The first two datasets were manually labelled by operators (Figs 1 and 2). Then, additional fluid labels 

were included in the training with the help of YOLOv5 (pseudo labelling) and verified by an expert. 

Experts also examined the PAMELA-MOZ1 dataset, and the fluid outlets were located. However, we 

chose not to provide any information to the network from the EM122 fluid signature in EM122 WCIs. 

This information was only used for final performance evaluation, and not for training. Instead, a limited 

part of the PAMELA-MOZ1 dataset, without any fluid records (corresponding to the first 20 acquired 

MBES lines, out of 733), was used to train the network, taking into account the acoustic and environ-

mental context of the expedition. 

 
These three datasets show significant variability from an acoustic perspective. There are differences 

in the parameters used for acoustic acquisition, including variations in the MBES used, their operating 

frequency, and the aperture for the formed beams (Table 1). Additionally, it is important to note that 

the acquisition parameters of an MBES can vary even during the same mission. During the PAMELA-

MOZ1 marine expedition, the EM122 MBES acquisition parameters were adjusted based on water 

depth. Three distinct acoustic acquisition modes were used, resulting in different acoustical charac-

teristics, like the number of transmission sectors, angular apertures, and pulse length. The acoustic 

acquisition modes are classified as 'deep' (57% of the dataset; Fig. 3), 'medium' (31%; Fig. 4), and 

'shallow' (12%) modes. The EM122 MBES compensates for pitch and roll by creating steered emis-

sion sectors to optimise the geographical coverage of the survey area (Fig. 3). 

 

Figure 1: Gas-bubble-related echo in a GAZCOGNE1 (Kongsberg EM302) WCI.  

Figure 2: Gas-bubble-related echo in a GHASS2 (Reson Seabat 7150) WCI. 

 

Automatically analysing the PAMELA-MOZ1 dataset is particularly challenging due to the high level 

of acoustic interference from the subbottom profiler (Ixblue Echoes, 1.8-5.3 kHz). This interference 

contaminates the quasi-totality of the survey as the SBP was in acquisition mode for ~97% of EM122 

acquisition time (Fig. 3). There was no synchronisation to optimise the seismic acquisition. EM122 
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acquisition was maintained during coring operations resulting in ~17% of the water column data rec-

orded at “fixed” stations.  

 

To summarize, the WCIs obtained during PAMELA-MOZ1 differ significantly from those of the two 

marine expeditions previously used to learn fluid features (Table 1 and Figs 1- 3). These differences 

are due to variations in acoustic and environmental characteristics. Furthermore, SBP-related inter-

ference and operations at fixed stations, in particular coring, coupled with the lack of knowledge on 

the appearance of the fluids on EM122 WCIs during training, make the automatic processing of these 

WCIs extremely complex for a conventional algorithm. 

 

Figure 3: PAMELA-MOZ1 WCI from “deep” mode acquisition with transmission sector changes and 

interference from the subbottom profiler signal. 

2.2 Deep-learning detection with YOLOv5 

 
Deep-learning algorithms are now more commonly used in object detection in images, provided that 

labelled training datasets are available12. Object detection is a computer vision task that involves 

identifying and localising objects of interest in images. In this study, we used the YOLO version 5 

(YOLOv5) algorithm (developed by Ultralytics and released in June 2020) as it offers both accuracy 

and computational efficiency6. The YOLO algorithm was the first to propose the one-stage approach 

using anchor boxes. YOLO's architecture consists of a feature extractor and a detection and locali-

sation head. The feature extractor hierarchically decomposes the spatial, intensity and texture infor-

mation in images into features. By combining these multiscale features, the detection and localisation 

head answers three questions: Are there objects in the image? If so, what class do they belong to? 

Where are these objects located in the image? Subsequent improvements led to the fifth version. In 

this study, we employed the small (S) version of the YOLOv5 algorithm, which has 7.2 million param-

eters. 

 

2.3 WCI training dataset 

 

To train an efficient YOLOv5 network, it is essential to control the information used by the network 

during training. These WCIs can be divided into three types: WCIs with fluid, WCIs without fluid and 

WCIs with environmental and acoustic artefacts. As demonstrated in Perret et al. (2023), the incor-

poration of WCIs without fluid and those exhibiting acoustic and environmental artefacts (in a distinct 

class) particularly reduced the incidence of false positives, in comparison to a network trained exclu-

sively with WCIs exhibiting fluid characteristics. In the construction of our training set for PAMELA-

MOZ1, we employed analogous methodologies.  

 

First, to reduce the number of false detections of acoustic interference and artefacts, hard negative 

mining13 was employed. This task involves making an inference using a model trained with GHASS2 

and GAZCOGNE1 data. The inference was performed in this study on all WCIs from the first twenty 
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EM122 acquired lines out of 733. The network produces errors when dealing with artefacts or inter-

ferences that share characteristics with fluids. To address this issue, we selected some of these de-

tections (Table 2) that were reclassified as 'acoustic artefacts/environmental phenomena' to build a 

new two-class training set (fluid and artefact classes). This helped the network distinguish artefacts 

from fluids. Both PAMELA-MOZ1 and GHASS2 artefacts were included in the dataset. GHASS2 ar-

tefacts were considered complementary, such as 'cetacean' echoes or bottom detection failure, which 

we believe would be interesting for our network to not detect as fluid if this type of echo appears in 

the PAMELA-MOZ1 data. 

 

To limit false positive detections, another approach is to present the network with WCIs that do not 

contain fluid and artefacts. The network can learn the acoustic characteristics of EM122 WCIs in our 

case by including PAMELA-MOZ1 and GAZCOGNE1 data in the 'deep' and 'medium' configurations. 

This aids the network in generalising to these acoustic configurations, even though they are not from 

the same MBES. Additionally, features from EM302 acoustic configurations, such as transmission 

sectors, may be used to generalise to acoustic configurations on EM122. 

 
Set GAZCOGNE1 GHASS2 PAMELA-

MOZ1 

Total WCIs 

~55% Training set WCIs with fluid 3 500 1 750 0 5 250 

~20% Training set WCIs without fluid 633 0 1 267 1 900 

~25% Training set WCIs with artefacts 0 1 185 1 185 2 370 

Inference (test set) 0 0 477 847 477 847 

Table 2: Dataset composition used in this study for the training (percentage refers to the rate of this 

WCI category in the training set) and test set. 

 

The training set comprises 9 520 WCIs and is presented in Table 2. The percentages of WCIs with 

and without fluid-related echoes are based on a previous study conducted by Perret et al. (2023). To 

limit the number of WCIs with fluid-related echoes from GAZCOGNE1, we decided to include only 3 

500, as exceeding this number did not improve performance on this particular marine expedition8. We 

included more GAZCOGNE1/EM302 fluid data as this MBES is technically closer to the EM122 than 

the Reson Seabat 7150, which means that fluid-related echoes may be more similar in terms of fea-

tures in EM122 WCIs than in Reson Seabat 7150 WCIs. 

The training was conducted over 100 epochs and inference was performed on all PAMELA-MOZ1 

WCIs. 

 

3 RESULTS 
 

3.1 Fluid detection performance 

 
The training of the network took 6 hours and 10 minutes and the inference on all PAMELA MOZ-1 

pings (477 847 WCIs) took 5 hours and 27 minutes with 1 304 detections using a 0.6 confidence 

threshold. This represents a detection rate of 0.27% of the marine expedition, greatly reducing the 

number of WCIs that operators observed. The network detected typical elongated fluid-related echoes 

in WCIs (Fig. 4) and even some fluid-related echoes with a relatively small height above the seafloor 

(e.g. 100 m in Fig. 5), demonstrating its high sensitivity to this type of echo, regardless of interference 

or differences in frequency, aperture, and number of sectors in the WCIs. 
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Figure 4: Good fluid detection made by the network (“medium” mode acquisition) on a typical elon-

gated fluid-related echo which reaches 210 m above the seafloor. 

 

 
Figure 5: Good fluid detection made by the network (“medium” mode acquisition) on a small-height 

fluid-related echo which reaches only 100 m above the seafloor. 

 
3.2 Errors made by the network on acoustic data 

 
The majority of fluid outlet locations (88 %) identified by the human expert were found by the network 

(with a threshold of 0.6), except for four of them. However, the network identified three of these loca-

tions with a lower confidence threshold (0.27 to 0.34), with only one undetected echo, that is under 

MSR (Fig. 6). If the confidence threshold were lowered to 0.27 to include these three lower confidence 

detections, the PAMELA-MOZ1 dataset would contain 5 470 detections, accounting for 1.14% of the 

total dataset. Out of all the pings detected by the network with a 0.6 confidence threshold, 498 were 

true positives and 806 were false positives. The network is capable of detecting fluid under MSR (with 

63 true positives at a threshold of 0.6). It is worth noting that false detections are mainly caused by 

1) EM122 nadir emission sector changes (43% of false detections) (Fig. 7) and 2) coring operation 

(Fig. 8) (11% of false detections).  

 

The composition of the training sets can easily explain these false positives. It is worth noting that 

medium and shallow configurations are not well represented in the training set, with only one line in 

medium mode and none in shallow mode. Similarly, WCIs acquired during coring operations are ab-

sent from the training set. The number of false positives for EM122 transmission sector changes (Fig. 

7) is negligible, with 347 false detections including 21 in deep mode, 133 in medium mode and 193 

in shallow mode. This is insignificant given the large number of water column images in these config-

urations: 146 521 WCIs for medium mode and 58 735 WCIs for shallow mode (while 272 591 for deep 

mode).  
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Figure 6: Single fluid-related echo not detected by YOLOv5. The echo was below the minimum 

slant range where noise from antenna sidelobes becomes visible (“medium” mode acquisition). 

 

Figure 7: False positive made by the network on transmission sector changes at the nadir (“me-

dium” mode acquisition configuration). 

 
 Figure 8: False positive made by the network on corer-related echo (“deep” mode acquisition config-

uration). 

 

4 CONCLUSION 
 
This study demonstrates that a YOLOv5 model, trained with data adapted to the acoustic context, 

can successfully transfer knowledge of 'fluid-related' echoes from one MBES to another while mini-

mising false detections. The network was able to detect the majority of fluid outlets present in the 
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dataset, even under the Minimum Slant Range. Errors made by the network were mostly due to con-

figurations not seen during training. Including these water column images in the training network will 

enhance its robustness for future marine expeditions with the same equipment deployment. An ac-

curate representation of the range of acoustic signatures would consequently induce minimal false 

positives. Additionally, the network training and inference time of 11 hours and 37 minutes makes it 

suitable for use on-board. For instance, the network can be trained on data acquired at the beginning 

of the marine expedition and then utilised for the rest of the mission while further data is being ac-

quired.  
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