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Abstract 

Vulnerability of elasmobranchs to fishing and declines in populations over the last decades have prompted calls for improved fisheries 
management and conservation ef for ts. The Raja clavata (Thornback ray) population in the Greater North Sea ecoregion is a popula- 
tion that has historically shown marked declines with increasing industrialized fishing, while a lack of robust catch data of commercial 
fisheries hampers assessment of population abundance. Using fisheries-independent survey catch data haul-by-haul surface area esti- 
mates, we employ integrated-nested Laplace approximation to estimate total and size-class abundances of R. clavata . By accounting for 
spatio-temporal changes in the population, size selectivity between survey gears, and minimizing bias from partially overlapping survey 
areas, we demonstrate major changes in the abundance and distribution over the past three decades. Notably, increases of abundance 
in the Eastern English Channel and south-eastern North Sea result in an overall increase in the abundance and biomass of the popula- 
tion. Our findings expand understanding of the spatio-temporal dynamics and exploitation of this data-limited stock, emphasizing the 
potential for improved population abundance estimates to inform future stock assessments. 

Keywords: spatio-temporal models; integrated nested laplace approximation; elasmobranch; thornback ray; greater North Sea 
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Introduction 

The impacts of the world’s fisheries on the marine environ- 
ment are substantial, affecting species that are used for food 

or feed, and on species that are caught as bycatch (Kelleher 
2005 ). Among these bycatches are elasmobranchs that are par- 
ticularly vulnerable to mortality caused by fishing (Musick et 
al. 2000 , Gallagher et al. 2012 , Worm et al. 2024 ). This vul- 
nerability to fishing can be contributed to life-history traits 
commonly associated with low rates of population growth,
such as slow somatic growth, low fecundity, and slow mat- 
uration (Walker and Hislop 1998 , Stevens et al. 2000 , Ellis 
et al. 2008 ). Being meso- and top predators, declines in elas- 
mobranch populations transform the structure and function 

of marine communities through trophic cascades, competitive 
release, and species replacement (Stevens et al. 2000 , Baum 

and Worm 2009 ). Therefore, declines in elasmobranch popu- 
lations over the last decades have resulted in calls for increas- 
ing conservation efforts (Dulvy et al. 2008 , Stein et al. 2018 ,
Sherman et al. 2022 ). 

Raja clavata (Thornback ray) is an elasmobranch species in- 
habiting the Northeast Atlantic that showed marked declines 
in abundance in the North Sea and English Eastern Chan- 
nel, managed as the North Sea, Skagerrak, Kattegat, and East- 
ern English Channel stock, between the 1960s and the 1990s 
(Walker and Heessen 1996 , Engelhard et al. 2015 ), following 
the introduction of mechanised bottom trawling (Engelhard 

2008 ). This decline of R. clavata coincided with a progres- 
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
ive reduction of a historically widespread distribution that 
panned across the entire southern North Sea in the 1900s to a
istribution reduced to the Greater Thames Estuary and Hum- 
er Estuary in the 1980s (Walker and Heessen 1996 , Sguotti
t al. 2016 ). Its population has since been concentrated in
he south-western North Sea with relative abundance trends 
erived from research vessel survey catches suggesting an in- 
rease in abundance (ICES 2021 ). 

Meanwhile, a lack of robust catch data from commercial 
sheries hinders the assessment of population abundance and 

xploitation pressure from stock assessments, relying on these 
atches (Aarts and Poos 2009 , Sampson 2014 , Cook 2019 ).
he mandatory reporting of landings by species for Rajidae in

he greater North Sea ecoregion only started in 2009 (Amelot
t al. 2021 ). Moreover, species misidentification of commer- 
ial catches has been common because of morphological sim-
larities within the genus Raja (Thys et al. 2023 ). As a result,
o species-specific commercial catch estimates were available 
rior to 2007. Stock assessments based on unreliable long time
eries of catches are thus uncertain (ICES 2017 ). Moreover, a
ommon total allowable catch for ray species, implemented 

n 1999 by the European Commission, encourages the dis- 
arding of non-valuable rays over valuable rays, hampering 
stimation of total catches from shore-based landings (ICES 
017 , Amelot et al. 2021 ). 
In contrast, data from research vessel surveys can inform 

ong-term trends in local population abundances. Species 
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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dentification on board of research vessels is done by trained
bservers. Hence, species misidentification is expected to oc-
ur substantially less frequently compared to fisheries catch
ata. The research vessel surveys, however, often have lim-
ted geographic ranges in which they sample (Bogaards et al.
009 ). Within these surveys, variances in individual samples
re often high, owing to spatial and temporal heterogeneity in
bundance (Pinto et al. 2019 , Alglave et al. 2022 ). This het-
rogeneity is caused by species migration under the influence
f ontogenetic niche shifts, seasonal spawning migration, local
ifferences in mortality, aggregation behaviour, and individual
esponses of animals to changes in the environment (Dulvy
t al. 2017 , McInturf et al. 2023 ). Models that aim to pro-
ide population-level abundance estimates must thus be able
o account for spatiotemporal variability that affects species
bundance and patterns (Thorson and Minto 2015 ). 

Integrated-nested Laplace approximation (INLA), pro-
osed by Rue et al. ( 2009 ), is a powerful method for analysing
ariability in species abundance, through spatial and tempo-
al correlation structure in latent variables. The importance
f accounting for spatial variability in marine populations
as long been recognized in marine ecology and marine re-
ources management (Goethel and Cadrin 2021 ). It is thus
o surprise that INLA is gaining popularity to address issues
here spatial heterogeneity plays a strong role (Pinto et al.
019 ). It has been used to identify fish nurseries (Paradinas et
l. 2015 ), identify best fishing-suitable areas (Paradinas et al.
016 ), explore predator–prey and competitor species habitat
verlap (Sadykova et al. 2017 ), and to predict the occurrence
f Mobula mobular from incidental catches (Lezama-Ochoa
t al. 2020 ). Generally, the spatial distributions are estimated
rom incidence, rather than abundance (Pennino et al. 2013 ,
016 , Pinto et al. 2019 ). 
Here, we use INLA to estimate total and size-structured

bundance of Raja clavata in ICES Subarea 4 and division
.d, using surface area (SA) estimates of fisheries-independent
esearch vessel survey data, explicitly accounting for spatial
nd temporal changes in the population. By using an INLA
odel that is explicitly size structured and uses count data

ather than incidences, we aim to obtain abundance estimates,
nd distinguish between effects of recruitment and mortality.
e combine long-term survey data from the database of trawl

urveys (DATRAS), spanning more than 30 years, allowing for
ifferences in the size selectivity between gears used in the dif-
erent surveys. 

ethods 

urvey data 

esearch-vessel catch data for the North Sea and Eastern En-
lish Channel was obtained from ICES database on trawl
urveys (DATRAS), hosted by the International Council for
he Exploration of the Sea (ICES; ICES 2023b ). The data
ere downloaded in the exchange format for the Interna-

ional Bottom Trawl Survey (NS-IBTS) for Quarters 1 and
, the Beam Trawl Survey (NS-BTS) for Quarter 3, and the
hannel Groundfish Survey (FR-CGFS) for Quarter 4. The
xchange format in DATRAS included two relevant datasets,
aul records and length records of catches. The latter included
pecies identification codes, counts of catch per length, geo-
raphic location of haul, time of haul, haul duration in min-
tes, haul length in meters, and gear width estimates. 
While the NS-IBTS surveys have covered the North Sea
ince 1977, the FR-CGFS has covered the Eastern English
hannel only since 1988. Hence, we have chosen 1988 as the
rst year of the analyses. Throughout the study period, the
orth Sea was continuously covered by the NS-IBTS and NS-
TS, while coverage of the English Channel increased over
ime with the addition of BTS hauls since 1990, and NS-IBTS
auls since 2007. The last year of the analyses is 2023. A full
verview of the haul locations per year and survey is given in
igs S1 –S3 . 
All valid hauls were retained from the haul records, while

ata for R. clavata (WoRMS AphiaID: 105883) was selected
y only using catches with valid length measurement. For each
aul, catch in counts per haul was calculated, aggregated into
hree length classes based on commercial landing size and
ength-at-maturity. The threshold for commercial landing size
as defined as 50 cm, with individuals < 50 cm being classi-
ed as unexploited, and individuals ≥50 cm being classified
s exploited. The threshold for maturity classification for R.
lavata was defined as 71 cm, with individuals < 71 cm being
lassified as immature, and individuals ≥71 cm being classified
s mature. This threshold was based on estimated lengths at
0% maturity in the North Sea, being 68 cm for males (Walker
999 ) and 74 cm for females (McCully et al. 2012 ). This re-
ulted in three size class classifications of individuals being cat-
gorized as size class 1, unexploited-immature individuals of
ize < 50 cm, size class 2, exploited-immature individuals of
ize interval [50 cm, 71 cm), and size class 3, exploited-mature
ndividuals of size ≥71 cm. 

To account for the differences in sampling between surveys
hat use different gears, the fished SA for each haul was calcu-
ated. The fished SA was based on wingspread times trawled
istance for NS-IBTS and FR-CGFS and total beam width
imes trawled distance for NS-BTS. Missing SAs for the NS-
BTS were inferred from a linear relationship between SA and
aul duration. The intercept of this relationship was set to
ero, and its slope was estimated using a regression analy-
is of the available data for SA and haul duration. Missing
rawled distance for the NS-BTS were inferred from a linear
elationship between trawled distance and haul duration. The
ntercept of this relationship was set to zero, and its slope was
stimated using a regression analysis of trawled distance and
aul duration. 
The gear of the FR-CGFS survey was changed be-

ween 2014 and 2015, with limited information about the
ingspread prior to 2014. The wingspread prior to 2014
as set to 10.34 m, based on Auber et al. (2015) . Miss-

ng wingspreads in 2015 were set to be equal to average
ingspread in the period 2016–2023. 

nvironmental variables 

abitat, substrate, and depth potentially affect the spatial
istribution of R. clavata (Sguotti et al. 2016 , Wright et al.
020 ). Therefore, European Nature Information System habi-
at types and substrate information from EUSeaMap 2021
road-Scale Predictive Habitat Map for Europe (Vasquez et al.
021 ) were obtained ( Fig. S4 ). Habitat and substrate informa-
ion for each haul was extracted by intersection of haul shoot
osition with polygons of substrate ( Table S1 ) and habitat
 Table S2 ). 

Depth data were obtained from the European Marine Ob-
ervation and Data Network (EMODnet). For the greater

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
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North Sea ecoregion, this depth data is spread over four tiles: 
D4, D5, E4, and E5. These tiles were combined, and the spa- 
tial resolution was upscaled to 1 × 1 km. Depth information 

for each haul was obtained by intersecting geographic haul lo- 
cation using shooting position and the depth grid. The maxi- 
mum depth at which R. clavata was caught was 165 m. Hence,
hauls deeper than 165 m (1.1%) were excluded from further 
analysis to improve model fitting. 

Modelling catches of R. clavata maturity classes 

The model building followed a hierarchical Bayesian frame- 
work approach using stochastic partial differential equations 
(SPDE) in “R-INLA” package ( https://www.r-inla.org; Rue et 
al. 2009 , Lindgren et al. 2011 , Lindgren and Rue 2015 ) in R 

(R Core Team 2024 ), allowing for direct interpretation of spa- 
tial and temporal dependencies in the data. The mixed-effects 
model was defined as follows: 

C it ∼ NB 

(
μit , k 

)
, 

E ( C it ) = μit , 

var ( C it ) = μit + 

μ2 
it 

k 

, 

log ( μit ) = I + Survey + Size class + Survey × Size class 

+ offset 
(
log ( SA 

)
) + αtm 

+ βdm 

+ νit , 

αtm 

= αt−1 ,m 

+ ηt,m 

, ηtm 

= N 

(
0 , 

1 

ρηt,m 

)
, 

βdm 

= βd−1 ,m 

+ ηd,m 

, ηdm 

= N 

(
0 , 

1 

ρηd,m 

)
, 

νit = ρ × νi,t−1 + υit , 

υit ∼ GMRF ( 0 , �) , 

where C it represents catch in numbers of individuals per haul 
location i in year ( t), assuming negative binomial distribution.
The negative binomial model has an estimated mean ( μit ) and 

estimated shape parameter ( k ). The mean was modelled us- 
ing an intercept I and multiple covariates: Survey has three 
levels, one for each of the surveys, to estimate differences 
among surveys, given all other relevant factors such as loca- 
tion, year, and size class. Three size classes were used in the 
model: with size class 1 represented by m = 1 , size class 2 by 
m = 2 , and size class 3 by m = 3 . The interaction between 

surveys and size classes is also included to account for the 
fact that surveys may have varying gear efficiencies across size 
classes. The offset term incorporates the log of the SA for each 

haul. Because of the log link in the model, the estimated mean 

count increases linearly with SA. Habitat or substrate covari- 
ates were added as fixed effects to test for their influence on 

catches. 
Three random walks describe trends in mean count over 

discrete years for the three size classes. This allows the model 
to fit different trends for size classes over time, with estimates 
for year effect αtm 

changing between years by ηtm 

, modelled 

as a normal distribution with mean zero and precision ρηt,m .
Likewise, three random walks describe trends for discrete 1- 
m depth steps (d) by βdm 

with the error term ηdm 

modelled 

as a normal distribution with mean zero and precision ρηd,m 
.

Finally, there is a spatio-temporal component of the model 
defined as v it , the combination of a spatially autoregressive 
gaussian random field ( υit ), a Gaussian Markov random field 

(GMRF) with mean 0 and covariance matrix �. Changes in 

the GMRF occur over time, using an autoregressive function,
where ρ determines how much previous years affect subse- 
quent years. The temporal autocorrelation was modelled as 
n AR1 process with nine equally spaced temporal knots from
988 to 2023, to reduce computational costs (Banerjee 2004 ,
ona Lasinio et al. 2013 ). 

The GMRF can be approximated using a SPDE in the
NLA-SPDE approach (Rue et al. 2009 ). Using INLA-SPDE 

elies on discretizing space by defining a mesh that creates an
rtificial set of neighbours over the study area, allowing for es-
imation of the spatial autocorrelation between observations 
Rue et al. 2009 , Van Niekerk et al. 2023 ). A stationary solu-
ion of the SPDE has a Matérn covariance function that gives
he spatial correlation (Zuur et al. 2017 ), using two param-
ters, a local precision parameter τ and a scale parameter κ
Rue et al. 2009 , Zuur et al. 2017 ). The marginal variance σ 2 

u 
nd range ρ are functions of these parameters, with variance 
2 
u being 1 / ( 4 × π × τ 2 × κ2 ) and range ρ being 

√ 

8 / κ in our
pplication that is using two-dimensional space. The required 

esh was generated using Delaunay triangulation (Berg et al.
008 ) with boundaries that were generated in several steps.
irst, a non-convex boundary polygon was created from all
bservations, with an extension radius that was equal to 2%
f the approximate diameter of the observation set. This non-
onvex boundary polygon was then restricted to be contained 

ithin the Greater North Sea to prevent overlap with land-
asses. This boundary polygon was then used to create a mesh
ith an inner and outer boundary. The inner boundary was

qual to the boundary polygon. The outer boundary extended 

his boundary polygon by our initial guess of the range of spa-
ial autocorrelation, being 130 km, based on visual inspection 

f the data. 
For the inner mesh, the largest allowed triangle edge length

as set to 26 km, being 20% of our initial guess for spa-
ial autocorrelation. For the outer mesh, the largest allowed 

riangle edge length was three times larger. This resulted in
 fine scale inner mesh comprising of the study area, with
 coarser outer mesh to avoid edge effects in our estimates.
he minimum allowed distance between points (cut-off) was 
et to 20 km. This resulted in a mesh with 1407 nodes
 Fig. S5 ). 

Models of increasing complexity were compared through 

atanabe–Akaike information criterion (WAIC) and mean 

ogarithmic condition predictive ordination (LCPO) ( Table 1 ).
odels 1–4 did not include spatial or temporal correlations,
odels 5–8 included spatial correlation, and models 9–12 

ncluded spatial and temporal correlations. WAIC measures 
he compromise between fit and parsimony, LCPO (Roos and 

eld 2011 ) assesses the predictive power of the model as a
leave one out” cross-validation index (Pennino et al. 2013 ,
ezama-Ochoa et al. 2020 ). Lower WAIC and LCPO suggest
etter model performance. 

riors, starting values, and model fits 

efault diffuse INLA priors were used for the intercept, fixed
ffects, and random effects. For the intercept, this means a
ormally distributed prior with mean and precision equal to 

. The fixed effects are assigned normally distributed priors 
ith mean equal to 0 and precision equal to 0.001. For log (κ ) ,
 normally distributed prior was used, based on the approx-
mate diameter of the mesh, such that the distribution mean
as equal to log ( 

√ 

8 / ( 0 . 2 × mesh diameter ) ) , and precision 

as equal to 0.1. For log (τ ) , a normally distributed prior was
sed, based on the prior mean for κ, such that the distribution

https://www.r-inla.org;
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
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Table 1. Summary of model str uct ure. 

Model Added fixed effects Depth RW WAIC LCPO 

Non-spatial 
1 71 968 35 400 
2 + 67 417 33 811 
3 Habitat + 66 047 32 742 
4 Substrate + 65 470 32 850 

Spatial 
5 55 479 27 499 
6 + 54 214 27 034 
7 Habitat + 54 209 27 036 
8 Substrate + 54 181 27 020 

Spatio-temporal 
9 52 692 26 479 
10 + 51 743 26 001 
11 Habitat + 51 744 26 041 
12 Substrate + 51 869 26 031 

All models included fixed effects for the interaction between survey and size-class, and a random walk for year, for each size class. The model with the lowest 
WAIC and mean LCPO is indicated in bold. Plus signs ( + ) indicate the presence of a random walk effect for depth. 
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ean was equal to log ( 
√ 

( 1 / 4 π × ( prior mean κ ) 2 ) , and pre-
ision equal to 0.1. 

Model convergence was evaluated using the eigenvalues of
he Hessian matrix, and convergence was declared if all eigen-
alues were positive. For complex models where default start-
ng values did not yield model convergence, starting values
rom previously fitted simpler models were provided and re-
tted, using the inla.rerun() function, until a successful fit was
ound. 

odel predictions and abundance estimations 

he model with the lowest WAIC and LCPO was used to
ake predictions and to generate annual spatial distributions
f abundance estimates. To estimate medians and 95% credi-
le intervals (CI) for model predictions and abundances, 1000
amples were drawn from an approximated posterior of the
tted model. For each sample, count estimates were generated
or cells on a regular grid of 5 km 

2 cell size, for each size class
nd year. The boundaries of the prediction grid were set by the
nterior mesh that was used when fitting the model. At each
rid location, depth was determined from the depth dataset. 

The area used for generating the abundance estimates was
et to the surface of the cells, so that predictions equalled ex-
ected counts in each cell. Catchability of surveys was ac-
ounted for by multiplying expected counts in each cell with
he inverse of two efficiency multipliers, following Walker et
l. (2017) . The first efficiency multiplier was set to 0.95 for
he largest mean length-at-age, representing species found pre-
ominantly on the seabed with flat body shapes (Walker et al.
017 ). The second efficiency multiplier consisted of size class
pecific catchability for the highest gear efficiency of the aver-
ge length per size class, based on species specific gear efficien-
ies for R. clavata obtained from Walker et al. (2017) ( Fig. S6 ;
able S3 ). 
To generate biomass estimates from the abundance esti-
ates per size class, a weight-length equation was used to es-

imate mean weight per size class: 

W m 

= a L m 

b , 

where W m 

was the weight for size m in grams, L m 

was the
ength of the size in cm. The a and b parameters were obtained
rom McCully et al. (2012) by averaging across sex. This re-
ulted in an estimate of a being 0.0054 and b being 3.0465.
he average weight for each of the three size classes was then
alculated as the average weight within the size class, weighted
y the catches per size. 
Summing the estimated counts and biomass over the en-

ire grid provided estimations of total population abundance
 A t,m 

) and total biomass ( B t,m 

), for each year t and size class
 . In turn, these were summed to obtain the total population

bundance and biomass for each year. 
The total exploited-unexploited ratio (EUR) was calculated

or each year from the predicted population abundance for
ach year and size class: 

EUR t = A t,m =2 , 3 / A t,m =1 . 

This EUR t was then smoothed by applying a moving av-
rage. The window for this average was equal to the 8-year
eneration time of R. clavata , averaged over the two sexes
Walker 1999 ). This moving average reduces noise likely due
o recruitment and reveals long-term trends of the EUR as a
roxy for mortality. Summarizing posterior estimates over the
rid cells contained within Roundfish Areas (RFA) provided
stimations of total population abundance for each year and
ize class per RFA with 95% credible intervals. 

esults 

urvey data 

he entire dataset contained 34 620 hauls for the three sur-
eys, of which 4428 contained catches of R. clavata . With
0 761 hauls, the NS-IBTS had the largest number of hauls
n the dataset, followed by the BTS with 10 862 hauls. Size
lass 1 was caught in 3250 hauls, size class 2 was caught in
155 hauls, and size class 3 was caught in 944 hauls. 

odel evaluations 

ccounting for depth as a random effect reduced WAIC and
CPO within non-spatial, spatial, and spatio-temporal mod-
ls ( Table 1 ). Explicitly accounting for spatial and spatio-
emporal variation in the models further reduced WAIC and
CPO ( Table 1 ). The addition of either habitat or substrate as
ovariates did not improve the WAIC or LCPO when spatio-
emporal variation was explicitly accounted for ( Table 1 ).

odel 10 demonstrated the lowest WAIC and LCPO ( Table

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
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Table 2. Numerical summary of the marginal posterior distribution of fixed effects. 

Parameter Mean SD Q0.025 Q0.975 

Intercept − 3 .252 0 .511 − 4 .253 − 2 .250 
Size class 2 − 1 .001 0 .219 − 1 .431 − 0 .571 
Size class 3 − 2 .542 0 .247 − 3 .026 − 2 .057 
Survey: FR-CGFS − 0 .985 0 .069 − 1 .121 − 0 .849 
Survey: NS-IBTS − 0 .623 0 .069 − 0 .758 − 0 .488 
Survey: FR-CGFS × size class 2 1 .371 0 .089 1 .196 1 .546 
Survey: FR-CGFS × size class 3 2 .466 0 .118 2 .235 2 .696 
Survey: NS-IBTS × size class 2 0 .300 0 .094 0 .116 0 .484 
Survey: NS-IBTS × size class 3 0 .816 0 .128 0 .565 1 .068 

For each parameter, the mean, SD, and 95% (Q0.025–Q0.975) credible intervals are provided. The intercept included the NS-BTS survey, size class 1. 

Figure 1. Marginal effect size of depth as random walk for the three size classes with 95% credible intervals: (a) size class 1 ( < 50 cm); (b) size class 2 
([50 cm, 71 cm)); and (c) size class 3 ( ≥71 cm). 

 

 

Figure 2. The Matérn correlation function (solid line) describes the 
correlation between locations in the SPDE model in relation to their 
distance to each other. The vertical dashed line indicates the estimated 
range, at which the correlation is ∼0.1 (horizontal dashed line). 
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1 ) and was therefore chosen as the best model to perform pre- 
dictions. 

Model fit with predictions 

The interaction between survey and size class was interpreted 

to result from differences in gear efficiency among the three 
surveys. The highest gear efficiency for size class 1 was es- 
timated for the NS-BTS survey (in Intercept; Table 2 ). The 
two other surveys showed significantly lower gear efficiency 
for this size class ( Table 2 ). The parameter estimates for size 
classes 2 and 3 were negative, suggesting a decrease in catches 
with increase size class for the NS-BTS ( Table 2 ). The interac- 
tion between survey and size class pointed to relative higher 
gear efficiencies for size classes 2 and 3, relative to size class 1,
when comparing FR-CGFS and NS-IBTS to NS-BTS ( Table 2 ).
As a result, the NS-BTS appeared to have the highest gear effi- 
ciency for size class 1, while the FR-CGFS showed the highest 
gear efficiency for size classes 2 and 3. 

The marginal effect for depth differed substantially among 
the three size classes. For the smallest size class, the marginal 
effect decreased with depth in the first 20 m, then increased 

approaching 90 m, followed by a decrease ( Fig. 1 ). For the in- 
termediate size class, the estimated abundances increased with 

depth at depths below 50 m. This effect of increasing abun- 
dance with depth at depths below 50 m was more pronounced 

in the largest size class ( Fig. 1 ). 
The spatial correlation in the data was estimated to have 

a range of ∼120 km (95% CI: 106–136 km) ( Fig. 2 ), follow- 
ing from an estimated K of 0.023 (SD = 0.001; Table 3 ) in 

the Matérn covariance function. The autoregressive parame- 
ter value ρ for the temporal effect was estimated to be 0.857 
SD = 0.015; Table 3 ), indicating a strong correlation between
he nine equally spaced temporal knots of the model. The re-
ulting posterior mean ( Fig. S7 ) and standard deviations (SDs)
 Fig. S8 ) for the estimated spatial field are provided in the sup-
lementary materials. 

patial abundance predictions 

he spatial distribution for all size classes of R. clavata
hanged noticeably over the period from 1988 to 2023. From
988 a distinct hotspot in abundance was observed in the

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
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Table 3. Numerical summary of the marginal posterior distribution of the 
hyperparameters. 

Parameter Mean SD Q0.025 Q0.975 

k 0 .341 0 .006 0 .329 0 .354 
ρηt,m =1 1 .649 0 .467 0 .914 2 .78 
ρηt,m =2 4 .235 1 .281 2 .232 7 .354 
ρηt,m =3 6 .416 1 .573 3 .863 10 .088 
ρηd,m =1 

0 .586 0 .127 0 .375 0 .881 
ρηd,m =2 

0 .696 0 .175 0 .414 1 .112 
ρηd,m =3 

0 .843 0 .233 0 .475 1 .410 
ρ 0 .857 0 .015 0 .825 0 .884 
κ 0 .023 0 .001 0 .021 0 .027 
τ 3 .542 0 .199 3 .166 3 .949 

For each parameter, the mean, SD and 95% (Q0.025-Q0.975) credible in- 
tervals are provided. 
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2 , fo
ize class 1 ( < 50 cm), size class 2 ([50 cm, 71 cm)), and size class 3 ( ≥71 cm). 
estern North Sea near the Wash and Humber estuaries on
he east coast of England, while at the same time, a hotspot off
he Greater Thames Estuary expanded ( Fig. 3 ). Abundances in
he Eastern English Channel increased in the early 2000s ( Figs
 and 4 ). Meanwhile, a distinct and persistent area of rela-
ively low abundance was observed in the north-east of the
astern English Channel from 1988 to 2023, located south-
est from the Strait of Dover ( Fig. 3 ). An overall reduction
f abundance was observed across the Northern North Sea,
hereas increasing abundances were observed in the south-

astern parts of the North Sea since 2008 ( Fig. 3 ). 
A closer look at the median predicted abundance of size

lasses of R. clavata revealed different abundance trends
cross RF As (RF As 1–7 and 10). The abundances in RF As 2,
, 5, 6, and 10 all surpassed their respective size-class spe-
ific pre-2000 abundance baselines at some point in time ( Fig.
r R. clavata in the Greater North Sea study area from 1988 to 2023, for 
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ic.oup.com

/icesjm
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Figure 4. Predicted abundance (in number of individuals) of size classes of R. clavata from 1988 to 2023 for RFA 1–7 and 10, with 95% credible intervals 
and pre-20 0 0 abundance peak baselines (dashed line) f or siz e class 1, siz e class 2, and siz e class 3. T he blue poly gon indicates the area used f or 
abundance predictions. Note that y -axes are log-scaled. 
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4 ). The increase in abundance was clearest in RFA 6 and 

10. There, abundances stayed above the pre-2000 abundance 
baselines across all three size classes after 2013. Abundances 
in RFA 1–4 appeared to be fluctuating without trend or de- 
creasing across all size classes ( Fig. 4 ). Abundances for all size 
classes in RFA 7 appeared to follow recovering trends since 
the late 2000s, with size classes being close to their respective 
pre-2000 baseline by 2023 ( Fig. 4 ). 

In 2023, the greatest abundance across all three size classes 
of rays was found in RFA 10 with 19.67 million (95% CI: 
13.83–29.17 million) for size class 1, 10.47 million (95% CI: 
7.63–15.49 million) for size class 2, and 2.74 million (95% 

CI: 1.93–4.18 million) for size class 3 ( Fig. 4 ). 
otal abundance and biomass predictions 

otal abundance for the three size classes initially decreased 

rom 1988 onwards, followed by an increase that started in
996 for size class 1 and in the early 2000s for size classes 2
nd 3 ( Fig. 5 ). 

Size class 1 was the largest size class in the population
uring the entire study period. For this size class, the lowest
bundance was observed in 1995, being ∼3.64 million indi- 
iduals (95% CI: 2.27–8.09 million). Since 1996, abundance 
teadily increased, with the highest abundance being estimated 

n 2020 at 51.46 million individuals (95% CI: 34.45–107.79 

illion; Fig. 5 ). 
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Figure 5. Median predicted abundance (in number of individuals) with 95% credible intervals of size classes (a) and total (b) of R. clavata for the Greater 
North Sea study area. Pre-20 0 0 peak abundance prediction baselines for each size class are indicated as dashed horizontal lines. Note that y -axes are 
log-scaled. 

Figure 6. Median predicted biomass of R. cla v ata f or the Greater North 
Sea study area, with 95% credible intervals and pre-20 0 0 peak biomass 
prediction baselines (dashed line). 
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Figure 7. Median ratio of predicted abundances (in number of individuals) 
of exploited ( ≥50 cm: size classes 2 and 3) over unexploited ( < 50 cm: 
size class 1) (EUR) size classes with 95% credible intervals, and the 
mo ving a v erage of EUR with an 8-y ear time span and 95% credible 
interv als. T he pre-20 0 0 peak of the 8-y ear mo ving a v erage is indicated b y 
the dashed green line. 
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Size classes 2 and 3 were similar in abundance through-
ut the study period, with minima at 1.89 million individuals
95% CI: 1.38–2.81 million) for size class 2, and 0.61 mil-
ion individuals (95% CI: 0.44–0.89 million) for size class 3.
oth minima occurred in the early 2000s. Both size classes in-
reased in abundance until 2015, after which size class 2 fluc-
uated between 10 and 20 million and size class 3 between 3
nd 5 million individuals. The abundance of size class 3, rep-
esenting the adult population, was ∼4.10 million individuals
n 2023 (95% CI: 3.00–5.90). Combining the size classes, the
otal abundance peaked in 2020 at 72.63 million individuals
95% CI: 53.20–132.08 million; Fig. 5 ). 

While the trend in total population abundance was dom-
nated by the trend in abundance of size class 1 ( Fig. 5 ),
he trend in total population biomass was dominated by size
lasses 2 and 3 ( Fig. S9 ). Median biomass decreased from
988 to the lowest biomass level at 6.8 thousand tonnes (95%
I: 5.3–9.1) in 1995, followed by a clear upward trend in
redicted biomass from 2005 onwards ( Fig. 6 ). The median
iomass peaked in 2020 at 51.9 thousand tonnes (95% CI:
1.7–69.1; Fig. 6 ). Median biomass was estimated in 2023 at
6.6 thousand tonnes (95% CI: 37.5–61.5; Fig. 6 ). 
The 8-year moving average in exploited over unexploited

atio (MA8_EUR) showed a declining trend in the pre-2000s,
ollowed by an increasing trend since the 2000s ( Fig. 7 ). The
owest MA8_EUR was observed in 2001 at 0.29 (95% CI:
.13–0.44; Fig. 7 ). The largest MA8_EUR since 2000 was es-
imated for 2019 at 0.53 (95% CI: 0.31–0.75), approximately
qual to the pre-2000 baseline in 1992 ( Fig. 7 ). 

iscussion 

his study provides spatially explicit temporal trends in abun-
ance for multiple size classes and multiple research vessel
urveys. Spatio-temporal correlation structures in catches are
ccounted for using an autoregressive spatial random field,
mplemented in INLA (Rue et al. 2009 ). The results provide
vidence of major changes in the abundance and distribution

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae106#supplementary-data
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of R. clavata in the Greater North Sea ecoregion over the past 
three decades. The abundances in the Eastern English Chan- 
nel and south-eastern North Sea have increased, leading to an 

overall increase in the abundance and biomass of the popu- 
lation. Meanwhile, increase in the ratio of exploited over un- 
exploited individuals over the last two decades suggests that 
mortality in the adult population has decreased. Our find- 
ings contribute to the understanding of the spatio-temporal 
dynamics and exploitation of this data-limited stock. They 
demonstrate the potential for achieving improved population 

abundance estimates for size-classes of interest by combining 
survey data from partially overlapping areas. They help to in- 
form future stock assessments of stocks that are data limited.
The approach we followed requires good research vessel sur- 
vey data, ideally accompanied by estimates for gear efficiency 
derived from data-rich stocks for species with similar charac- 
teristics. 

Abundance, distribution, and size composition 

The difference in depth preferences observed for the three 
size classes suggests ontogenetic niche shifts with respect to 

depth. Smaller individuals were observed in shallower wa- 
ters ( < 20 m), while larger-size classes preferred deeper wa- 
ters. Nursery areas for elasmobranchs are often found in shal- 
lower waters, with migration cycles of adults between feed- 
ing grounds and mating grounds (Rousset 1990 , Walker et 
al. 1997 ). This has also been observed for rays in the North 

Sea, where tagging data have shown that reproductively ac- 
tive adults migrated into shallow water ( < 20 m) (Hunter et 
al. 2005 , 2006 ), where egg-laying takes place (Holden 1975 ).
Large individuals were observed at depths down to 165 m.
This is in contrast to populations of R. clavata in the Azores 
that occur down to 250 m depth (Santos et al. 2021 ). 

The model results indicate an increase in abundance and 

biomass in the last two decades, following a decrease. This 
trend was previously described in incidence patterns of catches 
from UK research-vessel surveys (Sguotti et al. 2016 ), and 

biomass estimations from population models based on the 
same research-vessel surveys used in this study (Amelot et al.
2021 ). The decrease coincided with a progressive contraction 

in spatial distribution in the southern North Sea from 1902 

to 2013: from a historical widespread distribution across the 
entire southern North Sea, the population distribution con- 
tracted to areas off the UK southeast coast in the 1980s 
(Sguotti et al. 2016 ). 

The recent increase in abundance was spatially heteroge- 
neous. The largest contributions to abundance increase come 
from the Eastern English Channel and south-eastern North 

Sea. The former area harbours the highest abundances across 
all size classes in 2023. Meanwhile, most areas in the north- 
western part of the North Sea show no sign of recent abun- 
dance increase. Whereas previously important abundance hot- 
pots close to the Wash and Humber estuaries off the UK coast 
have declined ( Fig. 3 ). 

The origin of the individuals fuelling the abundance in- 
crease observed in Eastern English Channel and south-eastern 

North Sea is unknown. The increase could be caused by in- 
creases in locally distinct populations, e.g. because of a reduc- 
tion of mortality or by migration of individuals from adjacent 
areas of high abundance, like the Thames estuary, as hypothe- 
sized by Walker and Heessen (1996) . Migration studies using 
tags and genetic studies could shed light on the mechanisms 
t play. Previous tagging data showed a strong site-fidelity of
ndividuals in the Thames estuary during the egg-laying sea- 
on, suggesting that repopulation through migration would 

e unlikely (Hunter et al. 2005 ). However, genetic population
ifferentiation within the southern North Sea and Eastern En- 
lish Channel is weak, suggesting a high degree of population
ixing in these areas (Chevolot et al. 2006 ). 
Meanwhile, the size composition of the population has 

hanged, as can be observed from trends in the ratio of ex-
loited ( ≥50 cm) over unexploited ( < 50 cm) size classes in
he predicted abundances. This is indicative of changes in re-
ruitment and mortality rates over the last three decades. The
mallest size class, with individuals below the marketable size,
s likely dominated by individuals of ages 2 and 3 (Bellodi et
l. 2024 ). The increase in the smallest size class could be in-
icative of an increase in recruitment, reduced growth, or re-
uced mortality of the smaller sizes. Meanwhile, the ratio of
xploited over unexploited individuals in the population has 
een increasing since the early 2000s ( Fig. 7 ). We hypothesize
hat this increase could be caused by a decrease in mortality
f marketable size classes across the population in the Greater
orth Sea, in line with reductions in fishing effort in the North

ea. An alternative hypothesis for this increase in ratio could
e an increase in growth of the population. 

pplications 

he size-dependent abundance trends provide the opportunity 
o account for trends in population abundance and mortality 
ndependent of fisheries catch data. However, the method can 

lso be used to generate spatially aggregated “tuning” indices 
or surplus production stock assessment models (Pedersen and 

erg 2017 , Winker et al. 2018 ), or delay-difference models
Fournier and Doonan 1987 ). These stock assessment models 
erform best when using a single tuning series covering the
ntire stock (Kraak et al. 2009 ). 

Combining data from multiple sources, such as fishery- 
ependent and independent data sets, across varying spatial 
ampling scales are increasingly being leveraged to inform 

pecies distribution modelling both outside (Fletcher et al.
019 , Moriarty et al. 2020 , Alglave et al. 2022 ) and within an
NLA approach (Pinto et al. 2019 , Paradinas et al. 2023 ). In
his study, catch data from multiple surveys that only partially
verlap are combined while allowing for gradual changes 
n size-specific population abundance over time for a data- 
imited stock. This provides a potential reduction in biases 
hat arise from partially overlapping series of surveys while
roviding size-specific abundance and biomass estimates for 
tock assessments. 

The biomass estimates from the INLA model presented 

ere follow similar trends to those estimated from surplus- 
roduction models (Amelot et al. 2021 , ICES 2023a ). How-
ver, the absolute biomass estimates from the INLA model are
ower. The peak estimate of ∼51.8 thousand tonnes in 2020
rom the model presented here is lower than those estimated
y Amelot et al. (2021) and by an ICES expert group (ICES
023a ). Amelot et al. (2021) estimated the biomass in 2018
o be ∼80 thousand tonnes, and the ICES expert group (ICES
023a ) estimated the biomass in 2021 to be ∼70 thousand
onnes. Spatio-temporal models may be biased in scale of es-
imated abundances (Thorson et al. 2021 ). Our method gen-
rates biomass predictions for survey and gear combinations 
ith the highest gear efficiency, combined with gear efficiency 
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stimates from closely related species for which stock assess-
ents are available. The difference between the estimates from

he model presented here and the surplus production models
eeds further study. The biomass trends from our INLA model
ould be used as tuning index in surplus production models
Pedersen and Berg 2017 , Winker et al. 2018 ). Biomass es-
imates derived from these models rely heavily on estimates
f total fisheries removals from the population. These esti-
ates are notoriously difficult for stocks for which there is

imited commercial interest and where species identification
s difficult. A strong belief in the correctness of the biomass
stimates used as tuning index over the estimated fisheries re-
ovals could be expressed by setting a strong prior on the

atchability of this tuning index being equal to 1 (Winker et
l. 2018 ). 

hallenges and future research 

iven the focus on spatial correlation in our study, the mesh
esign that allowed the estimation of spatio-temporal correla-
ion in our data is of crucial importance. Appropriate mesh de-
ign is currently an active field of research (Bakka et al. 2018 ,
ighetto et al. 2020 , Dambly et al. 2023 ). While there are no

ormal procedures to specify an optimal mesh, some guide-
ines exist (Zuur et al. 2017 , Righetto et al. 2020 ). A common
nderstanding is that the finer the mesh, the more accurate the
aussian, at the expense of computational costs (Blangiardo

t al. 2013 ). Although it has been demonstrated that spatial
redictions become broader and less detailed with increasing
esh coarseness, indicating that coarser mesh density affects

he level of accuracy in the predictions of spatial intensity, care
as to be taken with finer meshes as they can lead to over-
tting, and even large outer extensions of the mesh may not
ompletely resolve issues with boundary effects (Dambly et
l. 2023 ). One possible extension of study could be to have
 barrier mesh that would prevent any spatial correlation to
ross-land masses (Bakka et al. 2018 ).This problem of cross-
ng land masses is probably negligible in our case, given the
imited SA of island, the overall shape of our study area, and
he migration ecology of the modelled species. However, the
orrelation estimates near the narrow boundary between the
outhern North Sea and the Eastern English Channel would
robably improve with a barrier mesh. 
The prediction could be extended to a multi-species ap-

roach by including additional catch data for the other species
er haul, integrating a species covariate in the model to si-
ultaneously predict catches of multiple ray species in the

rea. This would allow comparing changes in distributions
nd abundances across species, testing for the effects of chang-
ng environmental conditions and human-induced pressures
hat are expected to affect species distributions (Engelhard et
l. 2014 ). In the North Sea, ecosystem regime shifts have been
bserved (Beaugrand 2004 , Sguotti et al. 2022 ), as well as
ong-term changes in ambient sea temperatures that are affect-
ng thermoregulatory processes (Perry et al. 2005 , Sguotti et
l. 2016 ). Strong human-induced pressures on rays that could
e included in future studies include fishing effort from de-
ersal fishing fleets where rays occur as bycatch (Walker and
islop 1998 ). However, long-term spatially explicit time series

or fishing effort are lacking for the study area. Other anthro-
ogenic activities with the potential to lead to changes in spa-
ial distribution through habitat alteration include shipping,
ggregate extraction, oil and gas exploration, coastal devel-
pments, and wind farm constructions. INLA-SPDE models
ave already been used to study changes in bird populations
n the context of offshore wind farm development (Vilela et
l. 2021 ). 

The temporal correlation in the spatial field was mod-
lled with nine evenly spaced temporal knots across the years
988–2023. This approach of using multi-year knots prevents
rohibitively high computational costs of analysing spatio-
emporal correlation compared to an approach where each
ear is treated as a single knot. Under the assumption that
hanges in the spatial distributions occur gradually, the multi-
ear knot approach should yield results that are comparable
o having a higher resolution of knots. Estimates of the spatial
eld for individual years, between knots, require now inter-
olation, and may underestimate rates of changes in spatial
istribution. 
To conclude, we have used a size-structured model with

patio-temporal correlation to show how the thornback ray
opulation in the greater North Sea ecoregion has increased
n abundance recently. This increase was spatially heteroge-
eous and co-occurred with changes in the size distribution
f the population. Further development of the INLA method-
logy (Rue et al. 2009 ) used here, achieving faster inference,
mproved numerical stability, and scalability (Van Niekerk et
l. 2023 ), will allow expanding the application of INLA mod-
ls within marine sciences and other fields to help gain new
nsights. The approach we followed could be applied to other
ata-limited stocks. But requires good research vessel survey
ata, including lengths of caught individuals. Ideally, these
ata are accompanied by estimates for gear efficiency derived
rom data-rich stocks for species with similar characteristics. 
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23.09.2021; unique resource identifier: 5877d808- 
3fd7-11eb-b378-0242ac130002: https://emodnet.ec.e 
uropa.eu/geonetwork/ srv/ eng/ catalog.search#/ metada 
ta/10d3d35c- 8f8e- 40ff- 898f- 32e0b037356c. 

- Depth data were obtained from the European Marine Ob- 
servation and Data Network (EMODnet) Bathymetry 
Portal: https://portal.emodnet-bathymetry.eu/. 

The processed data and code used for analyses underlying 
this manuscript are publicly available at 4TU.ResearchData: 
https:// doi.org/ 10.4121/ aa23c8b5- 5441- 4ac9- 9e02- 808bbf 
6b872e 

References 

Aarts G , Poos JJ. Comprehensive discard reconstruction and abun- 
dance estimation using flexible selectivity functions. ICES J Mar Sci 
2009; 66 :763–71. https:// doi.org/ 10.1093/ icesjms/ fsp033 

Alglave B , Rivot E, Etienne M-P et al. Combining scientific survey 
and commercial catch data to map fish distribution. ICES J Mar Sci 
2022; 79 :1133–49. https:// doi.org/ 10.1093/ icesjms/ fsac032 

Amelot M , Batsleer J, Foucher E et al. Evidence of difference in landings 
and discards patterns in the English Channel and North Sea Rajidae 
complex fishery. Fish Res 2021; 242 :106028. https:// doi.org/ 10.101 
6/j.fishres.2021.106028 

Auber A , Ernande B, T ravers-T rolet M et al. Intercalibration of re- 
search survey vessels: “GWEN DREZ” and “THALASSA. 2015.ht 
tps:// archimer.ifremer.fr/ doc/ 00293/ 40417/ 

Bakka H , Rue H, Fuglstad GA et al. Spatial modeling with R-INLA: 
a review. WIREs Comput Stat 2018; 10 :e1443. https:// doi.org/ 10.1 
002/wics.1443 

Banerjee S . Hierarchical Modeling and Analysis for Spatial Data. Boca 
Raton, FL: Chapman & Hall/CRC Press, 2004.

Baum JK , Worm B. Cascading top-down effects of changing oceanic 
predator abundances. J Anim Ecol 2009; 78 :699–714. https://doi.or 
g/ 10.1111/ j.1365-2656.2009.01531.x 

Beaugrand G . The North Sea regime shift: evidence, causes, mechanisms 
and consequences. Prog Oceanogr 2004; 60 :245–62. https://doi.org/ 
10.1016/j.pocean.2004.02.018 

Bellodi A , Carbonara P, MacKenzie KM et al. Measurement of the 
growth of the main commercial rays ( Raja clavata , Raja br achyur a ,
Torpedo marmorata , Dipturus oxyrinchus ) in European waters us- 
ing intercalibration methods. Biology 2024; 13 :20. https://doi.org/ 
10.3390/biology13010020 

Berg M , Cheong O, Kreveld M et al. Computational Geometry: Al- 
gorithms and Applications. New York: Springer Berlin, Heidelberg,
2008.

Blangiardo M , Cameletti M, Baio G et al. Spatial and spatio-temporal 
models with R-INLA. Spat Spatio-temporal Epidemiol 2013; 4 :33–
49. https:// doi.org/ 10.1016/ j.sste.2012.12.001 

Bogaards JA , Kraak SBM, Rijnsdorp AD. Bayesian survey-based as- 
sessment of North Sea plaice ( Pleuronectes platessa ): extracting inte- 
grated signals from multiple surveys. ICES J Mar Sci 2009; 66 :665–
79. https:// doi.org/ 10.1093/ icesjms/ fsp038 

hevolot M , Ellis JR, Hoarau G et al. Population structure of the thorn-
back ray ( Raja clavata L.) in British waters. J Sea Res 2006; 56 :305–
16. https:// doi.org/ 10.1016/ j.seares.2006.05.005 

ook RM . Inclusion of discards in stock assessment models. Fish Fish
2019; 20 :1232–45. https:// doi.org/ 10.1111/ faf.12408 

ambly LI , Isaac NJB, Jones KE et al. Integrated species distribution
models fitted in INLA are sensitive to mesh parameterisation. Ecog-
raphy 2023; 2023 :e06391. https:// doi.org/ 10.1111/ ecog.06391 

ulvy NK , Baum JK, Clarke S et al. You can swim but you can’t
hide: the global status and conservation of oceanic pelagic sharks
and rays. Aquat Conserv: Mar Freshw Ecosyst 2008; 18 :459–82.
https:// doi.org/ 10.1002/ aqc.975 

ulvy NK , Simpfendorfer CA, Davidson LNK et al. Challenges and
priorities in shark and ray conservation. Curr Biol 2017; 27 :R565–
72. https:// doi.org/ 10.1016/ j.cub.2017.04.038 

llis JR , Clarke MW, Corts E et al. Management of Elasmobranch
Fisheries in the North Atlantic. In: A Payne, J Cotter, T Potter
(eds), Advances in Fisheries Science: 50 Years on From Berverton
and Holt . Oxford: Blackwell Publishing Ltd. , 184–228, 2008. 

ngelhard A . One hundred and twenty years of change in fishing power
of English North Sea trawlers. In: A Payne, J Cotter, T Potter (eds),
Advances in Fisheries Science: 50 Years On from Berton and Holt ,
Oxford: Blackwell Publishing, 2008, 1–25.

ngelhard GH , Lynam CP, García-Carreras B et al. Effort re-
duction and the large fish indicator: spatial trends reveal posi-
tive impacts of recent European fleet reduction schemes. Environ 
Conserv 2015; 42 :227–36. https:// doi.org/ 10.1017/ S03768929150 
00077 

ngelhard GH , Righton DA, Pinnegar JK. Climate change and fishing:
a century of shifting distribution in North Sea cod. Global Change
Biol 2014; 20 :2473–83. https:// doi.org/ 10.1111/ gcb.12513 

letcher RJ , Hefley TJ, Robertson EP et al. A practical guide
for combining data to model species distributions. Ecology 
2019; 100 :e02710. https:// doi.org/ 10.1002/ ecy.2710 

ournier DA , Doonan IJ. A length-based stock assessment method uti-
lizing a generalized delay-difference model. Can J Fish Aquat Sci
1987; 44 :422–37. https:// doi.org/ 10.1139/ f87-051 

allagher AJ , Kyne PM, Hammerschlag N. Ecological risk assessment
and its application to elasmobranch conservation and management.
J Fish Biol 2012; 80 :1727–48. https:// doi.org/ 10.1111/ j.1095-8649. 
2012.03235.x 

oethel DR , Cadrin SX. Revival and recent advancements in the spatial
fishery models originally conceived by Sidney Holt and Ray Bever-
ton. ICES J Mar Sci 2021; 78 :2298–315. https:// doi.org/ 10.1093/ ic
esjms/fsab021 

olden MJ . The fecundity of Raja clavata in British waters. ICES J Mar
Sci 1975; 36 :110–8. https:// doi.org/ 10.1093/ icesjms/ 36.2.110 

unter E , Berry F, Buckley AA et al. Seasonal migration of thorn-
back rays and implications for closure management. J Appl Ecol
2006; 43 :710–20. https:// doi.org/ 10.1111/ j.1365-2664.2006.01194 
.x 

unter E , Buckley AA, Stewart C et al. Migratory behaviour of the
thornback ray, Raja clavata , in the southern North Sea. J Mar Biol
Assoc UK 2005; 85 :1095–105. https:// doi.org/ 10.1017/ S002531540 
5012142 

CES . Report of the Working Group on Elasmobranch Fishes (WGEF),
31 May–7 June 2017 . 16 , p. 1018, 2017. Lisbon, Protugal.

CES . Thornback ray ( Raja clavata ) in Subarea 4 and in divisions 3.a
and 7.d (North Sea, Skagerrak, Kattegat, and eastern English Chan-
nel). In Report of the ICES Advisory Committee, 2021. ICES Advice
2021, rjc.27.3a47d , 2021. http:// doi.org/ 10.17895/ices.pub.227600 
42 

CES . Benchmark Workshop for selected elasmobranch stocks (WKBE- 
LASMO). ICES Scientific Reports , 5 :117 pp. 2023a. https://doi.org/ 
10.17895/ices.pub.22760042 

CES . ICES Database of Trawl Surveys (DATRAS) . Copenhagen, Den-
mark: ICES, 2023b. https://datras.ices.dk 

https://datras.ices.dk
https://emodnet.ec.europa.eu/geonetwork/srv/eng/catalog.search#/metadata/10d3d35c-8f8e-40ff-898f-32e0b037356c
https://portal.emodnet-bathymetry.eu/
https://doi.org/10.4121/aa23c8b5-5441-4ac9-9e02-808bbf6b872e
https://doi.org/10.1093/icesjms/fsp033
https://doi.org/10.1093/icesjms/fsac032
https://doi.org/10.1016/j.fishres.2021.106028
https://archimer.ifremer.fr/doc/00293/40417/
https://doi.org/10.1002/wics.1443
https://doi.org/10.1111/j.1365-2656.2009.01531.x
https://doi.org/10.1016/j.pocean.2004.02.018
https://doi.org/10.3390/biology13010020
https://doi.org/10.1016/j.sste.2012.12.001
https://doi.org/10.1093/icesjms/fsp038
https://doi.org/10.1016/j.seares.2006.05.005
https://doi.org/10.1111/faf.12408
https://doi.org/10.1111/ecog.06391
https://doi.org/10.1002/aqc.975
https://doi.org/10.1016/j.cub.2017.04.038
https://doi.org/10.1017/S0376892915000077
https://doi.org/10.1111/gcb.12513
https://doi.org/10.1002/ecy.2710
https://doi.org/10.1139/f87-051
https://doi.org/10.1111/j.1095-8649.2012.03235.x
https://doi.org/10.1093/icesjms/fsab021
https://doi.org/10.1093/icesjms/36.2.110
https://doi.org/10.1111/j.1365-2664.2006.01194.x
https://doi.org/10.1017/S0025315405012142
http://doi.org/10.17895/ices.pub.22760042
https://doi.org/10.17895/ices.pub.22760042
https://datras.ices.dk


12 Staeudle et al. 

J  

K  

K  

 

 

L  

 

 

L  

L  

 

 

 

M  

 

 

M  

M  

 

M  

P  

 

 

P  

 

P  

 

 

P  

 

P  

 

 

P  

 

P  

 

P  

 

 

R  

 

R  

 

R  

 

R  

 

R  

 

 

S  

 

S  

 

S  

 

 

 

S  

 

S  

 

 

S  

 

 

S  

 

S  

 

 

T  

 

 

T  

 

T  

 

 

 

 

V  

 

V  

 

 

 

V  

 

W  

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsae106/7727354 by Ifrem

er user on 08 August 2024
ona Lasinio G , Mastrantonio G, Pollice A. Discussing the “big n prob-
lem”. Stat Methods Appl 2013; 22 :97–112.

elleher K . Discards in the World’s Marine Fisheries: An Update . Rome,
Italy: FAO, 131pp, 2005.

raak SBM , Daan N, Pastoors MA. Biased stock assessment when us-
ing multiple, hardly overlapping, tuning series if fishing trends vary
spatially. ICES J Mar Sci 2009; 66 :2272–7. https:// doi.org/ 10.1093/
icesjms/fsp179 

ezama-Ochoa N , Pennino MG, Hall MA et al. Using a Bayesian
modelling approach (INLA-SPDE) to predict the occurrence of the
Spinetail Devil Ray ( Mobular mobular ). Sci Rep 2020; 10 :18822.
https:// doi.org/ 10.1038/ s41598- 020- 73879- 3 

indgren F , Rue H. Bayesian spatial modelling with R-INLA. J Stat
Softw 2015; 63 : 1–25. https:// doi.org/ 10.18637/jss.v063.i19 

indgren F , Rue H, Lindström J. An explicit link between Gaussian
fields and Gaussian Markov random fields: the stochastic partial
differential equation approach. J R Stat Soc Ser B: Stat Methodol
2011; 73 :423–98. https:// doi.org/ 10.1111/ j.1467-9868.2011.00777
.x 

cCully SR , Scott F, Ellis JR. Lengths at maturity and conversion
factors for skates (Rajidae) around the British Isles, with an analysis
of data in the literature. ICES J Mar Sci 2012; 69 :1812–22. https:
// doi.org/ 10.1093/ icesjms/ fss150 

cInturf AG , Bowman J, Schulte JM et al. A unified paradigm for
defining elasmobranch aggregations. ICES J Mar Sci 2023; 80 :1551–
66. https:// doi.org/ 10.1093/ icesjms/ fsad099 

oriarty M , Sethi SA, Pedreschi D et al. Combining fisheries sur-
veys to inform marine species distribution modelling. ICES J Mar
Sci 2020; 77 :539–52. https:// doi.org/ 10.1093/ icesjms/ fsz254 

usick JA , Burgess G, Cailliet G et al. Management of
Sharks and Their Relatives (Elasmobranchii). Fisheries 2000; 25 :9–
13. https:// doi.org/ 10.1577/ 1548-8446(2000)025%3c0009:MOSA 

TR%3e2.0.CO;2 
aradinas I , Conesa D, Pennino MG et al. Bayesian spatio-temporal

approach to identifying fish nurseries by validating persistence areas.
Mar Ecol Prog Ser 2015; 528 :245–55. https:// doi.org/ 10.3354/ meps
11281 

aradinas I , Illian JB, Alonso-Fernändez A et al. Combining fishery
data through integrated species distribution models. ICES J Mar Sci
2023; 80 :2579–90. https:// doi.org/ 10.1093/ icesjms/ fsad069 

aradinas I , Marín M, Grazia Pennino M et al. Identifying the
best fishing-suitable areas under the new European discard ban.
ICES J Mar Sci 2016; 73 :2479–87. https:// doi.org/ 10.1093/ icesjms/
fsw114 

edersen MW , Berg CW. A stochastic surplus production model in
continuous time. Fish Fish 2017; 18 :226–43. https:// doi.org/ 10.111
1/faf.12174 

ennino MG , Conesa D, López-Quílez A et al. Fishery-dependent and -
independent data lead to consistent estimations of essential habitats.
ICES J Mar Sci 2016; 73 :2302–10. https:// doi.org/ 10.1093/ icesjms/
fsw062 

ennino MG , Muñoz F, Conesa D et al. Modeling sensitive elasmo-
branch habitats. J Sea Res 2013; 83 :209–18. https:// doi.org/ 10.101
6/j.seares.2013.03.005 

erry AL , Low PJ, Ellis JR et al. Climate change and distribution shifts
in marine fishes. Science 2005; 308 :1912–5. https:// doi.org/ 10.1126/
science.1111322 

into C , T ravers-T rolet M, Macdonald JI et al. Combining multiple
data sets to unravel the spatiotemporal dynamics of a data-limited
fish stock. Can J Fish Aquat Sci 2019; 76 :1338–49. https://doi.org/
10.1139/cjfas- 2018- 0149 

 Core Team . R: A Language and Environment for Statistical Comput-
ing . Vienna, Austria: R Foundation for Statistical Computing, 2024.
https:// www.R-project.org/ 

ighetto AJ , Faes C, Vandendijck Y et al. On the choice of the mesh
for the analysis of geostatistical data using R-INLA. Commun Stat—
Theory Methods 2020; 49 :203–20. https:// doi.org/ 10.1080/ 036109
26.2018.1536209 
oos M , Held L. Sensitivity analysis in Bayesian generalized linear
mixed models for binary data. Bayes Anal 2011; 6 :259–78. https:
// doi.org/ 10.1214/ 11-BA609 

ousset J . Population structure of thornback rays Raja clavata and
their movements in the Bay of Douarnenez. J Mar Biol Assoc UK
1990; 70 :261–8. https:// doi.org/ 10.1017/ S0025315400035384 

ue H , Martino S, Chopin N. Approximate Bayesian inference for
latent Gaussian models by using integrated nested Laplace approx-
imations. J R Stat Soc Ser B: Stat Methodol 2009; 71 :319–92. https:
// doi.org/ 10.1111/ j.1467-9868.2008.00700.x 

adykova D , Scott BE, De Dominicis M et al. Bayesian joint models
with INLA exploring marine mobile predator-prey and competitor
species habitat overlap. Ecol Evol 2017; 7 :5212–26.

ampson DB . Fishery selection and its relevance to stock assessment
and fishery management. Fish Res 2014; 158 :5–14. https://doi.org/
10.1016/j.fishres.2013.10.004 

antos R , Medeiros-Leal W, Novoa-Pabon A et al. Biological knowl-
edge of thornback ray ( Raja clavata ) from the Azores: improving
scientific information for the effectiveness of species-specific man-
agement measures. Biology 2021; 10 :676. https:// doi.org/ 10.3390/ bi
ology10070676 

guotti C , Blöcker AM, Färber L et al. Irreversibility of regime shifts
in the North Sea. Front Mar Sci 2022; 9 :1–13.https:// doi.org/ 10.338
9/fmars.2022.945204 

guotti C , Lynam CP, Garcia-Carreras B et al. Distribution
of skates and sharks in the North Sea: 112 years of change.
Global Change Biol 2016; 22 :2729–43. https:// doi.org/ 10.1111/ gc
b.13316 

herman CS , Sant G, Simpfendorfer CA et al. M-Risk: a framework
for assessing global fisheries management efficacy of sharks, rays
and chimaeras. Fish Fish 2022; 23 :1383–99. https:// doi.org/ 10.111
1/faf.12695 

tein RW , Mull CG, Kuhn TS et al. Global priorities for conserving the
evolutionary history of sharks, rays and chimaeras. Nat Ecol Evol
2018; 2 :288–98.

tevens JD , Bonfil R, Dulvy NK et al. The effects of fishing on sharks,
rays, and chimaeras (chondrichthyans), and the implications for ma-
rine ecosystems. ICES J Mar Sci 2000; 57 :476–94. https:// doi.org/ 10
.1006/jmsc.2000.0724 

horson JT , Cunningham CJ, Jorgensen E et al. The surprising sensi-
tivity of index scale to delta-model assumptions: recommendations
for model-based index standardization. Fish Res 2021; 233 :105745.
https:// doi.org/ 10.1016/ j.fishres.2020.105745 

horson JT , Minto C. Mixed effects: a unifying framework for statisti-
cal modelling in fisheries biology. ICES J Mar Sci 2015; 72 :1245–56.
https:// doi.org/ 10.1093/ icesjms/ fsu213 

hys KJM , Lemey L, Van Bogaert N. Blondes do it better? A compar-
ative study on the morphometry and life-history traits of commer-
cially important skates blonde ray Raja br achyur a , thornback ray
Raja clavata , and spotted ray Raja montagui , with management im-
plications. Fish Res 2023; 263 :106679. https:// doi.org/ 10.1016/ j.fis
hres.2023.106679 

an Niekerk J , Krainski E, Rustand D et al. A new avenue for Bayesian
inference with INLA. Comput Stat Data Anal 2023; 181 :107692.
https:// doi.org/ 10.1016/ j.csda.2023.107692 

asquez M , Allen H, Manca E et al. EUSeaMap 2021.
A European broad-scale seabed habitat map. Ref. D1.13
EASME/EMFF/2018/1.3.1.8/Lot2/SI2.810241– EMODnet The-
matic Lot n ◦ 2–Seabed Habitats EUSeaMap 2021–Technical
Report. EMODnet. 2021. https:// doi.org/ 10.13155/83528 

ilela R , Burger C, Diederichs A et al. Use of an INLA latent Gaus-
sian modeling approach to assess bird population changes due to
the development of offshore wind farms. Front Mar Sci 2021; 8 :1–
11. https:// doi.org/ 10.3389/ fmars.2021.701332 

alker ND , Maxwell DL, Le Quesne WJF et al. Estimating efficiency
of survey and commercial trawl gears from comparisons of catch-
ratios. ICES J Mar Sci 2017; 74 :1448–57. https:// doi.org/ 10.1093/ ic
esjms/fsw250 

https://doi.org/10.1093/icesjms/fsp179
https://doi.org/10.1038/s41598-020-73879-3
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1093/icesjms/fss150
https://doi.org/10.1093/icesjms/fsad099
https://doi.org/10.1093/icesjms/fsz254
https://doi.org/10.1577/1548-8446(2000)025%3c0009:MOSATR%3e2.0.CO;2
https://doi.org/10.3354/meps11281
https://doi.org/10.1093/icesjms/fsad069
https://doi.org/10.1093/icesjms/fsw114
https://doi.org/10.1111/faf.12174
https://doi.org/10.1093/icesjms/fsw062
https://doi.org/10.1016/j.seares.2013.03.005
https://doi.org/10.1126/science.1111322
https://doi.org/10.1139/cjfas-2018-0149
https://www.R-project.org/
https://doi.org/10.1080/03610926.2018.1536209
https://doi.org/10.1214/11-BA609
https://doi.org/10.1017/S0025315400035384
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1016/j.fishres.2013.10.004
https://doi.org/10.3390/biology10070676
https://doi.org/10.3389/fmars.2022.945204
https://doi.org/10.1111/gcb.13316
https://doi.org/10.1111/faf.12695
https://doi.org/10.1006/jmsc.2000.0724
https://doi.org/10.1016/j.fishres.2020.105745
https://doi.org/10.1093/icesjms/fsu213
https://doi.org/10.1016/j.fishres.2023.106679
https://doi.org/10.1016/j.csda.2023.107692
https://doi.org/10.13155/83528
https://doi.org/10.3389/fmars.2021.701332
https://doi.org/10.1093/icesjms/fsw250


Spatio-temporal distribution changes in Raja clavata abundance estimates 13 

 

W  

 

W  

W  

 

Z  

 

D
ow

nloaded from
Walker P , Howlett G, Millner R. Distribution, movement and stock 
structure of three ray species in the North Sea and eastern English 
Channel. ICES J Mar Sci 1997; 54 :797–808. https:// doi.org/ 10.100 
6/jmsc.1997.0223 

Walker PA . Fleeting Images: Dynamics of North Sea Ray Populations .
Amsterdam: University of Amsterdam, 1999.

Walker PA , Heessen HJL. Long-term changes in ray populations in the 
North Sea. ICES J Mar Sci 1996; 53 :1085–93. https:// doi.org/ 10.1 
006/jmsc.1996.0135 

Walker PA , Hislop JRG. Sensitive skates or resilient rays? Spatial and 
temporal shifts in ray species composition in the central and north- 
western North Sea between 1930 and the present day. ICES J Mar 
Sci 1998; 55 :392–402. https:// doi.org/ 10.1006/ jmsc.1997.0325 
© The Author(s) 2024. Published by Oxford University Press on behalf of International Council for th

Creative Commons Attribution License ( https:// creativecommons.org/ licenses/by/ 4.0/ ), which permits 

is properly cited. 
inker H , Carvalho F, Kapur M. JABBA: just another Bayesian
biomass assessment. Fish Res 2018; 204 :275–88. https:// doi.org/ 10
.1016/j.fishres.2018.03.010 

orm B , Orofino S, Burns ES et al. Global shark fishing mortality still
rising despite widespread regulatory change. Science 2024; 383 :225–
30. https:// doi.org/ 10.1126/ science.adf8984 

right SR , Lynam CP, Righton DA et al. Structure in a sea of sand:
fish abundance in relation to man-made structures in the North Sea.
ICES J Mar Sci 2020; 77 :1206–18. https:// doi.org/ 10.1093/ icesjms/ 
fsy142 

uur AF , Ieno EN, Saveliev AA. Beginner’s Guide to Spatial, Tempo-
r al, and Spatial-Tempor al Ecological Data Analysis with R-INLA .
Newburgh, Scotland: Highland Statistics Ltd. 2017.
Handling Editor: Stan Kotwicki 

e Exploration of the Sea. This is an Open Access article distributed under the terms of the 

unrestricted reuse, distribution, and reproduction in any medium, provided the original work 

 https://academ
ic.oup.com

/icesjm
s/advance-article/doi/10.1093/icesjm

s/fsae106/7727354 by Ifrem
er user on 08 August 2024

https://doi.org/10.1006/jmsc.1997.0223
https://doi.org/10.1006/jmsc.1996.0135
https://doi.org/10.1006/jmsc.1997.0325
https://doi.org/10.1016/j.fishres.2018.03.010
https://doi.org/10.1126/science.adf8984
https://doi.org/10.1093/icesjms/fsy142
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Results
	Discussion
	Acknowledgement
	Author contributions
	Supplementary data
	Funding
	Data availability
	References

