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Abstract 

Fish spawning phenology is a major concern for conservation and fisheries management. New intensive data sources, such as GPS- 
based tracking data and high-resolution catch declaration data, are becoming increasingly available in the field of marine ecology. 
These data benefit from high spatiotemporal resolution and open new research avenues for in vestig ating the interannual variability 
in fish phenology. In this paper, we demonstrate how an integrated species distribution model informed by commercial catch data 
combined with spatiotemporal dimension reduction methods known as empirical orthogonal functions (EOFs) can be used to synthesize 
spatiotemporal signals in fish reproduction phenology . Specifically , we address the following questions: (1) Can we identify seasonal 
spatial patterns that can be interpreted in terms of reproductive phenology and essential habitats? (2) Can we identify changes in 

reproductive phenology over time? (3) Are these changes related to environmental dri ver s? The analysis illustrates the reproductive 
phenology of three key commercial species in the Bay of Biscay (sole, hake, and sea bass). The EOF analysis emphasized strong seasonal 
spatiotemporal patterns that correspond to reproduction patterns and feeding patterns. Based on this methodology, we identified 

seasonal variations in the timing of reproduction, and we related these variations to sea surface temperature, a key driver of fish 

reproduction. 

Keywords: species distribution; spatiotemporal modeling; spawning phenology; spawning season; intra- and inter-variability 
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Introduction 

To complete their life cycle, fish require different habitats spe- 
cific to different life stages (Harden 1969 ). These habitats, also 

known as essential fish habitats are associated with key demo- 
graphic processes in the fish life cycle, such as spawning, feed- 
ing, and migration, and are characterized by a strong concen- 
tration of individuals within a spatially restricted area (Delage 
and Le Pape 2016 ). Fish may have to adapt to rapid environ- 
mental changes by physically adapting or by modifying their 
spatiotemporal behavior (spatial displacement or change in 

the seasonal timing of their demographic processes) to stay 
within the ideal habitat conditions. 

Understanding changes in the phenology of demographic 
processes is critical for the management of fish populations.
Knowledge of seasonal habitat use, the timing of migrations 
and the location of spawning areas is key for preserving fish 

habitats and ensuring the renewal of marine resources (Lieth 

2013 , Delage and Le Pape 2016 ). Reproduction is a critical 
stage of the life cycle, and knowledge of the areas where fish 

spawns and the timing of spawning require specific attention 

in terms of spatial planning and fisheries management (Grüss 
et al. 2019 , Biggs et al. 2021 ). 
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
Most of the available information available for investigat- 
ng fish spatiotemporal demographic processes such as repro- 
uction comes from data with only sparse spatiotemporal cov- 
rage (e.g. scientific survey data, capture-mark-recapture tag- 
ing data). Typically, such tagging methods involve captur- 
ng individuals from a population, marking them in a non-
nvasive manner, releasing them back into the environment,
nd then recapturing a sample of individuals (Jolly 1965 ,
eber 1965 ). These methods can be very efficient at infer-
ing the movement of fish (de Pontual et al. 2023 , Randon
t al. 2021 ). However, the methods can be costly, and few
ata can be recorded. Typically, scientific surveys usually oc- 
ur once a year and provide samples only on the time span
f the survey, which does not necessarily depend on the tim-
ng of reproduction (Alglave et al. 2023 ). Onboard observer
ata provide additional data for the whole year by record-
ng fishing catches on a small portion of commercial fleets
Rufener et al. 2021 ). With these data, it is possible to infer
sh distributions seasonally or quarterly (Kai et al. 2017 , Ol-
os et al. 2023 ). However, this temporal resolution is gen-

rally not sufficient to precisely investigate the phenology of 
emographic processes such as reproduction that occur at 
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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horter temporal scales e.g. months and weeks (Biggs et al.
021 ). 
Methods to combine fishers’ declarations (logbooks) with

essel monitoring system (VMS) data (“VMS × logbooks”
ereafter) have recently been developed to provide fine-scale

nformation on fishing activity and fishing landings (Bastardie
t al. 2010 , Hintzen et al. 2012 ). Specifically, “VMS × log-
ooks” data sources have been used to infer the spatiotem-
oral distribution of fish at a fine scale (Murray et al. 2013 ,
zevedo and Silva 2020 , Dambrine et al. 2021 , Alglave et al.
022 ). These data benefit from a high spatiotemporal reso-
ution and open large research avenues for investigating the
ong-term and short-term variability of fish spatial distribu-
ions. 

Recently, a modeling framework has been built to infer
sh spatial distributions by integrating “VMS × logbooks”
ata from distinct fishing fleets while handling preferential
ampling of fisheries data (Alglave et al. 2022 ). The frame-
ork has been extended in time using a monthly time step.

t has been applied to map fish aggregation areas to identify
pawning grounds for a few key species of the Bay of Bis-
ay (Alglave et al. 2023 ). Nevertheless, these approaches face
he difficulty of simultaneously interpreting both interannual
ariability and intra-annual (seasonal) variability in fish spa-
iotemporal distribution and hence only investigate a single
ear of data (Azevedo and Silva 2020 ) or a specific period
ver several years (Alglave et al. 2023 ). Consequently, these
tudies do not take advantage of the large amount of infor-
ation comprising the inter- and intra-annual variability of a

ong-term time series. 
Spatiotemporal dimension reduction techniques such as

mpirical orthogonal functions (EOF; Lorenz 1956 , Hannachi
t al. 2007 ) can provide insights into the spatiotemporal vari-
bility of fish population processes. EOF is derived from prin-
ipal component analysis (PCA) and, in most cases, it has
een used to characterize physical oceanography conditions
e.g. Woillez et al. 2010 ). Some recent studies have investi-
ated fish processes using EOF (Petitgas et al. 2014 , Thor-
on et al. 2020a , 2020b , Grüss et al. 2021 ). However, these
tudies only aimed to synthesize the interannual variability in
cological processes and ignored the seasonal (intra-annual)
ariability. 

In this paper, we aimed to demonstrate the potential of inte-
rated spatiotemporal hierarchical models (ISTHMs; Alglave
t al. 2022 , 2023 ) combined with EOF to achieve the follow-
ng: 

(i) Identify seasonal spatiotemporal patterns in fish dis-
tributions that can be interpreted in terms of essential
habitats. A specific focus is given to reproduction phe-
nology. 

(ii) Infer interannual changes in reproductive phenology
over long time series. 

(iii) Assess the link between environmental drivers and the
control of phenology. 

The framework is illustrated with sole ( Solea solea ), hake
 Merluccius merluccius ), and sea bass ( Dicentrarchus labrax ),
hich represent three key commercial species in the Bay of
iscay ecosystem. We specifically investigated the spatiotem-
oral variability in reproductive phenology at a monthly
ime step over eleven years between 2008 and 2018. Infer-
nces derived from EOF analyses are compared to the liter-
ture to highlight the consistency of our results with regard
o the available knowledge of the phenology and location
f reproduction. We also tested the influence of sea surface
emperature on reproductive phenology as a posttreatment
nalysis. 

aterials and methods 

utline of the approach 

ur approach includes different steps, which are detailed
ereafter: 

(i) Case studies and synthesis of the available knowledge
on their reproductive phenology. Sole, hake, and sea
bass are important fisheries of the Bay of Biscay. Based
on a literature review, we provide expectations on the
phenology and locations of reproductive areas. 

(ii) Inferring species distribution based on the ISTHM in-
troduced by Alglave et al. ( 2022 , 2023 ). We rely on the
framework developed by Alglave et al. ( 2022 , 2023 ) to
map the biomass of the mature fraction of the popu-
lation for each species (sole, hake, and sea bass) using
a monthly time step from 2008 to 2018. The statisti-
cal approach integrates data from distinct trawler fleets
that cover the whole Bay of Biscay. 

(iii) EOF and clustering analysis of the model outputs. To
identify and visualize essential habitats and related sea-
sons, we synthesized the seasonal (monthly) and inter-
annual variation in the distribution of the abundance
of mature fish using EOF analysis (realized indepen-
dently for each species) followed by a clustering anal-
ysis. 

(iv) Investigating interannual variability of the reproduc-
tion phenology to environmental drivers. Finally, we
interpret the main modes of variability of the EOF
with regard to reproduction phenology. Our analysis
allowed to investigate the spatiotemporal variability in
reproduction phenology at two embedded time scales,
the seasonal (intra-annual and monthly time steps) and
interannual time scales. 

ase studies 

e selected three case studies of important species in the Bay
f Biscay for which some information on essential habitats,
specially on spawning grounds, is available but incomplete,
ncluding sole, hake, and sea bass (ICES 2020 ), as summarized
n Fig. 1 . 

Arbault et al. (1986) , Petitgas (1997) , and Alglave et al.
 2022 ) identified spawning grounds along the Bay of Biscay
rom January to March. Some feeding grounds are known
long the Bay of Biscay coast (Koutsikopoulos et al. 1995 ;
ig. 1 ). 
For hake, Alvarez et al. (2004) provided a similar analysis

ased on surveys conducted in the 1990s. Poulard (2001) in-
estigated the rough-scale spatiotemporal distribution of hake
ased on logbook data. Woillez et al. (2007) developed spa-
ial indices derived from annual survey data and provided a
etailed description of hake spatial patterns over time; age 3
 ∼38 cm fish) appeared to be a turning point in these dynam-
cs. 

Recent analyses of seabass have investigated spawning area
nd timing based on “VMS × logbooks” data and provided
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Figure 1. Graphical synthesis of the a v ailable kno wledge on essential habitats f or the three species. 
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information on phenology (Dambrine et al. 2021 ). Recon- 
structed sea bass tracks obtained from large-scale tagging sur- 
veys confirmed sea bass to be a partial migratory species, as 
individuals exhibited either long-distance migration or resi- 
dence. Most migrants exhibit fidelity to coastal summer feed- 
ing areas and offshore winter spawning areas, particularly on 

the central shelf of the Bay of Biscay (Pontual et al. 2019 ; 
2023). 

Model structure and data to fit the model 

Data and commercial fleets 
We analyzed the catch per unit of effort (CPUE) of trawlers (as 
in Alglave et al. 2022 ) over 11 years between 2008 and 2018,
a relatively long period, to investigate interannual changes in 

species distribution and reproductive phenology. 
As we only wanted to interpret the spatiotemporal dynam- 

ics of adult individuals, we filtered the mature fraction of the 
catch declarations by crossing catch declarations with the size 
distribution in each commercial category (see Alglave et al.
( 2023 ) for further details). 

We selected data from several trawler fleets because they 
benefit from relatively opportunistic behavior and usually 
cover a wide area ( Fig. 2 ). Furthermore, standard effort units 
can be relatively easily derived, and their CPUE provides a 
good indicator of the relative biomass of fish (Hovgêrd and 

Lassen 2008 ). The selected fleets for each species are presented 

in Table 1 . 

Model structure and spatiotemporal resolution 

To map the spatiotemporal distribution of the mature fish 

biomass of these different species, we used the hierarchical 
integrated statistical framework developed by Alglave et al.
( 2022 , 2023 ). The framework combines multiple data sources 
to infer the spatial distribution of fish biomass density. The 
model is fitted to the data between 2008 and 2018 at a 
onthly time step (a total of 11 × 12 = 132 time steps) on a
.05 

◦ grid. It is structured in three layers: 

(i) The latent field of the spatial distribution of the ma-
ture biomass (the field we want to infer) defined at a
monthly time step; 

(ii) The observation layer; this layer can handle CPUE 

data from different fleets, including the distinct catch- 
ability of the fleets; CPUE data are related to the same
unique spatiotemporal field of relative abundance; 

(iii) Unknown parameters, including those that control the 
shape of the mature biomass latent field. 

We simplified the framework developed by Alglave et al.
 2022 ) by ignoring the preferential sampling of fishers. Indeed,
revious results by Alglave et al. ( 2022 ) have shown that pref-
rential sampling of trawlers is low. Taking this into account
ould therefore strongly increase the computational burden 

hile only slightly affecting spatial predictions (Alglave et al.
022 ). 

OF to identify essential habitats and to highlight 
hanges in phenology 

asics of EOF 

OF was initially developed by Lorenz (1956) for weather 
orecasting. The broad idea is to generalize classical dimen- 
ion reduction techniques such as principal component analy- 
is to spatiotemporal dimensions. EOF seeks to summarize the 
nformation provided by a set of spatiotemporal maps into a
maller set of maps that best describe and summarize the spa-
iotemporal patterns of variability. 

Let us define S ( x, t ) a biomass field defined at a time step
 (t = { 1 , . . . , T } ), spatial cell x , and the centered field of
iomass S ∗( x, t ) = S ( x, t ) − S ( x, ·) (with S ( x, ·) being the spa-
ial average of S ( x, t ) ). Here, S ∗( x, t ) is expressed as a linear
ombination of spatial patterns p m 

(x ) (or maps, named EOF)
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Figure 2. Spatial distribution of sampling effort (in hour) for each fleet aggregated over the period 2008–2018. 

Table 1. Trawler fleets selected to infer species distribution for each species. 

Species Sole Hake Seabass 

Fleets OTB_DEF_ ≥70_0 OTB_DEF_ ≥70_0 OTB_DEF_ ≥70_0 
bottom trawl targeting demersal fish bottom trawl targeting demersal fish bottom trawl targeting demersal fish 
OTB_CEP_ ≥70_0 OTB_CEP_ ≥70_0 OTB_CEP_ ≥70_0 
bottom trawl targeting cephalopods bottom trawl targeting cephalopods bottom trawl targeting cephalopods 
OTT_DEF_ ≥70_0 OTT_DEF_ ≥70_0 PTM_DEF_ ≥70_0 
otter trawl fleet targeting demersal otter trawl fleet targeting demersal pelagic trawl fleet targeting demersal fish 

Note that the name of the fleets (e.g. OTB_CEP_ ≥70_0) presents first the gear of the fleet (OTB for bottom trawl), then the species caught (CEP for cephalopods, 
DEF for demersal species) and the mesh size (_ ≥70_0 for 70 mm and above). 
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related to temporal indices (or loading factors) αm 

(t ) . 

S ∗ ( x, t ) = 

M ∑ 

m =1 

αm 

( t ) × p m 

( x ) ; x ∈ 

{ 1 , . . . , n 

} , 

t ∈ 

{
1 , . . . , T 

}
, M ≤ T. 

The loading factors αm 

(t ) and the spatial patterns p m 

(x ) 
are defined to maximize the variation captured by the spa- 
tial patterns p m 

(x ) and to ensure that the spatial patterns and 

the loading factors are orthogonal. The first spatial map p 1 (x ) 
captures the greatest amount of spatial variation; the second 

spatial pattern p 2 (x ) is orthogonal to the first one and cap- 
tures the second largest amount of spatial variation. In ma- 
trix terms, this falls back to a diagonalization problem and 

is equivalent to performing a PCA on a data frame where in- 
dividuals are time steps and variables are locations (Lorenz 
1956 ). Then, p m 

(x ) can also be called the eigen vectors and 

the classical PCA representation can be used to represent EOF 

results. Typically, the first two loading factors can be projected 

on the first two dimensions of the EOF to obtain a visual rep- 
resentation of the spatiotemporal decomposition of the signal 
on the first plane of variability. In practice, diagonalization 

is performed through singular value decomposition (Banerjee 
and Roy (2014) ). It is available in R through the function svd 

(R Core Team 2023 ). Spatial patterns are normalized to 1, and 

loading factors are standardized using the square root of their 
eigenvalue. 

Hypotheses of linearity and stationarity of EOF 

EOF relies on some hypotheses such as linearity and stationar- 
ity (Hannachi et al. 2007 ). Indeed, as in PCA, EOF accounts 
for linear correlations with the risk that other nonlinear re- 
lationships are not detected. Furthermore, although they are 
combined through loading factors that evolve over time, the 
spatial patterns [ p m 

(x ) ] per se are stationary and will not 
change across the time series. In other words, at each time 
step, the distribution is modelled as a linear combination of 
the different spatiotemporal pattern (that are constant over 
time), but with a weight in the mixture that is defined by the 
loading factors (that vary over time). Then, the EOF method 

works like a mixture model with the loading factor that al- 
lows to capture temporal variations in the intensity of each 

spatial patterns in the mixture. The mixture can change over 
time (through the change in the loading factors), but the fun- 
damental components of the mixture (the spatial patterns) re- 
main constant. These are properties that help reducing com- 
plexity and allow for easier interpretability and implementa- 
tion compared with more complex technics. As demonstrated 

with Vector Autoregressive Spatio-Temporal Model package 
(VAST), such hypotheses hold well for numerous fish species 
(Thorson et al. 2020a , 2020b ). Still, they should be kept in 

mind, especially because any propagation patterns will not be 
evidenced through standard EOF. These properties are further 
detailed in the discussion. 

Filtering EOF dimensions and locations of the spatial pattern 

For each species, we filter the number of dimensions based 

on the evolution of the (global) variance explained by adding 
new dimensions (scree plot). As a commonly used empirical 
rule of thumb, we cut the graph at the dimension where there 
is an angle in the graph of the variance explained (when there 
is no drop in variance explained in the next dimensions; Wikle 
t al. 2019 ). When plotting the spatial patterns, all the loca-
ions that contributed less than 1/(number of grid cells over
he spatial domain) were shaded to highlight the locations that
ontributed most to the variation (local variance). In standard 

CA, this is equivalent to keep only the variables (i.e. locations
n our case) that explain or contribute more than a single vari-
ble (or location). 

dentifying seasons and essential habitats using clustering 
nalysis 
o identify distinct essential habitats and to relate these to
he ecological season, two complementary clustering analyses 
ere performed, one on the loading factors (temporal dimen- 

ion) and the other on the EOF spatial maps (spatial dimen-
ion). 

Following the analogy with PCA, in the EOF, individuals 
here, time steps) and variables (here, locations) are projected 

nto two distinct spaces: the space of the individuals (time
teps) and the space of the variables (locations). Clustering 
an then be realized either in the space of individuals (time
teps) or in the space of variables (locations). While cluster-
ng in the space of individuals seeks to identify groups of time
teps that have similar spatial patterns, clustering in the space
f variables seeks to identify locations with similar fish density
t the same time step. Clusters of time steps will be interpreted
s ecological seasons, and spatial clusters will be interpreted 

s distinct essential habitats. Clusters in the temporal and spa-
ial dimensions can be represented in the first two dimensions
f the EOF. Standardizing loading factors and the spatial EOF
aps allows to plot them on the same scale and to compare

he spatial clusters with the seasons identified through clus- 
ering. If loading factors (or seasons) are in the same direction
s the locations (or spatial clusters), then they are correlated
nd can be associated (time steps × locations) to identify the
ssential habitats and the period where individuals are in this
abitat. 
We performed clustering based on hierarchical clustering 

n principal components using the FactoMineR package (Lê
t al. 2008 ). 

By crossing the spatiotemporal patterns in the EOF with the
iterature review on reproductive habitat and phenology (Ta- 
le 2 ; Fig. 1 ), it is possible to relate EOF principal components
o reproductive phenological processes. Note that several di- 
ensions could be related to a single process. For simplicity,
e choose the dimension that best corresponds to the pheno-

ogical process of interest (reproduction). 

nvestigating interannual variability 
eproductive phenology is partly driven by temperature and 

an therefore vary between years (Fincham et al. 2013 , Huret
t al. 2018 ). Specifically, for sole, hake, and sea bass, previ-
us studies have investigated the relationship between repro- 
uction timing and sea surface temperature (SST) and have 
evealed an optimal range of temperatures for reproduction 

references are provided in Table 2 ). 
We hypothesized that the peak of the loading factor associ-

ted with the spawning season represents the peak of the re-
roduction season, and we investigated the interannual vari- 
bility of the peak. We assessed whether the spawning peak
dentified from the EOF matched the optimal temperature 
ange (e.g. see Fig. 4 ). SST data were extracted from the Ma-
ine Copernicus platform ( https:// marine.copernicus.eu/ ). 

https://marine.copernicus.eu/
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Table 2. Optimal range of temperature for each three species. 

Species Sole Hake Seabass 

Optimal range temperature for reproduction [10; 12.5 ◦C] [10; 12.5 ◦C] [11; 16 ◦C] 
Reference Devauchelle ( 1986 ) Murua ( 2010 ) Devauchelle ( 1986 ) 

Figure 3. Proportion of the total variance explained by each dimension of the EOF for each species. Dashed line: threshold used to filter the interpretable 
dimensions of the EOF. 
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esults 

xtracting average spatial patterns from the EOF 

he fitted biomass field S( x , t ) averaged over months and
nomalies S ∗( x , t ) are presented in Figs. S1.1 , S1.2 , and S1.3 .
or sole, we selected the first six EOF dimensions, which ac-
ounted for 50% of the variance ( Fig. 3 , see Fig. S3 for all
ix dimensions). For hake, we filter the first two dimensions,
hich capture 30% of the variance. For seabass, we selected
nly the first dimension, which captured 30% of the variance
lone. Other dimensions are not considered in this analysis
ecause they are considered as noise. 
The averaged spatial distribution (denoted S( x , ·) in the

OF equations) revealed specific average patterns for each
ase study ( Fig. S2 ). For sole, the average distributions are
elatively coastal with high biomass offshore of the Gironde
stuary (2 

◦W–45 

◦N). For hake, the average spatial distribu-
ion is greater offshore and corresponds to the slope area. For
ea bass, the mean pattern is very coastal. Biomass is high
long the Vendée coast (2 

◦W–46 

◦N to 3 

◦W–47 

◦N), with a
otspot near Belle Île (3 

◦W–47 

◦N), and along the Landes coast
1.5 

◦W–44 

◦N to 1.5 

◦W–45.5 

◦N). 

ombining EOF data with available knowledge to 

nfer spawning phenology 

ll species present a strong seasonal pattern ( Fig. 4 ). For sole,
 periodic signal is revealed in the loading factors. EOF dimen-
ions 1 and 2 highlight the high biomass in offshore areas in
inter (December to April) and the relatively coastal distribu-

ion in summer. The first EOF spatial map (EOF1) mainly cap-
ures the coastal and offshore seasonal aggregations without
ighlighting spawning areas per se. In contrast, in the second
imension (EOF2), the offshore areas correspond to the repro-
uction grounds highlighted in Fig. 1 . Additionally, the load-
ng factors associated with EOF2 are maximal during the pe-
iod when SSTs are favorable for reproduction. Therefore, for
ole, EOF2 seems to be the best proxy for reproduction phe-
ology. The orange areas in EOF2 are spawning areas, and the
aximum loading factors are spawning peaks. Feeding areas
dentified in the literature ( Fig. 1 ) are very constrained in space
hile winter areas are more throughout the center of the Bay
f Biscay (45 

◦N to 47 

◦N on the coast) with a strong anomaly
ff the Gironde estuary (2 

◦W–45.5 

◦N). These are considered
s feeding areas. 

For hake, similar seasonal patterns are observed for dimen-
ions 1 and 2. There are (1) shelf areas that are occupied dur-
ng summer and (2) offshore areas on the edge of the shelf
hat are occupied during winter (3 

◦W–46 

◦N), which coincides
ith the spawning grounds shown in Fig. 1 . The maximum

oading factors associated with EOF1 occur within the period
hen the SST is favorable for reproduction. EOF2 represents
ffshore and coastal seasonal aggregations with less emphasis
n reproduction. Hence, we retained EOF1 to investigate the
henology of hake reproduction. 
For sea bass, EOF1 captures the aggregation in the central

helf of the Bay of Biscay, i.e. along the Landes coast (1.5 

◦W–
5 

◦N) and outer reefs such as the “Plateau de Rochebonne”
2.5 

◦W–46 

◦N). One more area is evidenced in the EOF com-
ared with prior literature knowledge ( Fig. 1 ). This area is off
he Gironde estuary (2 

◦W–45 

◦N) and can be considered as a
eproduction area. The associated loading factors show a very
trong seasonal pattern with high positive peaks occurring in
anuary and February. These peaks match the periods during
hich the SST is favorable for reproduction and spawning, as

hown in Fig. 1 . 

dentifying the essential habitats and associated 

easons 

e perform two separate clustering analyses on the loading
actors (time steps) and on the EOF spatial maps (eigenvec-
ors). Combining the results allows to identify several combi-
ations of areas and seasons that characterize spatiotemporal
ynamics ( Fig. 5 ). 
For sole, six spatial clusters and three temporal clusters

three seasons) can be identified ( Fig. 5 ; all the clustering trees
re available in Fig. S5.1 –S.6 ): 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae099#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae099#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae099#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae099#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae099#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae099#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae099#supplementary-data


In vestig ating fish reproduction phenology and essential habitats 1569 

Figure 4. Loading factors (left) and EOF maps (right) for each species. For sole, only the two first dimensions are presented, the other dimensions are 
presented in Fig. S2 . The dashed vertical line is the month of January for each year. The dashed horizontal line is the 0 value. The shaded bands are the 
period when temperature is within the optimal range of temperature for reproduction. The shaded points of the spatial maps represent the areas that do 
not contribute strongly to the variance. The local variance explained by the two first EOF dimensions for each species is available in Fig. S4 . 
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Figure 5. Essential habitats and associated seasons. (Left column) Mapping spatial clusters using eigenvectors to identify essential habitat. (Right 
column) Projection of the standardized loading factors (seasons) and the standardized eigen vectors (spatial clusters) on the two first dimensions of the 
EOF. The same colors are used to represent spatial cluster on the maps (left column) and on the first two dimensions of the EOF (polygons in the 
right-hand columns). On the right-hand column, each season is represented by a square of a specific color. If the loadings of a season are in the same 
direction as a spatial cluster, then they are correlated and they correspond to a couple (season × essential habitat). The time steps are displayed in 
Fig. S6 . 
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Figure 6. Variability of the period of reproduction identified based on the 
peak in the time series of loading factors associated with the selected 
EOF dimensions ( Fig. 4 ). For sole, we consider the second dimension of 
the EOF. For hake, we consider the minimum first dimension of the EOF. 
For sea bass, we consider the maximum of the first dimension of the 
EOF. The gray dots are the months for which the average temperature is 
within the optimal range of temperature for reproduction. 
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(1) an area constituted by Clusters 1–3 that is mainly cor- 
related with winter months and that is considered as 
a reproduction area. This is consistent with previous 
knowledge of essential habitats ( Fig. 1 ); 

(2) an area constituted by Cluster 4 that mainly corre- 
sponds to the average distribution for spring and sum- 
mer; 

(3) a coastal area constituted by Clusters 5 and 6 that 
mainly correlates with end summer and autumn 

months that corresponds to feeding ground. 

Note that the PCA representation of the loading factors and 

seasons with the related time steps are in Fig. S6 . 
For hake and sea bass, a similar workflow was used to 

identify essential habitats. Hake aggregate during winter in 

offshore areas and return to the average distribution during 
the other months ( Fig. 5 , centerline). This is consistent with 

the available knowledge synthetized in Fig. 1 . Sea bass ag- 
gregate all along the Landes coast and on the shelf of the 
Bay of Biscay during winter ( Fig. 5 ; bottom line). Specifi- 
cally, the area off the Gironde estuary (2 

◦W–45 

◦N) is an addi- 
tional reproduction area that is not referenced in the literature 
 Fig. 1 ). It returns to an average distribution on the other time
teps. 

nterannual variability in reproduction and its 

elationship with SST 

ur results also highlight the interannual variability in re- 
roductive phenology for the three species ( Fig. 6 ). For sole,
he months of reproduction identified through EOF2 fall be- 
ween January and March. In 2012–2013, reproduction seems 
o have occurred slightly earlier. The maximum loading fac- 
ors are obtained in December and occur outside the period
here temperature is favorable for reproduction. During the 
012–2013 period ( Fig. 4 , PC2 for sole), loading factors ex-
ibited lower temporal variability than in the other years, and
eproduction could also occur later (there was another peak 

n March). 
For hake, the months of reproduction are slightly earlier,

amely, between December and February. 
For sole and hake, both the reproduction period and the

ime range where temperature is favorable appear to be rela-
ively stable. 

For sea bass, reproduction months emphasize more vari- 
bility. The maximum loading factors associated with EOF1 

ccur between November and February, specifically at the be- 
inning of the time series. In contrast, the period during which
he SST is favorable for reproduction is steady. This suggests
hat covariates other than temperature may strongly affect re- 
roductive timing. 

iscussion 

n this paper, we combined an integrated species distribution 

odel informed by “VMS × logbooks” catch declaration’ 
ata with a dimension-reduction approach (EOF) to investi- 
ate the reproductive phenology of three key species of the Bay
f Biscay ecosystem and fisheries (sole, hake, and sea bass).
VMS × logbooks” data open new gates for ecological analy- 
is at a much finer spatiotemporal resolution than ever before
Gerritsen and Lordan 2011 , Murray et al. 2013 , Azevedo and
ilva 2020 ). To our best knowledge, our study is among the
rst ones that demonstrated this potential through concrete 
nalysis of large time periods with massive amounts of “VMS

logbooks” data. 
Combining logbook catch declarations with VMS data pro- 

ides reliable catch per unit effort of mature fish, which were
sed to infer distributions of mature fish biomass density with
 monthly time step over the 2008–2018 period. Posttreat- 
ent of spatiotemporal distribution predictions through EOF 

ethods provides a method to analyze reproduction phenol- 
gy at a much finer temporal scale than other data sources
e.g. scientific surveys). 

In the response to the three points addressed in the intro-
uction, for all three case studies, (i) we identified spatio-
easonnal patterns that match the reproduction phenology.
e identified essential habitats that were already known as
ell as some that were poorly known or not yet identified,

uch as feeding grounds (here for hake and for sole). (ii) We in-
estigated the interannual variations in the reproductive ecol- 
gy of each species by constructing a phenological index and
iii) we related this to a key covariate of reproduction phe-
ology here temperature. Such modeling approach support 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae099#supplementary-data
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roader access to VMS data and their analysis to improve eco-
ogical knowledge (Hintzen et al. 2012 ). 

he need to combine statistical results with the 

iterature to interpret the results 

OF captures the main modes of variation of the spatiotem-
oral fields. The identification of spatiotemporal patterns
hrough EOF is not self-sufficient, and its interpretation in
erms of reproduction phenology relies partly on the avail-
bility of expert and/or literature knowledge. 

Typically, for sole, some studies investigating the timing and
patial distribution of egg and larval distributions have been
sed to corroborate our interpretation of EOF (Arbault et al.
986 , Petitgas 1997 ). For hake, survey data have recorded ma-
ure individuals during the spawning season (Alvarez et al.
004 ), and catch declaration data have been used to evidence
eproduction migration at the level of rough statistical rectan-
les (Poulard 2001 ). Woillez et al. (2007) provided a detailed
escription of hake spatial patterns, with older ages being fur-
her offshore and aligning with the continental shelf. These
ndings were also consistent with our analysis. 
Nevertheless, these data are limited. In both cases, the data

ere restricted to a few samples from very old spring surveys,
nd they have not been updated since this period. Further-
ore, in many other cases, there might not be any reference
ata to corroborate the EOF results. We recommend conduct-
ng additional surveys, such as egg surveys, to obtain direct
bservations of spawning areas (Fox et al. 2008 ). 
Alternatively, expert knowledge of fishers could be a valu-

ble complement to interpret the main modes of variation
Yochum et al. 2011 ) when other data are missing. Bezerra
t al. (2021) and Silvano et al. (2006) demonstrated the use-
ulness of fishers’ knowledge for determining the temporality
f fish spawning and identifying spawning grounds by com-
ining information on aggregation areas provided by several
shers. 

n enhanced EOF method to better disentangle 

cological processes 

n extensive literature on EOF has outlined both its useful-
ess and efficiency for dimensionality reduction and its limi-
ations (Hannachi et al. 2007 ). Several authors have indicated
hat extra care needs to be taken when interpreting statisti-
al structure as a physical or ecological process (Monahan et
l. 2009 ). Typically, a single process can be reflected through
everal modes of the EOF. In our application, we decided to
estrict the interpretation to the one or two dimensions that
est highlight reproductive phenology. Nevertheless, some re-
roduction signals can be observed in the other dimensions
f the EOF. Other methods (in general, linear transformations
f EOF) have been developed to better disentangle the under-
ying ecological process (Hannachi et al. 2007 ). For instance,
 rotated EOF allows more distinct patterns to be obtained
y relaxing orthogonality constraints. However, the choice of
he rotation criterion and the number of dimensions used for
otation have to be set arbitrarily, which implies the need to
ake additional choices. Also, we applied EOF as a posttreat-
ent on fitted values from a first species distribution model,

nd our method does not inherently account for uncertainties,
hich may be critical in fisheries, where data quality and un-

ertainty are common challenges. Further research is needed
o derive guidelines for best practices for such technics to de-
ive ecological inferences. 

he hypotheses of linearity and stationarity 

nderlying EOF 

nother limitation of this method is the linearity and sta-
ionarity of the EOF decomposition as discussed previously
Cressie and Wikle 2015 ). In marine ecological data, espe-
ially in a context of climate change, the underlying pro-
esses can be highly nonlinear and nonstationary (Ciannelli
t al. 2012 ). Hence, EOF may not capture important nonlin-
ar relationships or complex spatial patterns that exist in the
ata. These methods may oversimplify the spatiotemporal dy-
amics of fish populations. The development of spatiotempo-
al dimension reduction methods that can account for non-
tationarity or nonlinearity is an open research avenue; it
ould be of great interest to help disentangle ecological pro-

esses while accounting for the uncertainty contained in the
ata. 

imits of using commercial catch data 

nother limitation of our approach is that the use of commer-
ial catch declarations hampers the ability to analyze phenol-
gy relative to that of smaller size classes. In our approach, we
ltered the mature component of the populations based on the
ize distribution of each commercial category as described in
lglave et al. ( 2023 ). A similar approach was used by Azevedo
nd Silva (2020) (although their approach was more refined,
s proportion by length was considered to vary by size cate-
ory and by zone) and allowed the mapping of different age
lasses of horse mackerel. However, because the fishery is size
elective, a strong limitation of our approach is that commer-
ial catch declaration data likely provide a biased picture of
he spatiotemporal distribution of smaller fish size classes. The
inimum landing size is often relatively high, and individuals
elow this size are either rejected or not declared (Lehuta and
ermard 2023 ). Furthermore, VMS data are not available for
essels below 12 m, which may represent an important part
f coastal vessel fishing near juvenile habitats. 
As a consequence, mapping juveniles’ habitat is not pos-

ible when exclusively using catch declaration data. In this
ase, nursery surveys remain the only available data for in-
estigating juvenile spatiotemporal dynamics and should be
onsidered a reference (e.g. Nurse, Nourseine et Noursom—
elaunay and Brind’Amour 2018 or Nourdem survey series—
oy et al. 2022 ). 
Another limitation when using commercial data is the tar-

eting behavior of fishers. This can lead to biased spatial pre-
ictions and to overestimated estimates of biomass. Here, we
eglected this because trawlers do not exhibit strong targeting
ehavior. Nevertheless, the framework developed by Alglave
t al. ( 2022 ) could be useful in the case of stronger preferential
ampling (see Quemper 2021 ). 

n vestig ating the effect of environmental dri ver s on 

henology 

emperature is an important factor in fish reproduction
Huret et al. 2018 ). Other covariates may also strongly affect
he timing of reproduction. This is especially true for species
uch as sea bass, which spend part of their life cycle in the
elagic realm. Other factors, such as salinity or the concentra-
ion of chlorophyll A or light, could affect reproductive timing
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(Vinagre et al. 2009 , Planque et al. 2011 ). The literature does 
not explicitly mention any clear threshold for these covari- 
ates; thus, more extensive field sampling would be required to 

identify the determinants of reproduction and include these 
determinants in our approach. 

Furthermore, it is expected that in a changing environment,
the duration of reproduction will shift with temperature. Some 
results already illustrate such a phenomenon for sole in the 
North Sea, the English Sea, and the North East Channel (Fin- 
cham et al. 2013 ). We consider our approach is interesting for 
assessing the effect of climate change on fish phenology to pre- 
serve fish habitats and ensure the renewal of marine resources 
in the context of rapid environmental changes. 
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