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1 Université de Lorraine, INRAE, IAM, F-54000 Nancy, France

2 Professorship for Population Genetics, Technical University of Munich, Freising, Germany
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Abstract1

Pathogen species are experiencing strong joint demographic and selective events, especially when they adapt2

to a new host, for example through overcoming plant resistance. Stochasticity in the founding event and the3

associated demographic variations hinder our understanding of the expected evolutionary trajectories and the4

genetic structure emerging at both neutral and selected loci. What would be the typical genetic signatures5

of such a rapid adaptation event is not elucidated. Here, we build a demogenetic model to monitor pathogen6

population dynamics and genetic evolution on two host compartments (susceptible and resistant). We design7

our model to fit two plant pathogen life cycles, ‘with’ and ‘without’ host alternation. Our aim is to draw8

a typology of eco-evolutionary dynamics. Using time-series clustering, we identify three main scenarios: 1)9

small variations in the pathogen population size and small changes in genetic structure, 2) a strong founder10

event on the resistant host that in turn leads to the emergence of genetic structure on the susceptible host,11

and 3) evolutionary rescue that results in a strong founder event on the resistant host, preceded by a bot-12

tleneck on the susceptible host. We pinpoint differences between life cycles with notably more evolutionary13

rescue ‘with’ host alternation. Beyond the selective event itself, the demographic trajectory imposes specific14

changes in the genetic structure of the pathogen population. Most of these genetic changes are transient,15

with a signature of resistance overcoming that vanishes within a few years only. Considering time-series is16

therefore of utmost importance to accurately decipher pathogen evolution.17

18

Keywords: Forward demogenetic model; Plant pathogen; Host adaptation; Complex life cycles; Time-series19

clustering; Population genetic structure20

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2022.10.20.512995doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.512995
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction21

Pathogen populations commonly endure large demographic variations, including repeated bottlenecks and22

founder events (McDonald, 2004; Barrett et al., 2008). These are often associated with selective events, with23

the adaptation of pathogens to their hosts, that sets resource availability over time and space (Stukenbrock24

and McDonald, 2008). Yet, we have limited theoretical knowledge of how such events shape the evolution-25

ary trajectories of pathogens and what would be the typical genetic signatures of the interplay of strong26

demographic and selective events on the pathogen population.27

By contrast, the population genetic structures of pathogen species has been extensively investigated28

empirically (see for reviews McDonald and Linde, 2002; Gladieux et al., 2011; Möller and Stukenbrock, 2017;29

Hessenauer et al., 2021). The apportionment of genetic variability is most often examined through space30

and between hosts with the aim to provide insights on the route of migration, the extent of dispersal and31

the delineation of host-specific populations. Focusing on host adaptation, these investigations highlighted a32

wide array of patterns that range from strong genetic structuring that last for decades despite large gene flow33

(Leroy et al., 2013; Susi et al., 2020) to the lack of genetic differentiation despite evidence for host adaptation34

(Linde et al., 2002; Travadon et al., 2011; Siah et al., 2018).35

Some pathogen species can also reveal a transient population genetic structure, with marked population36

differentiation that vanishes over few years (Persoons et al., 2017). More specifically, the same pathogen37

species can display contrasted genetic structures in different environments (Halkett et al., 2010). This points38

to the importance of demographic events in the emergence of genetic structures. Yet theoretical population39

genetics classically assumes demographic equilibrium or simplistic demographic scenario to build predictions.40

Moreover, understanding the emergence of a genetic structure requires deciphering the temporal evolution41

of population genetic indices, which is rarely done both theoretically and empirically (Saubin et al., 2023b).42

Finally, the stochastic nature of the evolution of genetic diversity and structuring of populations blurs and43

even hinders our comprehension of their expected dynamics. We thus need ad hoc approaches to identify44

and quantify the different types of evolutionary trajectories and how they translate into different genetic45

structures, especially for species under management plan.46

Most pathogens have complex life cycles (Agrios, 2005), often exhibiting mixed reproductive systems and47

partial clonality. We can distinguish autoecious pathogens, which complete their life cycle on a unique host48
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species, from heteroecious pathogens which need two different and successive host species to complete their49

life cycle (Moran, 1992; Lorrain et al., 2019). Population genetics can be used to describe the neutral genetic50

signatures and evolution of sexual populations, but the partial clonality of such species makes the study of51

these genetic signatures much more complex (Orive, 1993).52

The lack of theoretical developments dedicated to understand the emergence of genetic structure in53

pathogens prompts us to develop a new demogenetic model (see a definition of such models in Lamarins et al.,54

2022). Coupling epidemiology and population genetics provides insights into the mechanisms underpinning55

pathogen evolution acting at both short (ecological) and long (evolutionary) time scales (Milgroom and56

Peever, 2003; Archie et al., 2009). As such, it enables the study of genetic signatures of strong and rapid57

selective events (Saubin et al., 2023a). The interplay between demography and selection is captured by58

monitoring both selected and neutral loci. It allows in particular detailed analyses of transition periods (Day59

and Proulx, 2004; Day and Gandon, 2007; Bolker et al., 2010), through variables like the pathogen population60

size, affecting both the disease incidence in epidemiology and the impact of genetic drift in population genetics61

(McDonald, 2004; Živković et al., 2019).62

In this article, we focus on pathogen adaptation to its host as a case study to delineate the different63

scenarios of evolutionary trajectory that can occur during the same adaptive event. Two main qualitative64

mechanisms by which pathogens adapt to their hosts are usually considered: the matching allele and the65

gene-for-gene model (Agrawal and Lively, 2002; Thrall et al., 2016). In this study, we focus on the gene-66

for-gene model, as it accounts for most plant-pathogen interactions (Thrall et al., 2016) and attracts a great67

deal of breeding efforts because, in most cases, it confers complete host immunity. According to the gene-68

for-gene model, genetic resistance prevents infection from a class of pathogen genotypes called avirulent.69

In agrosystems, the deployment of pure resistant plants exerts a strong selection pressure on the pathogen70

population, that favours any variant that can infect the resistant host (Zhan et al., 2015). This class of71

pathogen genotypes is called virulent. The infection success is determined by a single locus, with avirulent and72

virulent alleles. The spread of virulent individuals on resistant hosts leads to a so-called resistance overcoming73

event, which can result in severe epidemics (Johnson (1984); Pink and Puddephat (1999); Brown and Tellier74

(2011); Burdon et al. (2016)), and in rapid and drastic demographic changes for the pathogen population75

(Persoons et al., 2017; Saubin et al., 2021). In our model, hosts are considered as static compartments because76
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we assume that infections do not lead to hosts’ death, and the generation time of the pathogen is much shorter77

than that of the hosts. We assume the simplest case of two host compartments: susceptible hosts can be78

infected by all pathogen genotypes while resistant hosts can only be infected by virulent individuals (i.e.79

individuals with only the virulent allele at the avirulence locus).80

We model pathogen population dynamics and genetic evolution to investigate the impact of the pathogen81

life cycle on these selective and demographic dynamics using a demogenetic approach, tracking the exact evol-82

utionary trajectories forward in time. We perform simulations under several realistic scenarios of resistance83

overcoming. We build a random simulation design to ensure all types of events are covered. Then, we use a84

clustering method dedicated to time-series variations applied to the temporal change of neutral population85

genetic indices to identify the main scenarios of eco-evolutionary dynamics. We conclude by commenting on86

the typology of these dynamics and the potential to use our simulation framework to analyse real datasets.87

2 Materials and methods88

2.1 Model description89

We develop an individual-based, compartmental and forward in time demogenetic model. It couples popula-90

tion dynamics and population genetics to follow through time the exact evolutionary trajectory of different91

genotypes at a selected locus and at neutral genetic markers scattered in the genome. The model is similar to92

the model described in Saubin et al. (2021) and Saubin et al. (2023b), but its treatment differs. Here we focus93

on the expectations, in terms of neutral population genetics, when varying the five main input parameters94

(Table 1). A model overview is provided in Figure 1. Descriptions of the reproduction and migration events95

are provided in Appendix A.1 and Appendix A.2.96

The model simulates the evolution over time of a population of diploid pathogens. Pathogen life cycles97

usually include several generations (i.e. infections of the same host species or not) that consist in successive98

steps of within host growth, clonal or sexual reproduction and spread. We consider life cycles commonly99

found in temperate pathogen species, with seasonal variation in reproductive mode. These pathogens switch100

from several generations of clonal reproduction during the epidemic phase to sexual reproduction once a101

year, in winter (Agrios, 2005). This model is designed to simulate two distinct pathogen life cycles: ‘with’102

or ‘without’ host alternation for the sexual reproduction (Boolean parameter Cycle). During the clonal103
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phase, the life cycles are similar and the pathogen evolve on two host compartments: susceptible (S) and104

resistant (R). During the sexual phase, the life cycles differ: ‘with’ alternation, pathogens have to migrate105

to an alternate host (A) to perform sexual reproduction. ‘Without’ alternation, pathogens stay on R and S106

compartments for the sexual reproduction (A remains empty). Thereafter, when we refer to the pathogen life107

cycle, we refer specifically to the presence or absence of an host alternation during the sexual reproduction,108

the rest of the life cycle being otherwise identical.109

We do not consider spatial substructure among compartments. We assume fixed carrying capacities of110

pathogens for each host compartment, KR, KS and KA for compartments R, S and A respectively. They111

represent the maximum amount of pathogens that each host compartment can sustain. We thus consider112

each host compartment to be ‘static’. This assumption holds as long as the pathogen generation time is113

considered much shorter than that of the hosts, and the pathogen does not kill its host. It is the case for114

example for biotrophic pathogens of perennial plants, such as grape-wine mildew or poplar rust pathogens.115

We consider that a year consists of g = 11 generations: g−1 rounds of clonal multiplication plus one sexual116

reproduction event. This corresponds to the expected generation time of the fungal pathogen responsible for117

the poplar rust disease (Hacquard et al., 2011). Three basic steps are modelled at each clonal generation:118

reproduction following a logistic growth (with growth rate (r) and carrying capacity KR or KS depending119

on the compartment considered, see Appendix A.1), mutation of neutral loci (at a fixed mutation rate µ,120

see below), and a two-way migration (migration rate m, see Appendix A.2), from S to R and vice versa121

(Appendix A, Figure 1). At the end of clonal multiplication, random mortality is applied to the pathogen122

population (at rate τ) because some individuals fail to overwinter. Then, sexual reproduction occurs. It123

differs between life cycles, considering or not the obligate migration to the alternate host before mating. For124

the life cycle ‘with’ alternation, the generation of sexual reproduction is followed by one generation of clonal125

multiplication on A before the pathogen emigration to S and R.126

Following the gene-for-gene model, we consider the very simple genetic architecture for pathogen adapt-127

ation to the resistant host with a single bi-allelic avirulence locus: a dominant avirulent allele (Avr) and a128

recessive virulent allele (avr). All individuals (genotypes Avr/Avr, Avr/avr and avr/avr) survive on S and129

A, while only individuals with the homozygous genotype avr/avr (called virulent individuals) can survive130

on R. We assume no fitness cost of virulence because fitness costs are not systematic in plant pathogens and131
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key to drive coevolution scenarios (see Leach et al., 2001; Brown and Tellier, 2011 for reviews). We consider132

that evolution stems from standing genetic variation, with an initial frequency of the avr allele (favr) set133

after the burn-in phase (see Section 2.2.2 below), and we do not consider mutation at the avirulence locus.134

In addition to the avirulence locus, we simulate the evolution of 100 independent neutral genetic markers135

with a mutation rate µ = 10−3. Each locus has four possible allelic states under a classical k-allele mutation136

model (Wright, 1949). Upon mutation, an allele changes into any of the three other allelic states with equal137

probability. At these 100 loci, we compute yearly 10 classical population genetic indices before the sexual138

reproduction on both R and S compartments (Table 2, and see section 2.2.2 for a more complete descrip-139

tion). These indices are chosen to 1) describe intra-population genetic and genotypic diversity, 2) measure140

overall linkage disequilibrium, and 3) assess genetic differentiation (FST ). The differentiation is considered141

between populations on R and S at a given generation, and through time between a population on R or S at142

a given generation and the initial genotypic state. The variation in these indices captures the footprints of143

the different processes expected to occur during resistance overcoming: effects of reproductive mode, founder144

event followed by expansion, coancestry and admixture between R and S.145

2.2 Simulations and temporal dynamic analyses146

2.2.1 Method overview147

The model allows us to investigate the genetic consequences of rapid adaptation. A general overview of the148

method and the successive steps are presented in Figure S1. First, we build a random simulation design by149

drawing randomly five input parameters in defined distributions (Table 1). For each independent parameter150

combination, we simulate forward in time the stochastic evolutionary trajectory and track the population151

state at each sampled generation by computing ten classical population genetic indices (output trajectories).152

We then retain only simulations leading to population adaptation. We regroup simulations leading to similar153

population genetic evolution using a classical time-series clustering approach. By deriving mean dynamics of154

the clustered time-series (centroids), we aimed at drawing a typology of the main eco-evolutionary dynamics,155

without exhaustively analysing each individual trajectory. To avoid redundancy of information, we base156

the clustering on the output trajectories from six population genetic indices that are orthogonal by their157

mathematical construction. Finally, we compare clusters through graphical and sensitivity analyses and158
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identify the main scenarios of eco-evolutionary dynamics.159

2.2.2 Model implementation and simulations160

The model is implemented in Python (version 3.7, van Rossum, 1995) and Numpy (Harris et al., 2020). Each161

simulation starts with genotypes randomly drawn from the four possible alleles followed by a burn-in period of162

11,000 generations under a constant population size of KS individuals. In this way, we ensure that the patho-163

gen population is at the mutation-drift equilibrium before overcoming the resistance. At the avirulence locus164

under selection, a proportion favr of virulent alleles is introduced randomly (replacing avirulent Avr alleles)165

on S after the burn-in period as initial standing genetic variation. Homozygous avr/avr and heterozygous166

Avr/avr individuals can therefore be initially present, based on the frequency favr. Simulations are run with167

a fixed total carrying capacity for the host population sizes of each host species, K = KA = KR + KS =168

10,000. We define propR as the proportion of resistant hosts in the cultivated landscape propR = KR

K .169

We run a random design set of 30,000 independent simulations. Each combination of parameter values is170

drawn at random in defined prior distributions (Table 1). Each simulation is run for 400 generations (with 11171

generations per year), which amounts to 36 years. During this period, nearly all replicates reach new steady172

states including the settlement on R and loss of the avirulent Avr allele or the extinction of the pathogen173

population. To focus on the genetic signatures of a resistance overcoming, only the simulations with at least174

60% of virulent avr alleles at the end of the simulation are kept for this analysis. This threshold is chosen175

to focus on resistance overcoming events, by ensuring that the settlement on the resistant compartment does176

occur during the simulated period.177

To track the genetic dynamics of populations, we computed the temporal variation of ten population178

genetic indices listed Table 2, classically used to assess evolutionary forces, including temporal changes179

in demography, reproductive modes and adaptation (e.g. Allen and Lynch, 2012; Skoglund et al., 2014;180

Arnaud-Haond et al., 2020). The F-statistics were tracked to quantify the level of apportionment of genetic181

variability within and between populations sampled over time or over different compartments (Wright, 1931,182

1949, 1978). β ofPareto accounting for genotypic diversity (Arnaud-Haond et al., 2007), r̄D accounting183

for overall linkage disequilibrium (Agapow and Burt, 2001), mean and variance over loci of FIS (inbreeding184

coefficient) accounting for the proportion of the genetic variance contained within individuals were tracked to185

understand the importance of clonal reproduction to contribute to the population dynamics (Halkett et al.,186
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2005; Stoeckel et al., 2021). We also tracked observed HO and expected HE gene diversity as well as the mean187

number of alleles Mean LA for their different sensitivities to a bottleneck (Luikart et al., 1998). Finally, we188

calculated the population size estimator Fk based on time-step changes in allele frequencies (Pollak, 1983).189

2.2.3 Comparisons of temporal dynamics190

Analyses of changes in population genetic indices are performed using the R statistic software (Team, 2018).191

We present all results on the S compartment because it enables to compare the effect of life cycles, all else192

being equal, and to represent the genetic signatures expected without selection. When needed, we refer to193

the evolution of indices on the R compartment provided in supplementary data.194

To analyse the dynamics of population genetic indices from the random simulation design, we performed195

hierarchical agglomerative clustering analyses regrouping simulations with similar dynamics (i.e. temporal196

evolutionary trajectories on S) using classical Dynamic Time Warping distance. Distinct clustering analyses197

are performed for the two life cycles using the package Dtwclust (Sardá-Espinosa, 2019), dedicated to198

the clustering of time-series. To avoid redundancy in genetic information, clustering analyses are based199

on the temporal dynamics of the six indices that are orthogonal by their mathematical construction (i.e.200

with the least mathematical redundancy among them): β ofPareto for genotypic diversity, r̄D for overall201

linkage disequilibrium between loci, Mean FIS and V ariance FIS for allele identity within individuals, Fk202

for the variation of allele identity between individuals within a compartment, and Temporal FST for the203

genetic differentiation (between time points on S). We perform a multivariate analysis by concatenating in204

time the temporal dynamics of the six normalised indices. We then build a distance matrix between all205

simulations based on the distance ‘DTW basic’, a classical Dynamic Time Warping distance dedicated to206

the measure of similarity between two temporal sequences. We use the norm ‘Euclidean distance’ for the207

local cost matrix to accentuate the distance between the most discrepant simulations and the step pattern208

‘symmetric2’ (which is one of the common transition types and is normalizable, symmetric, with no local209

slope constraints). We perform hierarchical clustering based on the distance matrix, with the agglomeration210

method ‘Ward.D2’, which minimises within-cluster variance and combines clusters according to their smallest211

squared dissimilarities. We compare hierarchical clustering for a number of clusters ranging from two to eight.212

For each life cycle, we select the number of clusters that maximises the Calinski-Harabasz index, calculated213

as the ratio of the inter-cluster variance and the sum of intra-cluster variances (Arbelaitz et al., 2013).214
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To understand how input parameters impact simulation clustering, we represent the distribution of input215

parameters for each cluster and both life cycles. We assess significant differences between distributions216

of parameter values using pairwise Kruskal-Wallis tests. To rank the impact of input parameters on the217

clustering, we perform a dominance analysis for each life cycle and represent the estimated general dominance218

of each parameter on cluster assignments. Dominance analyses are performed with the package Domir219

(Luchman, 2022).220

For each cluster, we illustrate the evolution of population genetic indices through time. For the sake of221

clarity and to limit the amount of information, we focus in this article on the most informative four intra-222

population and two inter-population indices: r̄D, MeanFIS , MeanHE , MeanLA, TemporalFST , FST R−S223

(Table 2). We display for each cluster and both life cycles the mean and standard error of these six population224

genetic indices calculated at each generation over all simulations assigned to a given cluster.225

To illustrate the realised dynamics of each population genetic index, we complement these results by226

displaying a representative realised simulation of each cluster. We choose for that the medoid, that is the227

simulation that minimises the average distance to all other simulations in the same cluster. To highlight228

the effect of selection, we supplement each representation of the medoid dynamics with the corresponding229

null model dynamics, that is a simulation run under the same set of parameter values but without selection230

(favr = 0). The deviation between medoid and null model dynamics highlights the specific signatures of231

selection. To interpret genetic changes with respect to resistance overcoming, we calculate the generation at232

which pathogens overcome resistance as the generation for which 1% of R is occupied by virulent individuals233

for the first time in a simulation. In addition, we define the generation of settlement as the first generation234

in which a virulent individual migrates to R.235

Some simulations lead to evolutionary rescue, that is the settlement on R resulting in the recovery of236

the population collapse on S and preventing population extinction. To understand which input parameter237

combinations favour the occurrence of evolutionary rescue, we calculate for each simulation the growth rate238

threshold under which the population goes extinct if R is not accessible (population extinction in the ‘null239

model’). We thus obtain the proportions of evolutionary rescue events in each cluster and perform a Fisher’s240

exact test to assess the significance of the assignments to different clusters.241

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2022.10.20.512995doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.512995
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 Results242

3.1 Influence of model parameters on the evolutionary dynamics243

The clustering based on the random simulation design results in a partition into two clusters ‘without’ host244

alternation and into three clusters ‘with’ host alternation. For both life cycles, we name Cluster 1 the cluster245

that regroups the majority of the simulations (72 % and 78 % of the simulations ‘without’ and ‘with’ host246

alternation, respectively, Table S3). Cluster 1 displays small genetic changes through time for nearly all247

indices (Figure 2). Conversely, the other clusters display stronger changes in population genetic indices248

(Figures 2, 3).249

To understand the origin of the different types of dynamics, we jointly examine the influence of the input250

parameters on cluster delineation (Figure S2) and the difference in the distributions of parameter values for251

each cluster (Figure 4).252

‘Without’ host alternation, the most influential parameter for cluster delineation is the proportion of253

resistant hosts (propR), followed by the initial frequency of avirulent allele (favr), and, to a lesser extent,254

the migration rate (m) (Figure S2). As such, Cluster 2 is composed of simulations with significantly larger255

values of propR and significantly smaller values of favr and slightly, albeit significantly, lower m (Figure 4).256

The growth rate (r) has no effect on cluster delineation (and consistently there is no significant difference257

in parameter distribution across clusters). It is important, however, to keep in mind that the analysis only258

considers simulations where R is overcome by the pathogen.259

‘With’ host alternation, we observe the same differences between Cluster 1 and Cluster 2, with similar260

variations in the distribution of parameter values and ranking of parameter effects. The only difference is261

that r has an effect on cluster delineation with significantly higher growth rates for Cluster 2. Cluster 3262

represents a particular case with skewed distributions towards very high values of propR and low values of263

r (Figure 4). Cluster 3 also displays high values of favr and higher values of m compared to the two other264

clusters.265

3.2 Cluster delineation reflects different demographic scenarios266

Cluster delineation, and thus the magnitude of genetic changes, reflects and distinguishes three demographic267

scenarios.268
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As seen above, the most influential parameter for cluster delineation is propR. As this parameter determ-269

ines the maximal population sizes on R and S, it results in differences in population dynamics among clusters270

(Figure 5). The mean compartment size of S is higher for Cluster 1, irrespective of the life cycle, which leads271

to higher initial population sizes and less genetic changes through time on S.272

For both life cycles, the second most influential parameter is the initial frequency of avirulent allele (favr),273

which plays a major role in the assignments to Cluster 2, with an over-representation of simulations with low274

values of favr (Figures 4, S3). These low values of favr result in fewer virulent individuals. It causes founder275

effects on R (Figure 5) and leads to more pronounced genetic changes through time (Figure 3).276

A peculiar range of parameter values defines Cluster 3 observed ‘with’ host alternation. It results in277

evolutionary rescue dynamics. The low growth rate associated with a restricted size of S (high propR)278

causes an initial decrease in population size until near extinction (Figure 5). Then, the emergence of virulent279

individuals leads to the establishment of a new population on R and these individuals, by migrating back to280

S, prevent population extinction (see example in Figure S4, Cluster 3). Proportions of evolutionary rescue281

events differ significantly among clusters, with Cluster 3 composed almost entirely of such simulations (Table282

S3).283

3.3 Inter- and intra-population genetic changes284

To compare inter- and intra-population genetic changes associated with resistance overcoming, we focus on 1)285

mean dynamics (i.e. mean temporal evolutionary trajectories of population genetic indices on each cluster),286

and 2) realised dynamics (i.e. temporal evolutionary trajectories of population genetic indices for medoid or287

null model simulations of each cluster). Both mean and realised dynamics were computed from the variation288

at neutral loci and displayed using seven population genetic indices (Table 2).289

290

Inter-population genetic signatures291

All clusters show a peak in the mean dynamics of genetic differentiation between populations on R and S292

(FSTR− S, Figure 2). This peak in differentiation occurs within the first 50 generations and is concomitant293

with resistance overcoming (Figure S5). The peak is more narrow in time ‘with’ host alternation, especially294

for Cluster 1, and the genetic differentiation is observable for a shorter period ‘with’ host alternation than295
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in cases ‘without’ host alternation. The peak is higher for Cluster 2 than Cluster 1, which reflects stronger296

founder effects resulting from the settlement on R. ‘With’ host alternation, this peak in differentiation is297

magnified in Cluster 3 by the conjunction of the founder effect and the strong genetic drift on S resulting298

from the initial decrease in population size on S before the settlement on R leading to evolutionary rescue299

(Figure 5).300

Without selection and for all simulations, the temporal FST on S increases linearly through time at a slope301

depending on the relative importance of mutation and genetic drift forces (realised dynamics of temporal302

FST for the null model, Figure S6). As the mutation rate is fixed, this slope depends on population size only.303

With selection, for all clusters we observe a two-phase dynamics of temporal differentiation on S (Figures 2,304

S6). The first phase corresponds to an initial increase in temporal FST , stronger than without selection, that305

coincides with resistance overcoming. Temporal FST reaches a maximum between 50 and 200 generations,306

depending on the cluster and the life cycle. This increase in temporal FST on S is delayed but similar to the307

temporal FST on R (see the example of the temporal FST on R for Cluster 2 ‘with’ host alternation, Figure308

S7). The second phase exhibits more stable values of temporal FST (slight increase or decrease). This second309

phase is concomitant with the regain in genetic diversity on both compartments, which favours homogen-310

isation of allele frequencies distorted by the founder event (Figure 2). ‘With’ host alternation, simulations311

displaying strong genetic differentiation (realised dynamics of Cluster 2 and Cluster 3) show a steeper peak312

of differentiation (Figure S6) compared to ‘without’ host alternation. This is in accordance with the rapid313

decrease in differentiation between populations on R and S ‘with’ host alternation, which shifts the temporal314

FST to the next phase of the dynamics (Figure S5).315

316

Intra-population genetic signatures317

For all clusters, we observe a two-phase dynamic of temporal change in gene diversity (expected heterozy-318

gosity, HE) on S. The first phase corresponds to a strong decrease in HE , until a minimum value is reached319

between 50 and 200 generations, followed by a slower increase towards a new mutation-drift equilibrium320

(Figure 2). However, the timing of this change differs among clusters. For Cluster 1 and Cluster 2 and321

both life cycles, the decrease in HE follows the generation of resistance overcoming, while the null model322

dynamics show no variations in HE (Figure S6). The decrease in gene diversity results from the immigration323
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of less diverse pathogen individuals from the founding population on R that overcame the resistance. For324

Cluster 3 (‘with’ host alternation), a strong decrease in HE is observed for both the null model and the325

medoid realised dynamics, and the drop in HE precedes resistance overcoming. Unlike other clusters, this326

drop in HE is preceded for Cluster 3 by a strong decrease in the mean number of alleles Mean LA (Figures327

2, S6), indicating a bottleneck.328

Simulations display a peak in linkage disequilibrium, with a maximum value of r̄D being reached in the329

first 100 generations (Figures 2, S6). The variation in r̄D is to be examined in relation to the variation in FIS ,330

which patterns differ between clusters and life cycles. ‘Without’ host alternation, r̄D and FIS display similar331

variations but slightly delayed in time, with a maximum value of FIS reached in the first 50 generations.332

This indicates admixture of genetically differentiated individuals on S. ‘With’ host alternation, FIS is null or333

displays slightly negative values for Cluster 1 and Cluster 2 while r̄D remains positive. This indicates that334

the signature of the admixture on S is rapidly being erased ‘with’ host alternation. In Cluster 3 ‘with’ host335

alternation, the peak in r̄D coincides with very negative values of FIS . The negative values in FIS results336

from the decrease in HE that is preceding the decrease in HO (Figures S6, S8 and see discussion 4.3).337

4 Discussion338

4.1 Genetic signatures of resistance overcoming339

Disease outbreaks caused by pathogens impact both natural and human-managed ecosystems (e.g. agrosys-340

tems) (Anderson et al., 2004; Tobin, 2015; Savary et al., 2019). The number of emerging diseases is increasing341

exponentially and unprecedentedly during the last decades (Fisher et al., 2012). Understanding pathogen342

evolution is essential to comprehend how they affect ecosystems (Fischhoff et al., 2020) and to establish relev-343

ant disease management programs (Bonneaud and Longdon, 2020). Yet, this task is particularly challenging344

due to the rapid adaptation of pathogen populations (McDonald and Linde, 2002; Saubin et al., 2023a),345

and the high stochasticity of pathogen evolutionary trajectories (Parsons et al., 2018). A clustering method346

dedicated to time-series variations allows us to draw a typology of scenarios of eco-evolutionary dynamics347

associated with a strong selective event. We apply this model to a resistance overcoming event underpinned348

by static host compartments. This model and our findings can be extended to any system where pathogen349

populations evolve on different resources whose type and abundance do not change over time.350
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All the recorded population genetic indices are impacted by pathogen adaptation. Overall, resistance351

overcoming leads to a founder effect on the resistant host, with a differentiated sub-sampled population352

settling and growing on resistant hosts. Migrations between susceptible (S) and resistant (R) hosts then353

homogenise the genetic coancestry over all pathogen populations at a pace that depends on the migration354

rate and pathogen population sizes. Overcoming the plant resistance has a strong impact on the pathogen355

population genetic structure on susceptible hosts, with 1) a decrease in pathogen genetic diversity, 2) a peak in356

linkage disequilibrium, 3) a strong increase in temporal genetic differentiation between the initial and evolved357

populations, and 4) a peak in population differentiation between the susceptible and resistant compartments.358

The comparison of the evolution of the genetic indices through time, with and without selection, shows that359

these changes are signatures of evolution under selection and do not result from genetic drift only. Our first360

important result is thus that changes in population genetics of neutral markers allow identifying a selective361

event of resistance overcoming. We note that most of these genetic changes are transient, with a signature362

of resistance overcoming that vanishes in a few years only.363

4.2 Typology of dynamics under resistance overcoming364

Each evolutionary scenario represents distinct genetic signatures of the demographic outcomes365

of adaptation366

Simulations can be distinguished by the magnitude of their genetic signatures and grouped into clusters that367

are indicative of different evolutionary scenarios. This clustering is strongly linked to variations in patho-368

gen population sizes. Cluster 1 regroups simulations with the slightest genetic signatures, associated with a369

steady and slow demographic expansion. Hence, a large part of the simulations leads to signatures of particu-370

larly low magnitudes. Cluster 2 regroups simulations with stronger genetic signatures, associated with larger371

demographic expansions on the resistant compartment. In extreme cases ‘with’ host alternation, the few372

simulations assigned to Cluster 3 present the strongest genetic signatures, mainly associated with a specific373

demographic scenario, namely evolutionary rescue. These simulations are characterised not only by a strong374

demographic expansion on the resistant compartment (as for Cluster 2), but also by a demographic recovery375

on the susceptible compartment. Overall, founder effects lead to a demographic expansion that is all the376

more important that the resistant host is abundant, because of the logistic population growth. During the377
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first generations following the settlement on the resistant compartment, the successive clonal reproduction378

events lead to a large population of few genotypes largely repeated, thus strongly entangling demographic379

variations and genetic changes.380

381

Differences due to input parameters382

In this model, the main determinant of pathogen population sizes is the proportion of resistant hosts in the383

landscape, and not the intrinsic demographic parameters (pathogen growth and migration rates). For both384

life cycles, the proportion of resistant hosts determines the initial pathogen population size and the size of the385

compartment available through adaptation. As such, it drives the strength of both population expansion and386

selection pressure exerted on the pathogen population. ‘With’ host alternation, this proportion also shapes387

the population demography in determining the likelihood of evolutionary rescue (See Figure 4 in Saubin388

et al., 2021). Pathogen control often leads to high proportions of resistant hosts in agricultural landscapes389

(Stukenbrock and McDonald, 2008; Zhan et al., 2015). Here we show that higher proportions of resistant390

hosts lead to more pronounced genetic changes in the pathogen population that overcome resistance.391

The initial proportion of virulent alleles in the pathogen population is also a strong driver of the strength392

of the genetic signatures. This extent of standing genetic variation determines the proportion of individuals393

that will be able to respond to selection, in other words, the adaptive potential of the initial population.394

In particular, the proportion of virulent alleles impacts the number of individuals that settle the pathogen395

population on the resistant host, hence the genetic diversity of the founded population. A small proportion396

leads to fewer virulent individuals, and therefore a less diverse and more differentiated population founded397

on resistant hosts, as observed for frequent turnover of extinction and recolonisation (McCauley, 1991).398

399

Differences due to the pathogen life cycle400

‘Without’ host alternation, genetic signatures remain detectable for a longer period of time, because of sus-401

tained genetic admixture. Under this life cycle, gene flow results from the movements of a limited number of402

individuals determined by the migration rate. Migration occurs at each generation, which leads to a regular403

but progressive homogenisation of pathogen populations evolving on resistant and susceptible hosts. This404

accounts for the delay between the maximum differentiation observed between compartments at the time405
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of the founder event, and the return to a low differentiation after the homogenisation of the populations.406

At the time of maximum differentiation, the immigration on susceptible hosts of individuals from the newly407

founded population on resistant hosts causes a Wahlund effect (Wahlund, 1928), that is a distortion of allele408

frequencies caused by the admixture of genotypes originating from different subpopulations. This explains409

the positive values of both the inbreeding coefficient and the linkage disequilibrium.410

411

‘With’ host alternation, genetic differentiation between compartments fades more rapidly because of the412

obligate mating event taking place in a common alternate host, where alleles at each locus are reshuffled413

through sexual reproduction. It erases the Wahlund effect observed ‘without’ host alternation as a single414

event of sexual reproduction among all individuals is sufficient for a return to Hardy-Weinberg proportions415

(Rouger et al., 2016). This explains the small or slightly negative values of the inbreeding coefficient. Yet,416

linkage disequilibrium remains positive because the associations of alleles across loci are still preserved for417

some time, as recombination occurs within individuals (whose allele frequencies are inherited from either418

population). Last, all individuals are redistributed randomly between the two compartments. The death419

of avirulent individuals on resistant hosts distorts allele frequencies and regenerates differentiation between420

pathogens evolving on resistant and susceptible hosts. This life cycle increases gene flow and leads to a fast421

homogenisation of pathogen populations.422

423

These differences between life cycles explain the observed differences in demographic variations and ge-424

netic changes in pathogen populations. Examples of these different genetic outcomes can be found in the425

literature: from conservation of genetic structure ‘without’ host alternation (e.g. in Leroy et al., 2013) to426

strong selective sweep and gene swamping ‘with’ host alternation (e.g. in Persoons et al., 2017). In addition427

to the plant pathogens on which our examples are based, this model could be applied more widely to other428

organisms with similar life cycles (e.g. agricultural pests such as aphids, Moran, 1992). However, to our429

knowledge, there is a lack of empirical studies (and adequate datasets) on these species.430

431

Stochasticity and genetic signatures432

Beyond the influence of input parameters and life cycle on demographic variations and genetic changes,433

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2022.10.20.512995doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.512995
http://creativecommons.org/licenses/by-nc-nd/4.0/


a complementary analysis based on simulation replicates highlights that identical combinations of input434

parameters can lead to different outcomes (Appendix B). The generation at which the first virulent individuals435

actually settle on the resistant host drives the resulting demography and genetic structure. Moreover, the436

stochasticity impacts not only the timing of settlement but also the number of successful migration events437

between compartments, hence the genetic diversity of the founded population. As the virulent allele is438

recessive, it is more vulnerable to extinction ‘with’ host alternation (Saubin et al., 2021). Here we show that439

in addition to the stochasticity in the fate of the virulent allele, the life cycle ‘with’ host alternation also440

increases the stochasticity in the genetic signatures of resistance overcoming.441

4.3 Genetic signatures characteristic of evolutionary rescue442

Different processes can lead to the survival of the pathogen population even if its decline is approaching443

extinction. Three forms of such population ‘rescue’ are commonly described (Carlson et al., 2014): 1) the444

demographic rescue, when the population survival is only attributed to the increase in population size due445

to immigration of new individuals (Brown and Kodric-Brown, 1977), 2) the genetic rescue, when the survival446

of the population is attributed to the novel genetic variation brought by the immigration of new individuals,447

in a small population suffering genetic load (Thrall, 1998), and 3) the evolutionary rescue, when adaptive448

evolution lead to population recovery from negative growth initiated by environmental change (Gonzalez449

et al., 2013; Bell, 2017). The two latter forms of rescue closely link demography and selection, whereby450

selection at one locus determines the demography of the populations, and thus the neutral variation across451

the genome. The probability of fixation of alleles is strongly impacted by changes in population size (Otto and452

Whitlock, 1997), with the effect of genetic drift accentuated by a reduction in population size. It is therefore453

all the more important to focus on the interplay between selection and genetic drift in a population with454

fluctuating size (Gokhale et al., 2013; Živković et al., 2019) to weigh up the balance between deterministic455

and stochastic processes that drive the evolutionary trajectories of pathogen populations.456

In this study, the observed population rescue can be considered as demographic or evolutionary, depending457

on the definition of the population. If we consider distinctly pathogen populations on susceptible and resistant458

hosts, the adaptation of virulent individuals leads to their settlement on the resistant host, hence to the459

survival of the population on the susceptible host. The survival of the population on the susceptible host460
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corresponds to demographic rescue resulting from the immigration of adapted individuals from the resistant461

host. If we consider a single population encompassing all individuals evolving on both hosts, the survival of462

the population corresponds to an evolutionary rescue event, via the adaptation to the new environment (i.e.463

the newly deployed resistant hosts). Such evolutionary rescue events occur mostly for the life cycle ‘with’464

host alternation (Saubin et al., 2021). This is because of additional mortality that originates once a year465

from the massive redistribution of individuals after the sexual reproduction, with the death of all avirulent466

individuals that migrate to resistant hosts. Besides the additional mortality, the massive redistribution also467

increases the probability that a virulent individual migrates to the resistant host, and hence increases the468

probability of evolutionary rescue (Saubin et al., 2021). Here we demonstrate that such events can lead to469

strong and typical genetic signatures at neutral loci, that define a specific cluster ‘with’ host alternation470

(Cluster 3) and can thus be uncovered using population genetic indices. These dynamics are characterised471

by a bottleneck with few possible genotypes combining the remaining alleles. This is evidenced by the472

changes in several indices, such as the drop in the mean number of alleles, followed by the drastic reduction473

in gene diversity and the increase in linkage disequilibrium (Cornuet and Luikart, 1996). Unexpectedly,474

this bottleneck comes along with a strikingly negative value of inbreeding coefficient. To understand this475

result, we investigate the cause of the discrepancy between expected and observed heterozygosity. This is476

due to the clonal reproduction events that maintain identical genotypes during the epidemic phase, hence the477

value of observed heterozygosity remains constant over generations, whereas expected heterozygosity steadily478

decreases because the population size is collapsing very fast. Note that as the sampling takes place at the end479

of the clonal phase, the difference between expected and observed heterozygosity is magnified by the small480

genotypic drift that happened between clonal lineages over the handful of clonal generations. Overall, even481

for such drastic demographic events, the resulting genetic signatures remain transients, and thus can only be482

captured by using time sample data in the appropriate time window.483

4.4 Temporal changes of demogenetic signatures484

Among indices, we observe different temporal dynamics of genetic signatures of resistance overcoming. The485

fastest changes are observed for the genetic differentiation between S and R and the mean inbreeding coef-486

ficient, during the 50 first generations (i.e. the first five years) after the resistance overcoming. Changes in487
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linkage disequilibrium and mean number of alleles are slower and detected within the 100 first generations.488

Finally, the slowest changes (and less sharp temporal signatures) are observed for the expected heterozygosity489

and the temporal genetic differentiation, with most of the detectable signal occurring between generations 50490

and 200. Overall, under the modelled population sizes, no peak of genetic signature occurs after generation491

200, and only a residual signal remains on population genetic indices.492

For indices reflecting disequilibrium induced by the founder effect (FST R − S, r̄D, Mean FIS), genetic493

changes stabilise rapidly, especially when gene flow is enhanced by a life cycle ‘with’ host alternation. For494

other indices (temporal FST , HE , MeanLA), when it exists, the difference with the null model (i.e. without495

selection) persists for a much longer period (for at least 300 generations for MeanLA and until the end of the496

simulated period for temporal FST and HE). Following rapid adaption, we thus observe a return to genetic497

equilibrium in two steps. The first step involves the homogenisation of allele frequencies both within and498

between populations thanks to the convergence to Hardy-Weinberg and migration-drift equilibria. This occurs499

very fast because the modelled system is regularly subjected to the stabilising effect of sexual reproduction500

(Rouger et al., 2016). We hypothesise that this return would be slower for systems that deviate from this501

mode of reproduction, either because of an increased rate of clonality (Reichel et al., 2016) or because of502

selfing (Jullien et al., 2019). The second step is the return to allele numbers and frequencies expected under503

the migration-mutation-drift equilibrium. This evolution is slower because it relies on the progressive change504

in allelic states and potential recovery of the lost genetic diversity that happened during the upheaval caused505

by resistance overcoming.506

The timing of the modelled events may appear rapid but is consistent with empirical observations. For507

example, in the poplar rust pathogen (Melampsora larici-populina) which alternates on larch every year, the508

overcoming of resistance RMlp7 in poplars led in 1994 to a strong genetic disequilibrium. This was followed509

by a quick return to Hardy-Weinberg equilibrium the following year and drastic changes in the population510

genetic structure occurring in less than four years (Persoons et al., 2017; Louet et al., 2023).511

Overall, studies employing time-series remain rare compared to the amount of work focusing on the ge-512

netic analysis of one contemporary pathogen population (Buffalo and Coop, 2019, 2020; Pavinato et al.,513

2021). Analyses of time-series are mostly used to analyse the speed and timing of selection for life history514

traits (Rouzic et al., 2011, 2015), loci under positive or fluctuating selection (Bergland et al., 2014; Foll et al.,515
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2015), or coevolution between host and parasite (Decaestecker et al., 2007; Gandon et al., 2008; Blanquart516

and Gandon, 2013). We note that studies including neutral markers mainly use them, to date, to draw a517

statistical inference of loci under selection rather than to document the change in demography. In the rare518

cases where time-series are used to study specifically neutral genetic evolution, the data typically exhibit a519

limited temporal range (e.g. two time points, Pavinato et al., 2021). However, as temporal data allow to520

trace the changes in allele frequency through time, the analysis of neutral markers can improve our infer-521

ence and understanding of evolutionary (Dehasque et al., 2020; Feder et al., 2021; Saubin et al., 2023a,b)522

and coevolutionary (Živković et al., 2019) processes. Temporal full genome datasets available in Drosophila523

melanogaster (Bergland et al., 2014) also prompted new theoretical developments regarding the effect of524

seasonal population size changes and fluctuating selection on neutral variants (Wittmann et al., 2017, 2023).525

In cases of rapid adaptation, we specifically show here that the resulting genetic signatures may be very526

brief and require time samples around the selection event. This is in accordance with the study of Saubin527

et al. (2023b), in which several time samplings with rarefaction are tested and show high identifiability of528

the transient genetic signatures even if a strong thinning is applied to time-series data. Note that in the case529

of coevolution, and unlike our study, the host compartment is no longer static and should be monitored too530

(Brown and Tellier, 2011; Živković et al., 2019) at the adequate temporal scale. Studies focusing on one or531

two time points may allow documenting only part of the coevolutionary dynamics and likely fail to highlight532

transient dynamics, which provide the most relevant information regarding the demogenetic interplay. Con-533

versely, epidemiological considerations lead to focus on the time when the settlement is detected, therefore534

when the genetic signature is the strongest. These considerations tend to neglect the initial state, as well535

as the return to a new equilibrium, which may nevertheless occur in a relatively short time scale. A key536

result of our study is to demonstrate that neutral markers can be used to uncover demogenetic processes537

due to selection events (see also Živković et al. (2019) for coevolution). As a validation, this approach has538

been successfully applied to temporal data, allowing to infer demographic scenarios and parameter values of539

a major event of resistance overcoming by the poplar rust pathogen (Saubin et al., 2023b).540
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A., del Ŕıo, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W.,645

Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with numpy. Nature, 585:357–362.646

Hessenauer, P., Feau, N., Gill, U., Schwessinger, B., Brar, G. S., and Hamelin, R. C. (2021). Evolution and647

adaptation of forest and crop pathogens in the anthropocene. Phytopathology, 111:49–67.648

Johnson, R. (1984). A critical analysis of durable resistance. Annual Review of Phytopathology, 22.649

Jullien, M., Navascués, M., Ronfort, J., Loridon, K., and Gay, L. (2019). Structure of multilocus genetic650

diversity in predominantly selfing populations. Heredity, 123:176–191.651
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Table 3: Summary of the typology of eco-evolutionary dynamics for each cluster, depending on the considered
life cycle.

‘Without’ host alternation ‘With’ host alternation

Cluster 1
The demography is barely affected by the adaptive event, which leads to very low genetic

signatures.

Cluster 2

Larger demographic expansions are observed due to a founder event on the resistant host,
leading to stronger genetic signatures.

Following the founder event, a sustained ge-
netic admixture between resistant and sus-
ceptible hosts causes a Wahlund effect and
leads to genetic signatures detectable for a
long period of time.

Because of the obligate mating event taking
place in a common alternate host, this life
cycle increases gene flow. This leads to a fast
homogenisation of pathogen populations after
the founder event and genetic signatures are
detectable for a short period of time.

Cluster 3

A population bottleneck on the susceptible
host precedes a founder event on the resistant
host and leads to evolutionary rescue. This
translates into the strongest genetic signatures
and specific hallmarks.
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Figure 1: Modelling steps for each simulated year with the three S, R, and A compartments (adapted from
Saubin et al., 2023b, Figure 1). Each year is composed of g = 11 generations. During the clonal phase
(generation 1 to g − 2), each generation is composed of three steps identical between both life cycles: (I)
clonal reproduction; (II) migration of a proportion m of each population between R and S; (III) mutation
at all neutral markers with a mutation rate µ. At the end of the clonal phase, the pathogen overwinter as
a dormant stage and is subjected to (IV) mortality of a proportion τ of each population. Then, the sexual
phase (generation 10) differs depending on the life cycle: (0) represents the migration of all individuals from
R and S towards A; (1) sexual reproduction; (2) mutation of all neutral markers with a mutation rate µ.
This sexual phase is followed by a new clonal phase, which is identical ‘without’ alternation to the first clonal
phase and ‘with’ alternation: (3) represents the clonal reproduction; (4) mutation of all neutral markers with
a mutation rate µ; (5) migration of all individuals from A towards R and S. A sampling takes place every
year at the end of generation 9 on S and R.
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Figure 2: Temporal evolution of population genetic indices. The plotted results correspond to the mean
temporal dynamics for all simulations in the corresponding cluster, among all simulations of the random
simulation design. Populations are sampled on S, except for FST R− S. Shaded colour bands correspond to
standard error intervals. For clarity, we apply the same scale for Cluster 1 and Cluster 2 of both life cycles,
but we use a different scale to display the changes in population genetic indices for Cluster 3 ‘with’ host
alternation.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2022.10.20.512995doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.512995
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a
)
C
lu
st
er
in
g
o
f
si
m
u
la
ti
o
n
s
‘w

it
h
o
u
t’

h
o
st

a
lt
er
n
a
ti
o
n

(b
)
C
lu
st
er
in
g
o
f
si
m
u
la
ti
o
n
s
‘w

it
h
’
h
o
st

a
lt
er
n
a
ti
o
n

(c
)
T
em

p
o
ra
l
ev

o
lu
ti
o
n
o
f
p
o
p
u
la
ti
o
n
g
en

et
ic

in
d
ic
es

‘w
it
h
o
u
t’

h
o
st

a
lt
er
n
a
ti
o
n

(d
)
T
em

p
o
ra
l
ev

o
lu
ti
o
n
o
f
p
o
p
u
la
ti
o
n
g
en

et
ic

in
d
ic
es

‘w
it
h
’
h
o
st

a
lt
er
n
a
ti
o
n

F
ig
u
re

3:
C
lu
st
er
in
g
of

si
m
u
la
ti
on

s
‘w
it
h
ou

t’
(a
,
c)

an
d
‘w

it
h
’
(b
,
d
)
h
os
t
al
te
rn
at
io
n
.
T
h
e
cl
u
st
er
in
g
an

al
y
se
s
ar
e
b
as
ed

on
th
e
te
m
p
or
al

ev
o
lu
ti
o
n
o
f
si
x

p
op

u
la
ti
on

ge
n
et
ic

in
d
ic
es
.
(a
,
b
)
re
p
re
se
n
t
th
e
d
en
d
ro
gr
am

s
ob

ta
in
ed

fr
om

th
e
cl
u
st
er
in
g
an

al
y
se
s.

D
is
ta
n
ce
s
b
et
w
ee
n
si
m
u
la
ti
on

s
w
er
e
ca
lc
u
la
te
d
b
a
se
d
o
n

th
e
d
y
n
am

ic
ti
m
e
w
ar
p
in
g
d
is
ta
n
ce
,
w
it
h
th
e
n
or
m

‘E
u
cl
id
ea
n
d
is
ta
n
ce
’
an

d
th
e
st
ep

p
at
te
rn

‘s
y
m
m
et
ri
c
2’
.
(c
,
d
)
re
p
re
se
n
t
fo
r
ea
ch

cl
u
st
er

th
e
co
n
ca
te
n
a
ti
o
n

of
th
e
te
m
p
or
al

ev
ol
u
ti
on

of
si
x
n
or
m
al
is
ed

p
o
p
u
la
ti
on

s
ge
n
et
ic
s
in
d
ic
es
,
in

th
e
fo
ll
ow

in
g
or
d
er
:
(1
)
β
of

P
a
re
to
,
(2
)
r̄ D

,
(3
)
M

ea
n
F
I
S
,
(4
)
V
a
ri
a
n
ce

F
I
S
,

(5
)
F
k
,
(6
)
T
em

p
or
a
l
F
S
T
.

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2022.10.20.512995doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.512995
http://creativecommons.org/licenses/by-nc-nd/4.0/


‘Without’ host alternation ‘With’ host alternation

***

0.0

0.1

0.2

0.3

0.4

1 2

Cluster

f a
vr

***

ns
***

0.0

0.1

0.2

0.3

0.4

1 2 3

Cluster

f a
vr

***

0.0

0.1

0.2

1 2

Cluster

m

***

***

**

0.0

0.1

0.2

1 2 3

Cluster

m

ns

1.5

2.0

1 2

Cluster

r

***

***

***

1.5

2.0

1 2 3

Cluster

r

***

0.0

0.5

1.0

1 2

Cluster

pr
op

R

***

***

***

0.0

0.5

1.0

1 2 3

Cluster

pr
op

R

Figure 4: Distribution of epidemic parameters for each cluster obtained from the dynamics of population
genetic indices. Differences between distributions were statistically assessed using pairwise Kruskal-Wallis
tests: ns, non-significant; ·, P−value < 0.1; *, P−value < 0.05; **, P−value < 0.01; ***, P−value < 0.001.
‘Without’ host alternation, Cluster 1 and Cluster 2 are composed of 4067 and 1575 simulations, respectively.
‘With’ host alternation, Cluster 1, Cluster 2 and Cluster 3 are composed of 5858, 1581, and 81 simulations,
respectively.
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Figure 5: Temporal evolution of population sizes and virulent allele frequency depending on the cluster. The
plotted results correspond to the mean temporal dynamics for all simulations in the corresponding cluster,
among all simulations of the random simulation design. Shaded colour bands correspond to standard error
intervals.
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