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Abstract :   
 
As a first step toward a multi-fidelity optimization tool for hydrofoils, the present work assesses the ability 
of the in-house code PUFFIn to be used as a “low-fidelity” solver within the multi-fidelity framework. The 
code, based on the Boundary Element Method (BEM) and the potential flow theory, is used to study the 
performance of a typical windsurf hydrofoil operating near the free surface. The hydrofoil is composed of 
a front wing and a rear stabilizer in a plane-like configuration. Computations are performed for single body 
configurations (only one wing) and two-body configurations (front wing and stabilizer). First, three 
linearized models of the free surface are compared for the single front wing configuration with several 
values of the Froude number: the symmetry, anti-symmetry and Neumann-Kelvin conditions. The results 
show that for relatively high Froude number, the anti-symmetry and the Neumann-Kelvin conditions 
provide very similar forces. Then, the predictions of the BEM solver are compared with “high-fidelity” 
RANS computations, in terms of pressure drag and lift, pressure distribution on the hydrofoil and free 
surface elevation. Several Froude numbers and submergence depths are studied. The global lift and drag 
variations predicted by the BEM with the anti-symmetry and Neumann-Kelvin conditions on the single-
body configurations are similar to the RANS predictions. For the two-body configurations, the Neumann-
Kelvin condition outperforms the anti-symmetry condition. Based on the BEM/RANS comparison, the 
potential flow solver reveals to be a relevant tool for multi-fidelity optimization. 
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Highlights 

► Predict the performances of a 3D hydrofoil operating near the free surface with the Boundary Element 
Method. ► Compare the predictions of the BEM with Reynolds Averaged Navier–Stokes Equations 
computations. ► Assess the ability of the Boundary Element Method to be used for multi-fidelity 
optimization. 
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Nomenclature

β heel angle

U0 undisturbed flow velocity

u local velocity

∆t time step

η free surface elevation

µ doublet strength

ν water kinematic viscosity

ϕ velocity potential

ρ water density

σ source strength

σcav cavitation number

h̃ normalized depth h̃ = h/cfront

cfront chord length of the front wing

cstab chord length of the stabilizer

Ci hydrodynamic force coefficient along

i−axis (i = x, y, z)

CL lift coefficient

Cp pressure coefficient Cp = (p− p0)/0.5ρU
2
0

CMi hydrodynamic moment coefficient along

i−axis (i = x, y, z)

Frc Froude number based on the front wing

chord Frc = U0/
√
gcfront

g gravity acceleration

h submergence depth

p local pressure

Re Reynolds number Re = U0cfront/ν

Sfront planform area of the front wing

sfront span length of the front wing

Sstab planform area of the stabilizer

sstab span length of the stabilizer

SB body surface boundary

SW wake surface boundary

SFS free surface boundary

p0 undisturbed flow pressure

AGR Adaptive Grid Refinement

AR Aspect Ratio

BEM Boundary Element Method

BIE Boundary Integral Equation

CFD Computational Fluid Dynamics

RANS Reynolds Averaged Navier-Stokes
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1. Introduction

Hydrofoils are now widely used in competitive sailing, from boats of the America’s Cup to the windsurfers

support for the next Olympic games. Such appendices allow lifting a vessel out of the water, thereby

reducing the hydrodynamic drag (Molland [31]). The efficiency of a hydrofoil operating close to the free

surface strongly depends on the submergence depth and the vessel speed. Thus, numerical predictions of

hydrofoils performances have gained interest in the last decades.

Numerical potential methods were historically used due to limited computational resources. Early works

on potential flow models about hydrofoils were based on the thin hydrofoil theory (Keldysch and Lawrentjew

[23], Hough and Moran [20], Plotkin [39]). To overcome the unrealistic pressure predictions near the leading

edge with these approaches, numerical methods for thick hydrofoils were later created by Giesing and Smith

[18], based on the 3D Boundary Element Method (BEM) developed by Hess and Smith [19]. To reduce the

computational complexity, the non-linear free surface condition can be linearized around the free surface at

rest (Bal [2], Yeung and Boucher [51], Nakos and Sclavounos [32]) or the double body solution (Dawson [7],

Xie and Vassalos [48]). For steep waves, the non-linearities in the free surface condition has to be considered

(Kennell and Plotkin [24], Forbes [15], Longuet-Higgins and Dommermuth [28], Xue et al. [50], Filippas and

Belibassakis [13]). With appropriate Green functions, the potential methods were also used to study foils

and ships advancing in waves (Xu and Wu [49], Zhang et al. [52]). An unsteady fully non-linear method has

recently been proposed by Filippas and Belibassakis [14] to study flapping-wing thrusters in waves. These

authors tackled the computational complexity of the fully non-linear method with GPU parallel processing.

The boundary element method has also been extended to study cavitating and surface piercing hydrofoils

(Bal [3], Bal [4]). However, BEM fails to model wave breaking, due to complex interface reconnections

(Lachaume et al. [26]). In addition, potential flow methods do not take into account the viscous effects nor

the turbulence and hence they can not provide estimations of the hydrofoil friction drag. On the contrary,

RANS (Reynolds Averaged Navier-Stokes) computations can give accurate drag predictions (Esmaeilifar et

al. [11]) and model breaking waves (Ni et al. [34]). The experimental work of Duncan [9] has been widely

used to validate RANS computations for breaking waves above a hydrofoil (Pernod et al. [38], Di Mascio [8],

Karim et al. [21], Prasad et al. [40]). However, despite significant improvements for free surface simulations

(Leroyer et al. [27], Wackers et al. [45], Richeux [42]), the computational time of 3D RANS simulations still

represents a relatively high computational burden.

Design optimization often have to span a vast variety of design solutions or operating conditions. Thus,

the computational resources needed to perform a RANS-based optimization can be a serious impediment

to a wide use in the industry (Serani et al. [44]). On the contrary, BEM computations are fast and can

be efficiently used in an optimization process (Gaggero et al. [16]). An attractive solution consists in using

a multi-fidelity (MF) approach, combining tools with different fidelity levels and computational costs, to
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build surrogate models based on a limited number of high-cost simulations (Pellegrini et al. [36], Sacher et

al. [43]). In this perspective, a ”high-fidelity” RANS solver can be combined to a fast ”low-fidelity” BEM

to explore a high dimension design space. The objective of the present work is to assess the ability of the

in-house BEM code PUFFIn [37] to be used as a ”low-fidelity” solver for MF optimization. Multi-fidelity

optimization is based on surrogate models of the errors between two fidelity levels. Thus, significant inter-

level errors are not a problem, as long as the ”low-fidelity” solver does not deteriorate the ”high-fidelity”

surrogate nor introduce additional uncertainties.

As a MF dedicated tool, PUFFIn is designed to provide fast predictions of the hydrodynamic forces

on 3D submerged hydrofoils operating near the free surface. Only steady problems are considered in the

present work, leaving the unsteady flows for future investigations. In addition, cavitation effects which might

occur for small submergence depths are not studied. For all computations in the present work, the pressure

coefficient is higher than the cavitation number (σcav = 2.1 for the highest Froude number investigated).

To reduce the computational cost, only linearized free surface conditions are used in this work: a symmetry

condition, an anti-symmetry condition and the Neumann-Kelvin condition. The relevance of these linearized

models is assessed on a typical windfoil geometry, composed of a front wing and a rear stabilizer. The

predictions of the present BEM code are compared with the results of the RANS solver available in the

CFD suite FINE/Marine, which can be considered as typical ”high-fidelity” computations. To be used

as a ”low-fidelity” solver, the potential code should be able to capture the global tendencies predicted by

the RANS model for the forces variations with the submergence depth and the Froude number values.

Two configurations of the hydrofoil are studied. The first configuration (named single-body configuration)

consists of a single wing of the hydrofoil, either the front wing or the stabilizer. For the second configuration

(named two-body configuration), both the front wing and the stabilizer are considered.

Section 2 presents the theory of the potential flow solver as well as a brief comparison of the PUFFIn

predictions with reference 2D test cases available in the literature. The windfoil geometry used for the

computations is described in section 3. In section 4, the RANS solver is shortly presented and the numerical

setups for the RANS and BEM computations are described. Numerical results obtained with the BEM

and RANS methods are given in section 5. A comparative study of the two methods is given, focusing on

hydrodynamic forces, pressure distribution and free surface elevation. The results obtained on the single

front wing are presented in section 5.1. Results obtained with the potential code for several Froude numbers

and the three linearized conditions for the free surface are first presented, to estimate the validity domains

of the symmetry and anti-symmetry conditions for the free surface. Then, the influence of the submergence

depth is studied for a fixed Froude number, realistic of a windfoil operating condition. For the same Froude

number value, numerical results for the two-body configuration are given in section 5.2. The validity of the

anti-symmetry condition and Neumann-Kelvin conditions are discussed by comparing the BEM prediction

of the forces and moments with the RANS results. Finally, general conclusions and an outlook for future
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work are proposed in section 6.

2. Boundary element method

The potential flow solver PUFFIn [37] is presented in this section. After the description of the potential

flow equations, the wake generation method and Kutta condition imposed at the trailing edge are presented.

Then, the symmetry, anti-symmetry and Neumann-Kelvin conditions are developed from the non-linear free

surface condition. This section ends with a brief comparison of the present method with 2D test cases

available in the literature.

2.1. General formulation

(a) Side view (b) Front view

Figure 1: Typical configuration of a lifting surface SB at low immersion h studied with the potential method.

The ”low-fidelity” solver is based on an incompressible potential flow approach, i.e. the viscous effects

are neglected and the flow is supposed to be irrotational and incompressible. For typical configurations the

domain boundary S is the union of the body surface SB and the free surface boundary SFS . In figure 1, a

scheme of such configuration is given for a hydrofoil with a heel angle β = 20◦. The 3D hydrofoil surface is

colored in orange and only the 2D free surface elevation at mid-span is drawn in figure 1a for the sake of

clarity. The submergence depth h is measured at midchord and midspan of the hydrofoil. According to the

Kutta-Joukowsky theorem, a circulation has to exist around the surface SB to generate a lift force. Since

the total circulation in the domain should be null, an additional wake surface SW should exist to counteract

the body circulation (Katz and Plotkin [22]). The Kutta condition imposes the wake surface to start at the

trailing edge of the hydrofoil, to ensure finite value of the velocity.
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The velocity field u(x, t) is obtained as the superposition of the undisturbed flow U0 and the gradient

of the perturbation potential ϕ(x, t):

u(x, t) = U0 +∇ϕ(x, t) (1)

With these assumptions, the mass conservation reduces to a Laplace equation for the velocity perturbation

potential:

∇2ϕ(x, t) = 0 (2)

General solutions of the previous equation can be obtained using the Green function of the Laplace equation.

For 3D problems, the Green function is given by:

ϕ3D(x) =
1

4πr

with r = ||x− xP ||, P ∈ S,

(3)

Applying the second Green identity to the Laplace equation (Bal [4]), the potential on the boundary S is

obtained through a domain Boundary Integral Equation (BIE):

ϕ(x, t) = − 1

2π

ˆ
S

[
σ
1

r
− µ

∂

∂n

(
1

r

)]
dS

where
∂

∂n
= n ·∇, withn the outward pointing normal vector.

(4)

Equation 4 involves the distributions of doublets µ and sources σ on the boundary S, related with the

potential by the relations:

µ(x, t) = −ϕ(x, t)

σ(x, t) = −∂ϕ(x, t)

∂n

(5)

The source strengths on the hydrofoil are given by the non-penetration condition, which states that the

flow across the surface SB is zero (Hess and Smith [19]):

σ(x, t) = −U0 · n, (6)

The wake should not support any hydrodynamic loads, i.e., the pressure should be continuous at the

hydrofoil trailing edge and across the wake surface. Thus, a non-linear Kutta condition (Kutta [25]) is

imposed at the trailing edge to obtain the equality of the pressure on the pressure side and suction side of

the hydrofoil:

pPS
TE = pSSTE (7)

where pPS
TE is the pressure on the pressure side and pSSTE the pressure on the suction side. With the Bernoulli

relation, the previous equation might be written:

pPS
TE − pSSTE =

[
ρ
∂ϕ

∂t
+

1

2
ρ(U0 +∇ϕ)2 + gz

]SS
PS

= 0 (8)
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where [a]SSPS is the difference between the pressure side and suction side values of the quantity a. For

the steady problem considered in the present work, the time dependency can be removed from the Kutta

condition to accelerate the convergence, giving the equation:[
1

2
ρ(U0 +∇ϕ)2 + gz

]SS
PS

= 0 (9)

To ensure that the wake does not support any pressure jump, the sources distribution on SW must be

null and equation 4 can be written (Katz and Plotkin [22]):

ϕ(x, t) = − 1

2π

ˆ
SB+SFS

[
σ(x, t)

1

r
− µ(x, t)

∂

∂n

(
1

r

)]
dS +

1

2π

ˆ
SW

[
µ(x, t)

∂

∂n

(
1

r

)]
dS (10)

In addition, a kinematic condition is imposed on the free surface:

∂η(x, t)

∂t
+ (U0 +∇ϕ(x, t)) ·∇η(x, t) =

∂ϕ(x, t)

∂z
for z = η (11)

where η(x, y) is the elevation of the free surface. A dynamic condition is also obtained on the free surface

with the Bernoulli relation:

∂ϕ(x, t)

∂t
+U0 ·∇ϕ(x, t) +

1

2
(∇ϕ(x, t))2 + gη = 0 for z = η (12)

These two conditions are non-linear since both relations contain quadratic terms and are written on the

deformed free surface (z = η), which is unknown a priori. In order to reduce the computation time,

linearized conditions are used, as discussed in section 2.2.

2.2. Linearized free surface conditions

In order to fully take into account the non-linearities, the kinematic and dynamic conditions need to be

imposed on the deformed free-surface (see Filippas and Belibassakis [14] for a fully nonlinear method). To

reduce the computational time, the non-linear free surface conditions can be linearized around the initial

free surface position z = 0. This latter method is used in the present work. Keeping only the first order

terms, the linearized conditions are:

∂η

∂t
+U0 ·∇η =

∂ϕ

∂z
in z = 0

∂ϕ

∂t
+U0 ·∇ϕ = −gη in z = 0

(13)

Combining these two equations, the linear Neumann-Kelvin (NK) formulation is obtained (Brard [6]):(
∂

∂t
+U0 ·∇

)2

ϕ+ g
∂ϕ

∂z
= 0 (14)

Similarly to the Kutta condition, the time derivative can be removed for steady problems and the Neumann-

Kelvin condition is:

(U0 ·∇)
2
ϕ+ g

∂ϕ

∂z
= 0 (15)
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Once the velocity potential is known from equation (15), the free surface elevation η can be obtained from

the linear kinematic condition (equation (13)).

The asymptotic analysis of the NK formulation allows to further simplify the free surface condition for

very small Froude numbers (Fr<< 1) and very large Froude numbers (Fr>> 1). With a characteristic length

of the problem L, a non-dimensional equation might be written for 1-dimensional steady problems (Newman

[33]):

∂2ϕ

∂x̃2
+

1

Fr2
∂ϕ

∂z̃
= 0 with x̃ =

x

L
and z̃ =

z

L
(16)

With this formulation, the asymptotic behavior of the NK condition with the Froude number is transparent:

• For Fr→ 0, equation (16) reduces to ∂ϕ
∂z̃ ≈ 0 at z̃ = 0

• For Fr→ ∞, equation (16) reduces to ∂2ϕ
∂x̃2 ≈ 0 → ϕ = 0 at z̃ = 0

For low Froude numbers, the free surface condition can therefore be replaced by a symmetry condition

at z = 0, while an anti-symmetry condition (also called biplane approximation) may be used for large

Froude numbers (Faltinsen [12]). One advantage of the symmetry and anti-symmetry conditions is that the

free surface does not need to be meshed, reducing the computational time and potential numerical errors.

Typical Froude numbers for the flow around a hydrofoil are relatively high, such as Fr > 3. Thus, for the

highest velocity considered in section 5.1.2 and section 5.2, the predictions obtained with the NK conditions

are compared with the anti-symmetry condition. However, the validity domain of this condition in terms

of Froude numbers should be investigated, as detailed in section 5.1.1. The symmetry and anti-symmetry

conditions are simply obtained by placing a mirrored foil above the free surface with the same or opposite

distributions of sources and doublets in the computations.

2.3. Discretisation and resolution

To construct a numerical solution, the boundaries SB , SFS and SW are discretized using quadrilateral

elements. The sources and doublets are supposed to be constant on each element. This choice to use

low-order instead of higher order methods is dictated by the need to reduce the computational time of the

low-fidelity solver. The NK condition is solved using the finite difference method, with the second order

upwind scheme proposed by Dawson [7] for the spatial derivative:

∂ϕ

∂x
(x, t) ≈ 120ϕ(x, t)− 180ϕ(x−∆x, t) + 72ϕ(x− 2∆x, t)− 12ϕ(x− 3∆x, t)

72∆x
(17)

where ∆x is the distance in the streamwise direction between two consecutive panel centers. In Dawson

[7] the discretisation of the second order spatial derivatives in equation (15) is obtained by applying this

scheme to the velocity computed using a Boundary Integral Equation (BIE). In the present work, the second

derivative is obtained by applying twice the scheme given in equation (17) on the potential (see also Bal
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and Kinnas [5]). This allows to reduce the computational time since it is more efficient to use the finite

difference method than a BIE for the calculation of the velocity. To ensure a proper radiation condition,

the first and second spatial derivatives of the potential in the stream-wise direction are imposed to be null

at the upstream boundary of the free surface (Nakos and Sclavounos [32]).

The position of the wake surface is an unknown of the problem. The surface SW could be to prescribe

such that the wake leaves the trailing edge at the median trailing angle or that the wake panels are parallel

to the undisturbed flow U0. However, for the two-body configuration, the wake of the front wing can have a

strong influence on the incoming flow experienced by the stabilizer. Thus, a more sophisticated wake model is

needed. Since the wake should not support any hydrodynamic loads, the Kutta-Joukowski theorem imposes

that the wake panels are parallels to the local velocity u(x, t) (Katz and Plotkin [22]). This condition is

ensured using a Lagrangian time-marching approach for the construction of the wake surface. At each time

step, a new set of panels are shed from the hydrofoil trailing edge and the strength of the doublet µw on these

panels is obtained with the Kutta condition (equation (8)). The new wake panels are obtained by convecting

the trailing edge nodes during one time step, so the size of the wake panels depend on the time step value

(figure 2). Once a new panel is shed at the time step n, it is convected by the local flow downstream the

hydrofoil at the following time steps m > n. According to the Kelvin’s circulation theorem, the strength

of a wake doublet should not change with time. Thus, once a wake panel is generated at the trailing edge,

the value of the doublet µw is kept constant while it is convected downstream. Because panels far from

the hydrofoil have a small contribution to the flow around the hydrofoil, this time marching method allows

to obtain the steady state solution. For some two-body configuration, the wake panels might impinge the

stabilizer, leading to numerical instabilities. To avoid such problems, several viscous vortex core models are

implemented in PUFFIn following the method proposed by Gennaretti and Bernardini [17]. Details about

the viscous core models are not given here, since this kind of wake/stabilizer impingement does not occur

with the two-body configuration studied in the present work.

Figure 2: Generation of the wake panels.
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While higher order schemes are necessary for true unsteady problems (Filippas and Belibassakis [13]),

a first order scheme in time is sufficient to obtain an accurate steady solution with the time-marching

algorithm. At time step n, the discretisation of equation (10) at the geometrical center of each element

gives:

[
AB AFS

] µn
B

µn
FS

 =
[
BB BFS

] σB

σn
FS

+
[
Wn T n

]µn
W

µn
TE

 (18)

where AB, AFS , BB and BFS are the matrices containing the influence coefficients for the hydrofoil and

the free surface boundaries. The vectors µn
B, µn

FS , σ
n
B and σn

FS contain the values of the doublet and the

sources at the time step n on the hydrofoil and free surface panels, respectively. The wake panels are split

between the first row of panels at the trailing edge and the rest of the wake panels. Indeed, at each time

step, the values of the doublets on the first row of panels µn
TE are unknown, whereas the doublets on the

rest of the wake panels µn
W are known from previous time steps. The matrices T n and Wn contain the

influence coefficients of the wake panels. Because the positions of the wake panels change at each time step,

these two matrices are therefore time dependent.

In the right-hand side of equation (18), the source strengths on the free surface σn
FS are unknown. These

values are obtained using the discretized Neumann-Kelvin equation:

Nµn
FS = σn

FS (19)

where the matrix N contains the coefficients of the finite difference method (equation (17)).

The unknown values of the doublets on the first row of panels µn
TE are obtained from the Kutta condition,

which is also discretized using the finite difference method with a second order scheme for the spatial

derivative. The discretized Kutta condition can be written:

Mµn
B = K (µn

B)µn
B (20)

with M and K(µn
B) the matrices containing the coefficients of the finite difference method. Note that, since

the Kutta condition is non-linear, the matrix K depends on the current value of the doublets µn
B. Combining

equations (18), (19) and (20), the unknown doublet distribution on the body and the free surface are obtained

by solving:

 0 M̃

−T n A

µn
TE

µn

 =

 K (µn
B)µn

B

BBσB +Wnµn
W


with A =

[
AB AFS −BFSN

]
, µ =

 µB

µFS

 and M̃ =

M
0

 (21)
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A bloc inversion is used to solve Equation (21). The inverse of the Schur complement C−1 =
(
MA−1T n

)−1

needs to be computed at each time step, since the matrix T n is time dependant. Nevertheless, the matrix

inversion does not require a large computational time because the size of the square matrix C is only the

number of panels on the trailing edge square. The inverse matrix A−1 can be computed only once at the

beginning of the simulation with a lower-upper (LU) decomposition. An iterative procedure is used at each

time step: the non-linear term K (µn
B)µn

B is computed using the value of µn
B at the previous iteration.

Once the velocity potential is known, the pressure distribution on the hydrofoil is obtained with the

Bernoulli relation. Integration of the pressure over the surface SB gives the hydrodynamic pressure forces

and moments acting on the hydrofoil.

2.4. Test of the potential method for 2D flows

A succinct validation of the potential method is now presented for the flow around a two-dimensional

NACA 4412 near the free surface with α = 5◦ incidence. Predictions of the present BEM method are

compared with 2D numerical results from Yeung and Bouger [51] and Filippas and Belibassakis [13]. Since

the present code only handles 3D geometries, a large aspect ratio AR=30 was used for the foil and the

lift and drag coefficients were computed at the mid-span section to mimic a 2D flow. The foil surface was

discretized using 80 panels along the chord and 11 panels in the span-wise direction. The Neumann-Kelvin

condition was used and the dimensions of the free surface were adjusted to get at least three wavelengths

downstream the foil and five times the hydrofoil span in the span direction. The free surface was discretized

using at least 20 panels per wavelength and 33 panels in the span direction. For all computations, the aspect

ratio of the panels on the free surface depends on the wavelength but does not exceed twenty. A typical

panel distribution at midspan is given in figure 3d. The time step was set to get U0∆t/c = 0.5. Figure 3a

shows the lift and drag coefficients predicted by the present BEM for a Froude number based on the chord

length Frc = U0/
√
gc = 1 and several submergence-to-chord ratios h/c. Despite discrepancies on the drag

around h/c = 3, very good agreement is found between the two methods. For a submergence depth h/c = 1,

the free surface elevation given by the present BEM for Frc = 0.7 and Frc = 0.9 is compared with the results

obtained by Yeung and Bouger [51] with a 2D hybrid integral equation. The curves are almost identical.

The pressure coefficient distribution predicted by the present model for Frc = 1.03 and h/c = 0.6 is also

consistent with the experimental results from Ausman [1] shown in figure 3c.

3. Windfoil geometry

The full geometry of the hydrofoil is composed of a front wing and a stabilizer (figure 4) distant from

d = 0.88 m, similar to typical configurations used for windsurfer hydrofoils. Both front and rear parts were

generated from a H105 profile section. The front wing has a positive camber (camber line above chord
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(a) Lift and drag coefficients with varying

submergence-to-chord ratio and Frc = 1.0

(b) Free surface elevation predicted for two values of the

Froude number and h/c = 1. The leading edge is located at

x/c = −1.

(c) Pressure coefficient obtained on the foil with Frc = 1.03

and h/c = 0.6

(d) Panels distribution at midspan on the hydrofoil and the

free surface for Frc = 1.0 and h/c = 0.5.

Figure 3: Comparison of the present BEM predictions for the flow around a NACA 4412 hydrofoil with 2D numerical results

from Filippas and Belibassakis [13] and Yeung and Bouger [51] and experimental measurement from Ausman [1]. The angle of

attack is α = 5◦ and the aspect ratio is AR=30 for the present BEM results.

line) while the stabilizer has a negative camber (camber line below chord line). Thus, the lift force created

by the front wing is directed upwards and the lift force of the stabilizer is directed downwards. Both the

front wing and the stabilizer are located at the same height. The dimensions and angles of the two wings

are given in table 1. The maximum chord lengths are located at mid-span and are cfront = 0.12 m for the

front wing and cstab = 0.08 m for the stabilizer. The front wing and stabilizer span are sfront = 0.5 m

and sstab = 0.25 m, respectively. Full geometry (CAD) is available upon request to the contact author.
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Computations performed using only one of the two wings are referred to as ”single-body configuration”.

Most of the single-body computations have been performed with the single front wing (see section 5.1), but

a few computations are also presented with the single stabilizer in section 5.2.1. Computations with the

full hydrofoil, i.e. with both the front wing and the stabilizer, are referred to as ”two-body configuration”

(see section 5.2). The foil is located at a distance h under the free surface at rest (plane z = 0) with a heel

angle β = 20◦. Computations were performed for several immersion depths h and flow velocities U0. The

immersion depth h is defined as the distance between the interface at rest and the front wing leading edge

at mid-span. The front wing chord length at mid-span cfront is used as the reference length to reduce to a

dimensionless equation. The submergence-to-chord ratio is defined as h̃ = h/cfront for both the single-body

and two-body configurations. The Froude number is computed as Frc = U0/
√
gcfront.

Table 1: Dimensions and angles of the front wing and the stabilizer.

Parameter Front wing Stabilizer

Section H105 H105

Chord at mid-span 0.12 m 0.08 m

Span 0.5 m 0.25 m

Anhedral/Dihedral angle 8.19◦ 8.19◦

Sweep angle (LE root to LE tip) 11.69◦ (backward) 11.69◦ (forward)

Twist angle -2◦ -2◦

Rake angle 2◦ 2◦

(a) Top view (b) Front view

Figure 4: Description of the hydrofoil geometry.

4. Simulation setup

The setups of the BEM and RANS computations are presented in this section. Preliminary computations

were first performed with PUFFIn to select an appropriate mesh providing fast and accurate results. Then,
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the RANS solver is briefly presented.

4.1. BEM computations

A grid convergence study was first performed with the front part of the wing in an infinite domain. The

inflow velocity was set to U0 = 9.76 m/s (Frc = 9) and three grids were generated (G3, G2 and G1 from the

coarsest to the finest). Finer panels were used near the leading edge, the trailing edge and the tips of the

wings, as illustrated in figure 5a. As shown in table 2, the relative differences obtained for the lift and drag

coefficients with the grids G1 and G2 are less than 0.5%. The medium grid G2 was therefore considered fine

enough to produce grid-independent solutions and was used for computations with the free surface.

Table 2: Grid convergence study around the front wing in infinite domain (U0 = 9.76 m/s).

Grid Panels along the chord Panels along the span ∆Cx ∆CL

G3 80 12 4.0% -1.1%

G2 112 24 0.5% -0.1%

G1 160 48 - -

(a) Top view of the grid G2 used for the front wing. (b) The free surface is discretized using 100 panels along the

x-direction and 80 panels along the y-direction.

Figure 5: Hydrofoil and free surface meshes used for Frc=9.

The free surface was discretized with a Cartesian grid to get at least 20 panels per wavelength and at

least 10 panels per wingspan in the span-wise direction. Preliminary tests on the front wing performed for

Frc = 0.6 and Frc = 9 with h̃ = 0.83 showed that increasing the number of panels in the stream-wise and

span-wise directions by a factor 1.5 led to less than 0.4% differences on the hydrodynamic coefficients. The

discretisation using 20 panels was thus considered fine enough to get reliable predictions without prohibitively

increasing the computation time. The dimensions of the free surface mesh were adjusted with the Froude

number to ensure at least three wavelengths downstream the hydrofoil and five chord lengths upstream. For

large Froude numbers such as Frc = 9, the wavelength is very long and it is not necessary to capture three

wavelengths in the wake of the hydrofoil to correctly compute the hydrodynamic forces. Again, preliminary
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Figure 6: Influence of the free surface discretisation and free surface dimensions on the wave elevation at mid-span (Frc = 9,

h̃ = 0.83).

tests done by increasing the free surface dimensions by 50% did not show significant variations of the

hydrodynamic coefficients or the free surface elevation for Frc = 0.6 and Frc = 9 with h̃ = 0.83 (see figure

6). An example of the free surface mesh is given in figure 5b for Frc = 9.0. For computations with the

two-body configuration, i.e front wing and stabilizer, the stabilizer was discretized using the same number

of panels as presented for the grid G2 in table 2. For the flow conditions investigated in the present work,

steady solutions are expected and the time step value was not found to have a significant impact on the

results. Thus the time step was set to get ∆tU0/cfront = 0.5. The computations are stopped when the

variations of the forces are less than 0.5% of the value averaged over the last 70 time steps. For most of the

cases investigated, convergence is reached within 150 time steps. The roll-up of the vortex wake obtained

at convergence for Frc=9 and h̃ = 0.83 is visible in figure 7.

Figure 7: Wake surface obtained at the end of the computation for the front wing with Frc=9 and h̃ = 0.83. The forces have

converged within 84 time steps.
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4.2. Viscous flow computations

The viscous flow results taken as high-fidelity references are obtained with the CFD suite FINE/Marine,

commercialized by CADENCE. The flow solver ISIS-CFD included in FINE/Marine is developed by Ecole

Centrale de Nantes (Nantes, France) and is based on a finite volume method to solve the URANS (Unsteady

Reynolds Averaged Navier-Stokes) equations. The influence of the turbulence is taken into account with

the k − ω SST model (Menter [29]). For the Reynolds numbers considered in this work the boundary

layer is not fully turbulent and the standard k − ω SST model can not accurately capture the boundary

layer. More accurate models such as the γ−Reθ transition model (Menter and Langtry [30]) or Large Eddy

Simulation should be used to properly capture the turbulent transition of the boundary layer. However,

within a typical optimization framework it is not possible to use such models which need finer meshes and

hydrofoil optimization are generally performed using standard RANS models. In addition, preliminaries

computations with the γ−Reθ model suggested that large flow separation of the laminar boundary layer is

not expected for the test case investigated, and that the turbulent transition mainly results in an offset of

the total drag force. Consequently, the optima obtained by an optimization procedure with the standard

k−ω SST model are expected to be close to the ones obtained with a transition model. The boundary layer

transition also strongly depends on the turbulence intensity of the flow, which is difficult to estimate in situ

for computations. Finally, for most applications with competitive sailing yachts the Reynolds number based

on the foil chord is greater than Re= 106, so that the boundary layer is almost fully turbulent. This is why,

the effect of the boundary layer transition is neglected in the present work and the standard k − ω SST

model is used.

A mixture-model approach is used to capture the free surface (Queutey and Visonneau [41]). The

convective fluxes are discretized using the AVLSMART scheme, which is a blending between a third order

QUICK scheme and an upwind first order scheme. The mass fraction equation is discretized with the BRICS

scheme (Wackers et al. [47]). Unstructured hexahedral meshes are generated with the software HEXPRESS,

included in the FINE/Marine suite. Simulations are performed using Adaptive Grid Refinement (AGR, see

Wackers et al. [46]), to reduce the computational time and accurately capture the free-surface and physics of

the flow around the hydrofoil. A second-order backward Euler scheme is used for the temporal discretisation.

The computational domain extends from 32cfront upstream the front wing leading edge to 42cfront down-

stream the stabilizer trailing edge, sideways from −48cfront to 48cfront and vertically from -40cfront below

the free surface to 24cfront above the free surface. The velocity and volume fraction are imposed on the inlet

and the side planes. The pressure is imposed on the top and bottom planes. The wall function is used on

the hydrofoil surface.

The RANS computations were setup following the procedure described by Richeux [42] to perform

accurate simulations with AGR. For the sake of brevity, only the main parameters of the AGR procedure

are presented. First an initial coarse mesh was generated with HEXPRESS to use a wall function in the
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hydrofoil boundary layer (y+ ≈ 60). The AGR procedure is then called repeatedly during the computation

to refine the initial mesh. A combined criterion based on the grid size for cells normal to the free surface

and a flux components Hessian threshold is employed (Wackers et al. [46]). For all computations, the

target size for cells normal to the interface is set at cstab/64× 1.2. The Hessian threshold is set to cstab/16

and the minimum cell size is set to cstab/256 × 1.2. Horizontal refinement was limited to a box around

the hydrofoil, ending 6.4cfront downstream the hydrofoil. The AGR procedure is called every 20 time steps

during the computations. As discussed in Richeux [42] and Pernod et al. [38], those parameters allow getting

small numerical uncertainties on the solution for surface piercing and submerged hydrofoil with a significant

reduction of the computational time compared to computations without AGR. A grid convergence study

for the two-body configuration is given in Appendix A. An example of initial coarse mesh and adaptively

refined mesh is presented in figure 8. As expected, the final mesh is refined in the area of interest, i.e. around

the hydrofoil, close to the free surface and in the wakes. With the present setup, typical initial grids for the

single front wing contain around 0.5 M cells (1.2 M cells for the case of the two-body configuration) and

the final refined meshes contain about 15 M cells (21 M cells for the case of the two-body configuration).

Following the guidelines proposed by Richeux [42], the time step was set to ∆t = 0.05cstab/U0.

5. Results and discussion

The results obtained with the BEM and RANS methods are first presented in section 5.1 for the sin-

gle front wing configuration. Then, the comparison of the two numerical approaches for the two-body

configuration is given in section 5.2.

5.1. Single-body configuration: front wing

In this section, numerical predictions of the potential and the viscous flow approaches are compared for

the flow around the single front hydrofoil. The influence of the Froude number on the hydrodynamic forces

and free surface patterns is investigated in section 5.1.1. In section 5.1.2, several submergence depths are

considered for one high Froude number of interest, Frc = 9.

5.1.1. Influence of the Froude number

Potential flow computations were performed with the Neumann-Kelvin (NK), symmetry and anti-symmetry

free surface conditions, to study the asymptotic behavior of the NK model with the Froude number. The

submergence depth was kept constant at h = 0.1 m (h̃ = 0.83) and the inflow velocity was changed to get

Froude numbers between Frc = 0.4 and Frc = 9. Since the BEM does not capture the viscous part of the

forces, only the pressure contributions of the forces Fi,P are taken into account to compute the hydrodynamic

coefficients for both the potential and viscous flow computations:

Ci =
Fi,P

0.5ρU2
0Sfront

for i = x, y, z (22)
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(a) Initial mesh

(b) Final mesh with AGR

Figure 8: Example of adaptive grid refinement used in the RANS computations. The blue dashed line depicts the interface.

where Sfront is the planform area of the front wing.

The hydrodynamic force coefficients of the foil obtained with the three free surface conditions are pre-

sented in figure 9. The coefficients predicted by the symmetry and anti-symmetry conditions remain constant

for the Froude numbers investigated. For Cy and Cz, the absolute values are higher with the symmetry

condition. As presented in figure 11, these differences are due to a smaller pressure coefficient on the suction

side for the symmetry condition. Indeed, this condition acts as a wall above the foil, increasing the forces

perpendicular to the oncoming flow direction Fy and Fz. Note that the force in the y-direction is negative,

due to the heel angle of the hydrofoil. With the symmetry condition the minimum pressure is located on

the port side of the flow, while it is on the starboard side with the anti-symmetry condition. The drag

coefficient Cx is slightly higher with the anti-symmetry condition than the one predicted with the symmetry

condition. The differences on the drag between the two conditions are much smaller than the differences

observed for the vertical and side forces. This is because the drag force is mainly due to the location of
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(a) Cx (b) Cy

(c) Cz

Figure 9: Comparison of the hydrodynamic force coefficients predicted by the Neumann-Kelvin (NK), symmetry (Sym) and

anti-symmetry (Antisym) free surface conditions for several Froude numbers Frc. The submergence depth is h̃ = 0.83.

the stagnation point on the pressure side of the foil and the pressure distribution on the pressure side does

not change significantly between the two conditions (figure 11). As expected, the coefficients predicted by

the Neumann-Kelvin condition are close to the ones obtained with the anti-symmetry condition for high

Frc and closer to the ones given by the symmetry conditions for low Frc. For intermediate values of the

Froude number, the NK predictions move away from the asymptotic curves, with local extrema around

Frc = 0.5 and Frc = 1.25 for Cy and Cz and one extremum at Frc = 0.5 for Cx. Similar variations of the

moment coefficients are observed in figure 10. The coefficient CMx is positive for the symmetry condition

and negative for the anti-symmetry condition. This is due to the location of the minimum pressure, which
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(a) CMx (b) CMy

(c) CMz

Figure 10: Comparison of the hydrodynamic moment coefficients predicted by the Neumann-Kelvin (NK), symmetry (Sym)

and anti-symmetry (Antisym) free surface conditions for several Froude numbers Frc. The submergence depth is h̃ = 0.83.

moves from the port side to the starboard side of the foil when the Froude number increases (figure 11).

The present results suggest that the symmetry condition might be used instead of the NK condition for

Frc ≤ 0.6, while the anti-symmetry condition is valid for Frc ≥ 5.0 for the single front wing configuration at

the investigated submergence depths.

For moderate Reynolds numbers, laminar to turbulent transition of the boundary layer is expected.

Moreover, flow separation may occur on the suction side of the foil. The present potential flow approach

can not model either of these phenomena. Thus, in the following, only Froude numbers larger than one are

considered for the comparison between the low and high-fidelity methods. Moreover, foiling configurations
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(a) Symmetry condition (b) Anti-symmetry condition

Figure 11: Distribution of the pressure coefficient for the symmetry and anti-symmetry conditions (Frc = 9, h̃ = 0.83)

are not expected for Froude numbers larger than 1, corresponding to Reynolds numbers greater than Re=

1.3 × 105, for which the influence of the laminar to turbulent transition is smaller on the hydrodynamic

forces.

In figure 12, the hydrodynamic coefficients predicted by the BEM code with the NK condition are

compared to RANS results for the same range of Froude number and three submergence-to-chord ratios (h̃ =

0.83; 1.00; 1.50). A significant offset is visible between the RANS and BEM Cy and Cz curves. The potential

method gives a 30% overestimation of the hydrodynamic lift forces compared to the viscous approach. This

over-prediction may be expected since the development of the boundary layer in the RANS computation

tends to decrease the effective camber of the hydrofoil, thus reducing the contribution of the lift forces to

the oncoming flow. Indeed, additional computations with ISIS-CFD without viscosity and turbulence model

have shown excellent agreement with the BEM computations (see Appendix B). This strongly suggests that

the discrepancies between RANS and BEM results are due to the boundary layer. Nevertheless, the global

shapes of the curves obtained with the potential flow approach are in good agreement with the viscous

flow results. Particularly, for the Froude numbers considered, the free surface condition is similar to an

anti-symmetry condition and the lift forces decrease when the foil gets closer to the interface. For the three

submergence depths considered, the potential and viscous flow computations predict a local extremum for

Cy and Cz. These extrema occur at different Froude numbers, depending on the submergence depth.

As presented in figure 13, the variations in the hydrodynamic coefficients are linked to significant changes

in the free surface elevation caused by the hydrofoil. For high Froude number (Frc = 6.0), a large trough

appears relatively far from the hydrofoil, around x/cfront ≈ 10. The BEM method is able to predict the
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(a) Cx (pressure drag) (b) Cy

(c) Cz

Figure 12: Comparison of the hydrodynamic coefficients predicted by the potential code (NK conditions) with the ones predicted

by RANS computations for several Froude numbers Frc. Three submergence depths are considered h̃ = 0.83, h̃ = 1.00 and

h̃ = 1.50. Only the contributions due to the pressure are used to compute the forces coefficients for both methods.
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trough location, but slightly overestimates the waves amplitude, particularly for x/cfront ≥ 20. This is

mainly due to the viscous diffusion of the wake in the RANS computation, whereas the doublet strengths in

the wake are kept constant with the potential flow method. When the Froude number decreases to Frc = 1.0,

the trough is closer to the hydrofoil. The waves amplitude also tends to decrease when the Froude number

decreases. Unlike the BEM results, the wave elevation in the RANS computation decreases downstream the

hydrofoil. This damping was also observed with preliminary computations using finer grids at the interface.

Thus, the damping of the wave profile is rather due to viscous effects than numerical diffusion. For Frc = 6.0

and Frc = 1.0, the maximum free surface deformations are obtained on the port side (negative y values),

corresponding to the deepest part of the foil, where the minimum pressure occurs on the suction side (figure

14). For Frc = 1.0, the pressure coefficient decreases on the pressure side, leading to a smaller value of the

lift coefficient compared to the one obtained at Frc = 6.0.

The potential flow method is able to predict consistent free surface deformations and pressure distribution

with the RANS results for several values of the Froude number. Particularly, the BEM code provides a good

estimation of the forces variations with the Froude number, with an offset compared to the RANS results.

A full coupling between the potential tool and a boundary layer code might permit to correct this offset.

Nevertheless, this offset is not a problem to build a surrogate model with the BEM code for an optimization

process. Indeed, if the variations of the forces are accurately captured, the extrema locations of the surrogate

model remain the same and the ”low-fidelity” tool can be efficiently used for multi-fidelity optimization.

5.1.2. Influence of the submergence depth (Frc = 9)

The influence of the submergence depth on the front foil hydrodynamic coefficients was further investi-

gated for Frc = 9. Potential and viscous flow computations were performed for depth ratios between h̃ = 6.0

and h̃ = 0.50. For the BEM, the Neumann-Kelvin and anti-symmetry conditions were also compared for

this high Froude number. The variations of the drag coefficient Cx and the lift coefficient CL =
√

C2
y + C2

z

are given in figure 15. The variation of θ, defined as the angle between the lift force and the vertical, is also

presented. The predictions of the pressure drag coefficient Cx obtained with the anti-symmetry condition

are very similar to the ones given by the Neumann-Kelvin condition with the BEM method. Except the exis-

tence of an offset, overall good agreement is found between the potential and viscous flow coefficients. Both

methods predict a non-monotonic variation of the drag coefficient, with a maximum value around h̃ = 1.50.

For smaller submergence depth, the drag drastically decreases. For the smallest submergence depth, the

anti-symmetry condition seems to overestimate the drag reduction. The potential method overestimates

the lift compared to the RANS model. This overestimation exists for the highest submergence-to-chord

ratio, where the influence of the free surface is small. Thus, these discrepancies may be due to the lack

of a boundary layer model in the BEM rather than the free surface model, as explained in section 5.1.1.

Nevertheless, the lift monotonically decreases with the submergence-to-chord ratio. For h̃ > 2.0, the vari-
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Figure 13: Free surface elevation predicted by RANS computations (left) and BEM computations with the Neumann-Kelvin

condition (right) for Frc = 6.0, Frc = 1.0 and Frc = 0.5. The submergence depth is h̃ = 0.83.
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Figure 14: Comparison of the pressure distribution on the front wing obtained with the RANS (left) and BEM (right) compu-

tations for different Froude numbers (h̃ = 0.83).
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ations of the hydrodynamic coefficients are smaller than 2%. For smaller values of h̃, the relatively strong

decrease of the lift is observed. The relative reduction of the lift between the largest and the smallest ratio

h̃ is ∆CL = −21% in the RANS computations and ∆CL = −28% for the potential predictions. Thus, while

the BEM is not able to predict accurate values of the lift, the variation of the force is well captured by the

potential flow approach. The value of θ is equal to the heel angle for the deepest submergence and slightly

increases when the foil gets closer to the interface (about 1◦ for RANS and 2◦ for potential computations).

(a) Pressure drag coefficient (b) Lift coefficient

(c) Angle θ

Figure 15: Comparison of the hydrodynamic coefficients obtained with the BEM and RANS computations for the single front

wing at Frc = 9 and varying submergence-to-chord ratio (h̃ = h/cfront).

The pressure coefficient distributions on the suction side obtained for four submergence-to-chord ratios

between h̃ = 6.00 and h̃ = 0.50 are presented in figure 16 for the RANS and BEM computations with
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the NK condition. As expected, the pressure distribution is symmetric with respect to the mid-span plane

for the deepest immersion. The minimum pressure is weaker in the BEM simulations due to the lack a of

boundary layer model, but the region of low pressure is in good agreement with the RANS results. Both

methods predict an increase of the pressure on the suction side when the foil gets closer to the free surface.

For small submergence depths (h̃ ≤ 0.83) the pressure distribution is no longer symmetric and the minimum

pressure is obtained on the deepest part of the hydrofoil (port side, y < 0), producing an increase in the

angle θ. Because of the heel angle, the free surface tends to reduce the load on the shallowest part of the

hydrofoil (starboard side), while the deepest part is less affected. The pressure coefficients obtained with

the anti-symmetry condition are very similar to the ones given by the Neumann-Kelvin condition and thus

not presented for the sake of conciseness.

5.2. Two-body configuration: front wing and stabilizer (Frc = 9)

In this section, results are presented for the two-body configuration (front wing and stabilizer) to assess

the ability of the potential flow method to provide reliable estimations of the forces variations for high Froude

numbers. The Froude number was set to Frc = 9 and the submergence depth was changed between h̃ = 6

and h̃ = 0.5. To better understand the reciprocal influence of the two wings, a few computational results

are also presented for the single-body configuration with the stabilizer only. In this, section a distinction

is made between the hydrodynamic coefficients computed on the front wing, the stabilizer and the full

geometry (front wing and stabilizer). The hydrodynamic coefficients for the stabilizer and the full hydrofoil

are computed in a similar manner than equation 22:

Cfront
i =

F front
i,P

0.5ρU2
0Sfront

for the front wing, i = x, y, z

Cstab
i =

F stab
i,P

0.5ρU2
0Sstab

for the stabilizer, i = x, y, z

Ctot
i =

F front
i,P + F stab

i,P

0.5ρU2
0 (Sfront + Sstab)

for the full hydrofoil, i = x, y, z

(23)

where Sfront and Sstab are the planform areas of the front wing and stabilizer, respectively. The lift coefficient

is still defined by CL =
√
C2

y + C2
z for all cases.

5.2.1. Analysis of the front wing/stabilizer interaction

Computations with the two-body configuration are compared with the ones performed on the single front

wing to estimate the influence of the stabilizer on the interface. Figure 17 shows the free surface elevation

obtained for Frc = 9 and h̃ = 0.83 for the two configurations with the RANS computations and BEM (with

the NK condition). As discussed in section 5.1.1 the BEM gives stronger variations of the free surface. With

both methods, the high pressure on the upper part of the stabilizer induces a smaller trough in the wake.
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(a) (b)

(c) RANS (d) BEM

Figure 16: Pressure distribution on the suction side for the single front wing configuration at Frc = 9 and varying submergence-

to-chord ratio.
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The computations also show a shift of the minimum free surface elevation to the starboard side which is due

to the asymmetric distribution of the pressure on the stabilizer.

(a) (b)

(c) RANS (d) BEM

Figure 17: Comparison of the free surface elevation predicted by the RANS (left) and BEM (right) computations for the single

front wing (top) and the two-body configuration (bottom). Frc = 9. and h̃ = 0.83.

The front wing coefficients Cfront
x and Cfront

L obtained with the two-body configuration are presented

in figure 18. The coefficients obtained on the single front wing configuration (section 5.1) are also plotted

for comparison (gray dashed lines). While the lift coefficient is not affected by the stabilizer with both

approaches, the drag coefficient of the front wing is slightly smaller in the RANS computations for h̃ > 0.83.

However, these differences are less than 1% and can be due to numerical errors. On the contrary, the

coefficients predicted by the NK and the anti-symmetry condition are similar and very close to the ones
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obtained for the single front wing configuration.

(a) RANS (b) BEM

Figure 18: Hydrodynamic coefficients obtained on the front wing in the two-body configurations with the RANS (left) and

BEM (right) computations (Frc = 9). Only the pressure contribution of the forces is used to compute the coefficients. The

grey dashed lines depict the coefficients obtained on the single front wing configuration.

The stabilizer coefficients Cstab
x and Cstab

L obtained with the two-body configuration are presented in

figure 19. Additional computations were performed for the single stabilizer configuration to assess the

influence of the front wing on the stabilizer forces. The hydrodynamic coefficients obtained for the single-

body configuration are plotted as gray dashed lines in figure 19. With the definition of the lift coefficient (23),

the coefficient Cstab
L is always positive, but one should keep in mind that the lift created by the stabilizer is

directed downwards. While an offset still exists between the RANS and BEM results, both methods predict

negative values of the drag when the stabilizer is located in the front wing wake. Because the front wing
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induces a deviation of the flow, the apparent inflow for the stabilizer is no longer aligned with the x-axis.

Consequently, the downwash from the main wing results in a propulsive contribution of the stabilizer’s lift.

The pressure drag increases in the RANS and BEM results when the submergence depth decreases. On

the contrary, the lift produced by the stabilizer is greater in presence of the front wing. In fact, the flow

deviation induced by the front wing also tends to increase the effective incidence of the stabilizer. Moreover,

while the lift of the single stabilizer tends to slightly increase with smaller ratio h̃, the lift significantly

decreases when the stabilizer is downstream the front wing.

The variations of the drag and lift forces with the submergence depth are much larger in the two-body

configuration. Indeed, h/cstab = 1.5h/cmain, so the influence of the free surface is expected to be smaller for

the single stabilizer than for the main wing. In addition, the suction side of the stabilizer is the lower side

of the foil, where the influence of the free surface is smaller compared to the upper side. The larger force

variations with the submergence depth observed for the two-body configuration suggest that the forces on

the stabilizer strongly depend on the wake of the front wing: the proximity of the free surface modifies the

pressure distribution on the front wing, which in turn has a strong influence on the apparent inflow seen by

the stabilizer.

Figure 19 also highlights differences between the coefficients provided by the NK and anti-symmetry

conditions. Particularly, the anti-symmetry condition gives a significant increase of the lift coefficient around

h̃ = 0.83, in discrepancy with the RANS predictions. Indeed, the pressure distribution on the stabilizer is

affected by the trough located in the wake of the front wing and the differences observed between the NK and

the anti-symmetry conditions suggests that this influence might not be accurately captured by the latter.

5.2.2. Variations of the total forces and moments acting on the full hydrofoil

The variations of the coefficients Ctot
x and Ctot

L for the full hydrofoil predicted by the BEM and RANS

computations are given in figure 20. Regarding the drag, larger differences between the potential and

the viscous flow approaches are obtained compared to the single front wing configuration. With the NK

condition the drag is higher than the reference value (h̃ = 6) for all the smaller submergence depths. In

the contrary, the RANS computations show that the drag obtained for h̃ = 0.5 is smaller than the one

obtained for h̃ = 6. However, both methods predict a maximum value of the drag around h̃ = 1. Besides,

the anti-symmetry condition gives a significantly smaller value than the RANS prediction for h̃ = 0.5. This

is due to the poor prediction of the drag on the stabilizer by the anti-symmetry condition (figure 19). Thus

the NK condition might outperform the anti-symmetry condition for the drag estimation. The variations of

the lift coefficient obtained with the two free surface conditions are similar. Compared to the RANS results,

the BEM overestimates the lift reduction when the full hydrofoil gets closer to the free surface.

The moments acting on the hydrofoil are also of interest since they might jeopardize the stability of the

watercraft. The dimensionless moment coefficients for the full geometry are given by:
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(a) RANS (b) BEM

Figure 19: Hydrodynamic coefficients obtained on the stabilizer in the two-body configuration with the RANS (left) and BEM

(right) computations (Frc = 9). Only the pressure contribution of the forces is used to compute the coefficients. The grey

dashed lines depict the coefficients obtained on the single stabilizer configuration.

CMi =
M front

i,P +M stab
i,P

0.5ρU2
0 (Sfront + Sstab)(cfront + cstab)

for i = x, y, z (24)

where the pressure moments Mi,P are computed about the point O in figure 4, which would roughly be

the location of the junction between the fuselage and the hydrofoil mast in a real configuration. The

moment coefficients are presented in figure 21. As the hydrofoil gets closer to the free surface, a negative

rolling moment appears, which is overestimated by the potential flow approach. This moment is very small

compared to the other moments and tends to reduce the windward heel. In fact, it represents a shift of the
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(a) Cx (b) CL

Figure 20: Total pressure hydrodynamic coefficient predicted by the RANS and BEM computations for the two-body configu-

ration (Frc = 9).

force application point smaller than 4 cm toward port side. With both the BEM and RANS computations,

the yaw and pitch moments decrease when the submergence depth decreases. These reductions of the

moments are strongly linked to the reductions of the lift force when the foil becomes closer to the free

surface. As for the forces, an offset exists between the potential and viscous results. However, the BEM

code is able to capture the variations of the moments: with both BEM and RANS approaches, the moments

My and Mz at h̃ = 0.83 are about 20% smaller than the moments at h̃ = 6.

6. Conclusion

The present work assessed the ability of the BEM code PUFFIn to be used as a ”low-fidelity” within

a multi-fidelity optimization process. The BEM solver was designed to predict the performances of 3D

hydrofoils operating near the free surface with a relatively small computational time. Numerical predic-

tions of the potential solver were compared with ”high-fidelity” RANS computations for the flow around

a submerged hydrofoil composed of a front wing and a stabilizer. Three linearized free surface conditions

were compared for the BEM: the symmetry, anti-symmetry and Neumann-Kelvin conditions. The RANS

computations were done with adaptive grid refinement, using a combined criterion based on the free surface

and the flux component Hessian. Computations were performed on single-body configurations and two-body

configurations, analyzing the pressure drag and lift, as well as free surface waves patterns.

For the single front wing configuration, the influence of the Froude number was first investigated. Poten-

tial flow results suggest that the Neumann-Kelvin condition is similar to a symmetry condition for Frc ≤ 0.6

and is equivalent to an anti-symmetry condition for Frc ≥ 5.0. An offset exists between the forces predicted
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(a) Rolling moment (b) Pitch moment

(c) Yaw moment

Figure 21: Moment coefficients predicted by the RANS and BEM computations for the two-body configuration (Frc = 9). Only

the pressure contribution of the forces is used to compute the coefficients.

by the BEM and the RANS computations, due to the boundary layer developing on the hydrofoil in the

viscous computations. We believe that this is not related to the linearization of the free surface. Never-

theless, the general variations of the hydrodynamic coefficients with the Froude number are well captured

by the ”low-fidelity” method. In particular, the lift was found to increase when the submergence depth

decreases for Frc ≤ 0.6, while the opposite behavior was obtained Frc ≥ 0.6. The free surface predicted by

the BEM was in overall good agreement with the ”high-fidelity” results, even though the waves amplitudes

are slightly overestimated by the potential flow approach. The influence of the submergence depth on the

drag and lift coefficients was investigated for a high Froude number Frc = 9, typical of real flow conditions.
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Despite an offset between the BEM and RANS results, the variations of the forces are in good agreement.

The anti-symmetry and Neumann-Kelvin conditions give similar predictions of the forces. For the smallest

submergence-to-chord ratio, i.e. h̃ = 0.83, the pressure drag and lift decrease by roughly 12% and 25%

respectively.

Computations at Frc = 9 were performed for the two-body configuration with several submergence

depths. The reciprocal influences of the front wing and the stabilizer were first investigated showing a small

influence of the stabilizer on the forces acting on the front wing. The presence of the front wing upstream

the stabilizer was found to reduce the pressure drag and even switch to a propulsive component of pressure

forces on the stabilizer. The presence of the front wing increases the absolute lift of the stabilizer. The

Neumann-Kelvin condition was found to provide more accurate force predictions than the anti-symmetry

condition for this two-body configuration. Compared to the single wing configuration, larger discrepancies

exist between the results using the Neumann-Kelvin condition and the RANS results for the total pressure

drag variation with the submergence-to-chord ratio. Nevertheless, both approaches predict a maximum

pressure drag around h̃ = 1.

It was found that the BEM code is able to provide the main tendencies for the pressure drag and lift

variations of a hydrofoil with varying submergence depth and Froude number value. While a day is needed

for a typical RANS computation on 32 cpus, a typical BEM simulation is done within a few minutes with a

desktop computer. This speed-up represents a significant advantage for the surrogate model construction,

allowing to span a vast variety of design solutions. Thus, the potential code could be used to build a ”low-

fidelity” meta-model, without introducing additional uncertainties on the ”high-fidelity” surrogate given by

the RANS computations. As future work, the code PUFFIn will be used within an optimization process, to

assess the ability of the multi-fidelity surrogate to accurately model inter-level error, as wall as the viscous

part of the drag, which is not captured by the potential flow approach. While the use of a low-fidelity solver

such as PUFFIn can reduce the computational cost of hydrofoil optimization, several issues were identified

by Solak et al. [35] for the optimization procedure. Particularly, when the number of training points becomes

important the costs of the adaptive sampling and optimization become significant compared to the potential

flow computations. Another issue is data clustering during the adaptive sampling, which may be overcome

by a noise filtering procedure. Finally, the solver will be further developed to take into account cavitation

effects and to handle surface piercing hydrofoils, since these configurations often occur for windsurfers.
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Appendix A. Grid convergence study for the RANS computations

A grid convergence study has been conducted for the RANS computations on the two-body configuration

following the procedure presented by Wackers et al. [46]. Five grids have been generated with different

threshold values for the Adaptive Grid Refinement (AGR) procedure. For the criterion based on the pressure

Hessian the threshold varies between Th = cstab and Th = cstab/16. For each grid the target cells size at the

interface also varies between Th = cstab/4×1.2 and Th = cstab/64×1.2. The mesh used in the present work

corresponds to the finer grid. The Froude number is Frc=9 and the submergence ratio h̃ = 0.83. The method

proposed by Eça and Hoekstra [10] is applied to the total hydrodynamic coefficients. The method uses least-

squares fits to estimate the error and provides numerical uncertainties. The uncertainties are computed for

the three finer grids. As presented in figure A.22, the vertical and side forces are already well converged

with the coarsest mesh and the uncertainties are very small (less than 0.5%). An oscillatory convergence is

obtained for the drag coefficient Ctot
x , leading to larger numerical uncertainties. With the finest mesh, the

uncertainties on the hydrodynamic coefficients are UCtot
x

= 2.9%, UCtot
y

= 0.1% and UCtot
z

= 0.1%, suggesting

that the numerical errors are small with the grid used in the present work.

Figure A.22: Grid convergence study for the hydrodynamic coefficients for 5 values of the AGR thresholds. The error bars

represent the numerical uncertainties and the dashed line the best polynomial fit obtained with the method of Eça and Hoekstra

[10].
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Appendix B. Comparison of RANS, Euler and BEM computations

Additional computations have been performed with the solver ISIS-CFD to investigate the influence of

the boundary layer on the hydrodynamic coefficients. For these computations the Euler model is used: the

viscosity and turbulence effects are neglected in the equations. This way, there is no boundary layer in

the Euler simulations and potential flow solutions are expected. The hydrodynamic coefficients predicted

by the RANS, Euler and BEM computations for different Froude numbers and h̃ = 0.83 are presented in

figure B.23 for the front wing. The BEM predictions are in excellent agreement with the results of the

Euler computations. The small differences may be due to the free surface condition, since it is linearized

in the BEM computations. The coefficients Cy and Cz predicted by the RANS computations are almost

30% smaller than the ones predicted by the Euler model. This suggests that the boundary layer induces

a reduction of the effective camber of the foil, resulting in a smaller lift force. Nevertheless, consistent

tendencies are predicted by the three models.
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