International Council for

ICES Journal of Marine Science, 2024, Vol. 81, Issue 10, 1884-1911
https://doi.org/10.1093/icesjms/fsae117

Received: 18 December 2023; revised: 8 August 2024; accepted: 9 August 2024
Advance access publication date: 3 September 2024

Food for Thought

ICES
CIEM

the Exploration of the Sea

Conseil International pour

I'Exploration de la Mer

Geohistorical insights into marine functional connectivity

Konstantina Agiadi ©'*, Bryony A. Caswell ©2*, Rita Almeida ©2, Ali Becheker ©4,
Andreu Blanco ©5, Cristina Brito ©¢, Manuel Jesus Leén-Cobo ©7, Ellie-Mae E. Cook ©?,
Federica Costantini ©8, Merve Karakus ©°, Fabien Leprieur ©'°, Cataixa Lopez ®",
Lucia Lopez-Lopez'?, Aaron O’Dea ©1314, Syen Pallacks ©5, Irene Rabanal ©2, Lotta Schultz ©18,
Susanne E. Tanner @37, Tatiana Theodoropoulou ©'8, Ruth H. Thurstan 6
Audrey M. Darnaude ©1°

19, Nina Vieira ©¢,
'Department of Geology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
2School of Environmental Sciences, University of Hull, HU6 7RX Hull, United Kingdom
3MARE — Marine and Environmental Sciences Centre/ARNET — Aquatic Research Network, Faculdade de Ciéncias, Universidade de Lishoa,
1749-016 Lisbon, Portugal
“Environment and Biodiversity Research Division, Environmental Research Center, BP 72 A Menadia Annaba, 23000 Annaba, Algeria
SCentro de Investigacion Marifia, Universidade de Vigo, Future Oceans Lab, Campus de Vigo, 36310 Vigo, Spain
SCHAM — Centre for the Humanities, NOVA FCSH, Avenida Berna 26C, 1069-061 Lisbon, Portugal
TInstituto de Ciencias Marinas de Andalucia (ICMAN-CSIC), Campus Universitario Rio San Pedro, C. Republica Saharaui 4, 11519 Puerto Real,
Cadiz, Spain
8Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Universita di Bologna, Campus di Ravenna, 48121 Ravenna, ltaly
9Mediterranean Fisheries Research, Production and Training Institute, Finike Karayolu 6km Demre, Antalya, Tiirkiye
'"MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Avenue Jean Monnet CS 30171, 34204 Sete cedex, Montpellier, France
""Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, 46-007 Lilipuna Road, Kaneohe, HI 96744, United States
2Centro Oceanografico de Santander — Instituto Espafiol de Oceanografia (COST-IEQ, CSIC). Avd. de Severiano Ballesteros 16, 39004
Santander, Cantabria, Espafia
13Smithsonian Tropical Research Institute, 0843-03092, Panama, Republic of Panama
14Sistema Nacional de Investigacion, SENACYT, Edificio 205, Ciudad del Saber, Clayton Panama, Republic of Panamé
Bnstitute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
8Department of Biological Sciences, University of Bergen, Thormghlens gate 53 A/B, 5006 Bergen, Norway
"Departamento de Biologia Animal, Faculdade de Ciéncias, Universidade de Lishoa, 1749-016 Lisbon, Portugal
'8 aboratoire CEPAM, CNRS-Université Cote d’Azur, 24, Avenue des Diables Bleus, F-06300 Nice, France
Centre for Ecology and Conservation, University of Exeter, EX4 4SB, Cornwall, United Kingdom

*Corresponding author: Department of Geology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria. E-mail: konstantina.agiadi@univie.ac.at
(KA) and School of Environmental Sciences, University of Hull, HU6 7RX, Hull, United Kingdom. E-mail: B.A.Caswell@hull.ac.uk (BAC)

Abstract

Marine functional connectivity (MFC) refers to the flows of organic matter, genes, and energy that are caused by the active and passive
movements of marine organisms. Occurring at various temporal and spatial scales, MFC is a dynamic, constantly evolving global
ecological process, part of overall ecological connectivity, but with its own distinct and specific patterns. Geological and historical
archives of changes in the distributions, life histories, and migration of species can provide baselines for deciphering the long-term
trends (decadal to millions of years) and variability of MFC. In this food-for-thought paper, we identify the different types of geohistorical
data that can be used to study past MFC. We propose resources that are available for such work. Finally, we offer a roadmap outlining
the most appropriate approaches for analysing and interpreting these data, the biases and limitations involved, and what we consider
to be the primary themes for future research in this field. Overall, we demonstrate how, despite differences in norms and limitations
between disciplines, valuable data on ecological and societal change can be extracted from geological and historical archives, and be
used to understand changes of MFC through time.

Keywords: palaeontology; archaeology; historical ecology; geology; sclerochronology; genetics

Introduction or seascape connectivity, which solely considers physical

Marine functional connectivity (MFC) encompasses all of the connections between marine habitats and regions (Tischen-

movements of marine organisms, both active and passive, that
drive flows of organic matter, genes, and energy, and create
functional interdependence between habitat patches, distinct
areas, and ecosystems (Darnaude et al. 2022). The recent
emergence of this ecological concept moves beyond structural

dorf and Fahrig 2000; Table 1). MFC describes how living
organisms respond to environmental variations throughout
their lifespan by moving between habitat patches over various
spatial and temporal scales (Tischendorf and Fahrig 2000).
As such, MFC is largely determined by structural connections
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Table 1. Examples of changes in MFC that might be observed over long (>decadal) timescales associated with their long-term drivers.

Long-term driver

Environmental changes

Consequences for MFC

Examples

Climate

Palaeogeography
controlled by tectonics
and volcanism

Ocean circulation

Biogeochemical cycles
over geological
timescales

Evolution

— Ocean temperature
— Sea-level

— Ice cover

— Seawater salinity
— Ocean pH

— Marine gateways size
— Coast and shelf areas
sizes and physical
connectivity

— Water-column
stratification
— (De)oxygenation

—C,N,S,P,and O
availability and
distribution in the oceans

— Changes population
connectivity as species
distributions shift due to:

a) their
thermal/salinity/pH/oxygen
tolerance and

b) physical disconnection of

habitats as ice sheets contract (for
polar species) or sea level rises (for

coastal/shelf species)

— Population connectivity changes

— Migration routes closed with

the restriction of marine gateways

— Changes dispersal pathways

— Changes population
connectivity due to species
distribution contraction in
response to deoxygenation

— Stratification inhibits vertical
migration of zooplankton and
fishes

— Changes plankton and larval
dispersal pathways

— Changes seasonal latitudinal
migration routes (for animals
depending on currents)

— Changes in migration routes
driven by nutrient availability
— Vertical migration patterns
controlled by changing
productivity at surface

— Organismal traits associated
with MFC (e.g. larval dispersal
capacity) may be favoured or not
by the evolutionary process

— Migration of small pelagic fishes from
the Atlantic into the Mediterranean
changed in the historical past following the
different phases of the North Atlantic
Oscillation and the Atlantic Meridional
Oscillation (Alheit et al. 2014, Tsikliras et
al. 2019).

— Opening of Bering Straits led to Early
Pliocene trans-Arctic interchange and
homogenization of Pacific and Atlantic
mollusc fauna by facilitating larval
dispersal (Vermeij 1991).

— Formation of the Isthmus of Panama
hindered dispersal between Caribbean and
Pacific (O’Dea et al. 2016).

— Expansion of marine molluscs in the
Southern Ocean after the establishment of
the Antarctic Circumpolar Current (Beu et
al. 1997, Hodell et al. 2021).

—Change in nutrient supply during the
Early Oligocene drove lanternfishes to
deeper waters, potentially initiating their
diel vertical migration (Schwarzhans and
Carnevale 2022).

—The evolution of herbivory-related traits
of coral reef fishes favored
Miocene-Pleistocene expansion of their
lineages and thus of coastal-to-deep

connectivity (Siqueira et al. 2019).

(Lough et al. 2017). However, the biology and ecology of
organisms can often lead to divergence from structural con-
nectivity, sometimes even resulting in linkages that could not
be achieved by passive fluxes (McInturf et al. 2019).

While climate change and human activities affect both
structural and functional connectivity, it is functional connec-
tivity that ultimately determines the demographic, ecological,
and evolutionary interdependency of populations and com-
munities (Cowen and Sponaugle 2009, Lamberti et al. 2010),
and may attenuate or amplify the ecological effects of envi-
ronmental change (Marcos et al. 2021). MFC varies in space
and through time, since it may be caused by temporary or
permanent movements of individuals during their lifespan,
but also because it depends on the evolutionary stability of
the related organism traits (Auffret et al. 2015). Therefore,
changes in MFC may occur over timescales from several
centuries to hundreds of millions of years, and, importantly,
MEC evolves through time as individuals, populations, and
species respond to progressive or episodic environmental
changes (Wood et al. 2022).

Geological, archaeological, and historical archives (to-
gether referred to here as ‘geohistorical’) are useful for de-

scribing the past distributions, life histories, and migratory be-
haviour of marine species, (Fig. 1), revealing past functional
connections between populations, communities, and ecosys-
tems, both at sea and the land-sea interface. This paper results
from the discussions at the international workshop ‘Geohis-
torical perspectives on functional connectivity patterns’ (Ses-
imbra, Portugal—25 May 2023) and aims to provide food
for thought and a research roadmap for using geohistorical
data to study MFC. Specifically, we focus on identifying: (1)
the types of geohistorical data that can be used to study past
MFC patterns; (2) the resources available for such work and
their limitations; and (3) how they might be used to under-
stand MFC. In order to illustrate how geohistorical records
can provide information on MFC, we present three case stud-
ies: (a) population connectivity during the Pleistocene glacial—
interglacial cycles; (b) the Mediaeval and early modern hunt-
ing of marine mammals; and (c) the formation of the Isth-
mus of Panama and its cascading effects of ocean connectivity
loss. We conclude with a set of best-practice guidelines and
a series of open questions that we believe should be the fo-
cus of future research on this topic, highlighting the impor-
tance of advances in recovery methods and of the taxonomic
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Figure 1. Overview of MFC processes, their long-term drivers, and how geohistorical data can help unravel their changes over time. The boxes reflect
the methods and materials used: human sources and archaeological artifacts are remains from human activities; zooarchaeological remains and fossil
assemblages are the preserved (mostly hard) parts of organisms; biogeochemical proxies, sclerochronological archives and genetic data derive from the

application of methods to a wide range of organismal remains.

identification of fossil and zooarchaeological material for the
correct interpretation of the results.

MFC processes and their long-term drivers

Active migrations

Functional connections between the land and the sea, and be-
tween coasts and the deeper ocean are formed by the migra-
tions of many marine birds, mammals like seals, and diadro-
mous fishes such as salmons, sturgeons, or eels (Farifia et al.
2003, Wagner and Reynolds 2019, Hentati-Sundberg et al.
2020, Benkwitt et al. 2022). Changes in the life history and
behaviour of these species led to past changes in land-to-sea
(e.g. D’Amore et al. 2011, Whitfield et al. 2017, Sturrock et al.
2019) and coastal-to-deep connectivity (Gorlova et al. 2012).

Past warming and ocean acidification are expected to have
reduced the capacity of marine organisms to perform seasonal
latitudinal migrations. For instance, changing migration pat-
terns of small pelagic fishes in the Atlantic and the Mediter-
ranean Sea in the historical past have been associated with
different phases of the North Atlantic Oscillation and the At-
lantic Meridional Oscillation (Alheit et al. 2014, Tsikliras et
al.2019). Another example is the Northeast Arctic cod, whose
spawning distribution has shifted northwards in the last cen-
tury (Martinez-Garcia et al. 2022). On the other hand, in
deeper time, the stable oxygen isotopic composition of barna-

cles has been used to determine the seasonal migration routes
of whales and turtles in the past, and their changes that are
associated with climate (Bianucci et al. 2006) and sea-level
change (Pyenson and Lindberg 2011, Taylor et al. 2019).

Although direct evidence of past vertical migrations is diffi-
cult to obtain, as many of the organisms performing these mi-
grations today do not usually fossilize (e.g. copepods and jelly-
fishes), much information can be obtained about mesopelagic
fishes. Palaeoclimate drove seawater temperature, oxygena-
tion, and circulation, and ultimately controlled the geographic
distribution, abundance, and functional traits (e.g. body size
and feeding behaviour) of mesopelagic fishes that perform
daily vertical migrations (Agiadi et al. 2011, 2018, 2023, Lin
et al. 2023).

Plankton and larval dispersal

Pelagic larval dispersal capacity (measured as either duration
or distance of dispersal until settlement) has been used to ex-
plain the distribution of extant and extinct species of gas-
tropods and corals based on genetic and fossil occurrence data
(Henry et al. 2014, Hongo and Montaggioni 2015), but the
duration of pelagic dispersal alone does not always explain
the observed species ranges and size distributions (Ludt and
Rocha 2015, Nanninga and Manica 2018). Plankton dispersal
may have been instrumental in the rapid re-establishment of
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marine biota after major palaeoenvironmental perturbations
(Bulian et al. 2022a, b).

Global warming can impact larval life cycles and dispersal
(Munday et al. 2009, Gerber et al. 2014). Oceanic circula-
tion then controls seawater temperatures, salinity, and oxy-
genation that can determine the capacity of water bodies to
facilitate larval transport (Strugnell et al. 2008). Through its
effects on water-column stratification and sea level, climate in
the past regulated oceanic circulation, and thus the flows of
nutrients and genes (Beu et al. 1997, Fraass et al. 2019, Fen-
ton et al. 2023). On geological timescales, the effects of pa-
leogeographic changes on plankton and larval dispersal can
be observed indirectly through the expansion or contraction
of the biogeographic distributions of the species. Large-scale
changes in dispersal pathways have been attributed to the
opening and closure of marine gateways: the opening of the
Drake Passage leading to the onset of Antarctic Circumpo-
lar Current (31-26 Ma; Beu et al. 1997, Hodell et al. 2021);
the opening of the Fram Strait (17.5 Ma) and the Bering Strait
(4.8-7.4 Ma) that ventilated the Arctic (Jakobsson et al. 2007,
Yasuhara et al. 2019); the closing of the Tethys Seaway (Lo et
al.2014, Agiadi et al. 2021, Li et al. 2021, Carolin et al. 2022);
the formation and closure of the Central American Seaway
(200-154 Ma and 3.5 Ma, respectively; Beu 2001, Teske et al.
2007, although Miura et al. 2011); and the stepwise restric-
tion and reopening of the Atlantic-Mediterranean gateway
that enabled establishment of the present-day water exchange
between the two basins at Gibraltar (5.97 Ma and 5.33 Ma,
respectively; Mancini et al. 2021, Bulian et al. 2022a, Agiadi
et al. 2024).

Population connectivity

Recurring periods of climatic and hydrological changes in the
past led to extreme changes in the oceans including warming,
changes in thermohaline circulation, acidification (Zachos et
al. 2005, Marcott et al. 2014, Penman et al. 2014, Babila et
al.2018), deoxygenation (Dickson et al. 2012, Praetorius et al.
2015, Rohling et al. 2015, Yasuhara et al. 2019), and salini-
fication (Krijgsman et al. 1999, Fenton et al. 2000, Arz et al.
2003; Table 1). Such changes were detrimental for many ma-
rine taxa, driving defaunation and habitat degradation, de-
struction and fragmentation, and increasing the isolation of
populations and communities (McCauley et al. 2015). Varia-
tions in the Earth’s orbital movements (Milankovitch cycles)
that drive climate over 105-106 years (Hays et al. 1976) di-
rectly affected the geographic distributions of species, con-
necting and disconnecting populations and driving evolution
(Dynesius and Jansson 2000).

Palaeogeographic reconfigurations, eustatic changes, and
changes in sea ice-cover prevented or enabled physical connec-
tivity between habitats (i.e. structural connectivity), and there-
fore affected MFC patterns over evolutionary timescales. The
opening and closure of marine gateways, as oceans formed
and died, controlled the connectivity of populations of ma-
rine species between the seas (Zaffos et al. 2017, Rossi et al.
2023, Agiadi et al. 2024). Critical for the MFC of cosmopoli-
tan species at low—mid latitudes were the Tethys Sea (clos-
ing at 13.8 Ma) and the Central American Seaway (closing
at 2.8 Ma), which affected population connectivity of shal-
low and deep-water species (Harzhauser et al. 2007, Lessios
2008, Rahiminejad et al. 2011, Leprieur et al. 2016, O’Dea et
al. 2016). Furthermore, the formation of epicontinental seas

1887

has been instrumental in facilitating or hindering MFC in the
geological past. The Paratethys is a characteristic example of
how changing paleogeography has altered MFC particularly
for neritic organisms, ultimately determining the evolution of
many important clades. The Paratethys formed at ~34 Ma
and spread across most of Central-Eastern Europe and the
western part of Asia; its remnants are the Aral Sea, the Caspian
Sea, and the Black Sea (Palcu et al. 2017, Hoyle et al. 2021).
Because of its complex history, numerous fresh, brackish, and
marine endemic species originated in the Paratethys: the tran-
sient connections between its adjacent seas allowed species
to disperse increasing regional marine diversity (Agiadi et al.
2017,2021, Schwarzhans et al. 2020).

There is ample evidence that the large sea-level changes oc-
curring during the Pleistocene glacial-interglacial cycles af-
fected population connectivity between land and sea, coastal,
and deeper habitats (Erlandson et al. 2007, Pellissier et al.
2014, Ludt and Rocha 2015), which likely in turn influenced
the fluxes of matter and energy in coastal areas. Finally, deep-
time records (e.g. Vermeij and Roopnarine 2008, Iba et al.
2011) can provide insights into how the future opening of po-
lar corridors in the Arctic and the increasing connectedness in
the Antarctic can impact MFC.

The impact of preindustrial human activities
on MFC

Although recent human activities and climatic change disrupt-
ing MFC patterns today are relatively well-known, evaluating
the long-term impacts is challenging due to the lack of preim-
pact baselines and their unprecedented nature. Connectivity
between the early human populations themselves, which
exchanged technologies and experiences, enhanced their
impacts on the marine environment and MFC (e.g. Pawlik
2021; Table 2). The archaeological record shows evidence
of human exploitation of marine populations over millennia
(Desse and Desse-Berset 2002, Erlandson and Rick 2008,
Orton 2016). However, establishing to what extent human
exploitation impacted MFC in the distant past is typically
difficult to infer due to the spatially and temporally patchy
nature of archaeological sites and preserved materials, as well
as written historical sources.

The scale and sustainability of harvesting practices through
time, the quantities and nature of marine products traded and
their trade routes, and the potential implications for marine
populations, have been interpreted from archaeological data
using techniques such as allometry, growth-increment ageing,
and stable isotope signatures (Desse and Desse-Berset 1999,
Barrett et al. 2011, Betts et al. 2014, Orton et al. 2014, Welker
and Morales 2022). Comparisons between archaeological ma-
terials and present-day exploitation can also provide clues to
e.g. the distribution and size of species harvested, and their
relative abundance through time as exploitation or the envi-
ronmental conditions changed (Desse and Desse-Berset 2002,
Limburg et al. 2008, Maschner et al. 2008, Morales Muiiiz
and Rosell6 Izquierdo 2008). These data are essential for es-
timating human effect on MFC in the past.

In more recent time periods (i.e. the Mediaeval period to the
present day), evidence of human impacts on marine species
and habitats, typically from exploitation but including habi-
tat transformation and degradation, coastal development,
pollution, and disease, exist in the historical record (Table 3).
Collation of information from historical sources (which
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Table 2. Examples of changes in MFC that might be observed over long (>decadal) timescales associated with human drivers.

Human driver Environmental changes

Consequences for MFC

Examples

Coastal —Habitat loss, deterioration, and

urbanization fragmentation
—New artificial habitats (sea
defences, offshore infrastructure, and
ship wrecks)
—Construction of canals creates new
connections
—Construction of weirs, dams, and
other constructions on rivers that
affect flow or create a physical
obstruction

Anthropogenic

transport

(hitchhikers on

hulls or within
ballast tanks,
aquarium trade,
and aquaculture)

Historical biomass
removal

—Destroys, damages, or fragments
seafloor habitats, including biogenic
coral, bryozoans, and oyster reefs

—Disconnects
populations/communities
—Isolates habitat-forming species
and organisms that inhabit them

—Connects or disconnects
populations/communities
—Makes novel connections
between species and populations
(natural and genetically modified)
—Introduces diseases

—Connects or disconnects
populations/communities
—Deteriorations in population
demographics

—The spawing and migration of
catadromous and anadromous fish (e.g. eel,
sturgeon, salmon, and alewife) have been
impacted by alterations to rivers for
millennia (D’Amore et al. 2011, Sturrock et
al. 2019, Lenders et al. 2016, Mattocks et
al. 2017)

— Marine non-native species have been
transported since at least 1200 (Crosby
2004, Lotze et al. 2014, Hoffmann 2023).

—Substantial historical removal of fish and
shellfish biomass impacted population size
and demographics (Clements et al. 2017),
and caused extirpations (Caribbean monk
seal (Baker 2008, Brito and Vieira
2016,Vieira and Brito 2017, Vieira et al.
2019).

include written materials, iconography and cartography,
artefacts, and verbal transmission of knowledge) can be used
to infer changes in MFC resulting from human activities
spanning decades to centuries. This can include evidence for
the loss of functionally important habitat-forming species and
resulting fragmentation of biogenic habitats (the presence of
which enhances ecological functions such as nutrient cycling
and energy capture and promotes biodiversity) through the
use of fishing gears or coastal development (e.g. Zu Ermgassen
et al. 2012, Alleway and Connell 2015), declines or extinc-
tion of populations targeted for their meat, oils, or fur (i.e.
local and global whaling activities, exploitation of seals, sea
otters, sea cows, and sea turtles; e.g. Springer 2003, Brito and
Vieira 2016, Vieira and Brito 2017, Letessier et al. 2023),
and the transport and introduction of non-native species into
new habitats (Albano et al. 2018). Specifically, the impacts
on MFC can include the disruption or loss of community
structure, both physical (i.e. habitat fragmentation, loss or
changes in the dominant habitat-forming species)—which
may impact the survivability of particular life stages or influ-
ence their migration patterns—and demographic e.g. the loss
of older sexually mature individuals or subsets of the popu-
lation that are more vulnerable to exploitation due to specific
behaviours, such as site fidelity (Engelhaupt et al. 2009).

The impacts on MFC may also include changes in be-
haviour, for example, the migrations of a targeted species may
be disrupted due to the loss of knowledgeable older individu-
als (i.e. evidence of whales loss of culture; Clapham et al. 2008,
Sremba et al. 2023) or the loss of meta-populations. Changes
in whale population composition and size can also be detected
through historical analyses, depending on the techniques em-
ployed and the studied period (e.g. Prieto et al. 2013, for 20th-
century sperm whale hunting in the Azores). For example, in-
tense targeting of females (in earlier periods) may have im-
pacted population dynamics, while the persecution of males

or larger animals (in recent times) impacted the body size of
individuals and led to the shrinking of populations (Clements
et al. 2017). Species responses to wider environmental change
may lead to the loss of meta-populations or even adapta-
tion by adopting novel behaviours. For example, human alter-
ations of the physical environment e.g. the placement of dams,
weirs, or other structures that reduce riverine flow or prevent
movement, can also create physical impediments to MFC i.e.
the movement of diadromous fish (Lenders et al. 2016, Mat-
tocks et al. 2017), meaning subpopulations are quickly lost.
Pressure from human exploitation, can also induce shifts in
size or age at sexual maturity, and altered behaviour in the
target species i.e. favouring the survival of individuals that are
more hook-shy or who use alternative migratory routes (e.g.
Monk et al. 2021).

Geological and historical resources: utility and
limitations

Understanding the multiple dimensions of MFC is conceptu-
ally challenging, in terms of the breadth and scale of data re-
quired versus what is available (Menegotto and Rangel 2018,
Canonico et al. 2019), the complexity of ocean connectiv-
ity, and deficiencies in understanding of organism life his-
tory and ecological connections over broad spatial and tem-
poral scales (Hillman et al. 2018, Townsend et al. 2018).
Many different approaches are being employed to understand
both structural and functional connectivity, including har-
nessing data on ecological-niches, biophysics, genetics, geo-
chemical signatures, and the physical tagging of animals.
These approaches vary in utility, across taxa, spatio-temporal
scales, the underlying hypotheses, and assumptions (Bryan-
Brown et al. 2017, Darnaude et al. 2022). The challenges dif-
fer as we move deeper into the past, where the organisms’
life histories and ecological connections cannot be observed
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Figure 2. Fragment of the mosaic discovered at the ‘Sea front villa" in Hippo, dating from 210 and 260 AD (photo taken by Ali Becheker, 2023).

directly, but must instead be inferred. We identify here eight
types of records that provide evidence of past MFC: sedimen-
tary records, biogeochemical proxies, fossil assemblages, scle-
rochronological archives, genetic data, zooarchaeological re-
mains, archaeological artefacts and representations, and his-
torical sources (Fig. 2).

Sedimentary records

Sediments record the conditions of past environments, includ-
ing sedimentological and geochemical evidence of the physi-
cal connectivity between marine basins and climate contexts
(Table 3A). Sedimentary structures reflect the level of energy
in the depositional setting and the direction and strength of
currents (Bernhardt et al. 2017). The chemical and isotopic
composition of the sediments, especially in conjunction with
fossil assemblages provide evidence of past connectivity. For
example, the total organic carbon in marine sediments re-
flects organic carbon burial and hence the combination of pro-
duction and the biological carbon pump efficiency, including
through the diel vertical migration performed by zooplankton
(e.g. Lietal.2023).

Changes in continental arrangement, extent of sea-ice cover,
ocean primary production, and terrestrial vegetation can also
be detected from sediments, fossils, and their geochemical sig-
natures: providing the environmental context needed for de-
termining past local, regional, and global changes in structural
connectivity, functional connectivity, and its drivers.

Mapping the extent of important habitats and ecosystems
in the past such as seagrass meadows, reefs, and deep-sea
geothermal vents can be achieved using sedimentological data,
which in turn can help reconstruct their structural and func-
tional connectivity.

Biogeochemical proxies

The elemental and isotopic composition of marine fossils
provide direct evidence of the movements and migration of
marine organisms (Gorlova et al. 2012, Trueman et al. 2016,
Taylor et al. 2019). Unlike studies of present-day MFC pat-
terns that can benefit from the analysis of the soft tissues
of organisms (e.g. muscle, blood, and skin), only hard tis-
sues (e.g. shells, bones, teeth, otoliths, and microfossil tests)
are usually preserved as fossils and can be used to recon-

struct palaeoenvironmental conditions and life histories in
historical and geological times (Table 3B-H). The compo-
sition of hard tissues depends on the elemental availability
and isotopic ratios in the ambient water. Taxon- and tissue-
specific fractionations control the final incorporation of the
elements and isotopes into these tissues during biomineral-
ization. The main premises in using biogeochemical proxies
for reconstructing long-term MFC patterns are that: (a) the
concentration of the measured element or the isotopic ratio
differs between the marine environments the organism (was
suspected to) occupy; (b) the fractionation of the measured
element or isotopes between the ambient seawater and the
targeted tissue can be determined (preferably for the target
species, or at the lowest possible taxonomic level in case of
extinct species); (c) any vital effects on the fractionation are in-
significant or well-constrained; and (d) the preservation of the
fossil is good and any possible effects of diagenesis (i.e. all the
physical and chemical alteration taking place after the organ-
ism remains have been buried) have been excluded prior to
analysis.

Elemental and isotopic ratios from the remains of skeletal
elements, e.g. fish otoliths, mollusc shells, corals, and calcare-
ous microfossils (such as foraminifera and ostracods) have
already been used as proxies in long-term (decadal-millions
of years) MFC studies. The Mg/Ca, Sr/Ca, Ba/Ca, and Na/Ca
ratios are strongly controlled by ambient water temperature
and salinity allowing the reconstruction of the movements of
marine organisms across thermal and salinity gradients (Eg-
gins et al. 2003, Amekawa et al. 2016). On the other hand,
movements may be inferred by a change of provenance be-
cause of the differences in the Li content of seawater be-
tween sites (Thibon et al. 2022). Life histories of organisms
moving between environments of different salinities are com-
monly reconstructed based on 87Sr/8¢Sr of their hard tissues
(Koch et al. 1992, Kocsis et al. 2007, Glykou et al. 2018),
but this proxy is also used in deep-time studies to test hy-
potheses about the connectivity of aquatic settings (e.g. An-
dreetto et al. 2021, Hoyle et al. 2021). The "N/'*N ratio is a
commonly used proxy for trophic position: in the case of mi-
grating animals, a dietary shift may also indicate a change in
migration potential, patterns or routes (Hesslein et al. 1991).
The analyses of '3C/'2C and '80/'¢O in fossil and modern
enamel (Clementz et al. 2014, Taylor et al. 2021), otoliths
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or invertebrate shells (Zazzo et al. 2006, Lukeneder et al.
2010, Geffen et al. 2011, Stevens et al. 2015, Immenhauser et
al. 2016) provide evidence of ontogenetic and (sub-)seasonal
migration patterns in the deep past, especially when com-
bined with the record from other, nonmigratory organisms
or other proxies (Amekawa et al. 2016). The Branched and
Isoprenoid Tetraethers index, an organic geochemical proxy,
defines the terrigenous versus aquatic components of organic
inputs into a basin (Butiseacd et al. 2022), reflecting the de-
gree of land-to-sea connectivity. Similarly, glomalin, a protein
produced by fungi, is transported to the sea through rivers
and groundwater, and is detected in varying amounts in reefs,
mangroves and seagrasses (Adame et al. 2012, Lopez-Merino
et al. 2015).

Fossil assemblages

Fossils allow us to map the distributions (or biogeographic
ranges) of species and how they have changed through time
(e.g. Smith et al. 2023), inferring connectivity and evolution-
ary dynamics (e.g. Vermeij 1991, Vermeij and Roopnarine
2008, Iba et al. 2011, Dunne et al. 2014, Leprieur et al. 2016,
O’Deacetal. 2016, Agiadi et al. 2018, Friedman and Carnevale
2018, Reddin et al. 2018, Caswell and Herringshaw 2023).

The potential for making such inferences about MFC de-
pends upon the species studied, their preservation poten-
tial, and the conditions of burial. This could range from
near-complete soft tissue preservation as found in conserva-
tion lagerstitten (e.g. the Burgess Shale and the Solnhofen
Limestone) to accumulations of disarticulated and trans-
ported skeletal materials. The fossil record is spatially patchy
and incomplete and tends to be biased towards lower en-
ergy marine environments with reasonable sediment accu-
mulation rates and organisms with hard parts that have
higher preservation potential. This can be supplemented by
trace fossils that record the behaviour of animals. Excep-
tionally preserved materials, although rare, can yield valu-
able biological information on individual species and on MFC
(Table 3F).

Biological traits that are related to MFC can also be re-
constructed from particular fossilized skeletal remains. For
instance, fish body size and morphology, which are directly
correlated to the fish’s mobility, can be reconstructed from
fossil otoliths, teeth, and other bones (Table 3C-E; Agiadi
et al. 2023). Similarly, shark denticles reflect body morphol-
ogy and behavioural traits (Dillon et al. 2017, Cooper et al.
2023). Fish scales, both fossilized and nonfossilized, may also
yield valuable information on species distribution, popula-
tion size and demographics, traits, and the response of fish
to environmental and anthropogenic changes (e.g. Salvatteci
et al.2022). Data on marine invertebrates can be extracted for
species with good preservation potential (e.g. molluscs, crus-
tacea, and echinoderms) and linked with changes in the envi-
ronment (e.g. Caswell and Coe 2013, Fuksi et al. 2018, Rita et
al. 2019; Table 3F). Changes in invertebrate traits can be in-
terpreted based on the principles of functional morphology
and comparison with modern analogues (Kroh and Nebel-
sick 2003, Caswell and Frid 2013), for those with incremen-
tal structures, growth life history can be reconstructed, and
for some (e.g. molluscs), the larval shell may be preserved on
the adult and so fossils may provide information on larval be-
haviour, including dispersal (Landau et al. 2009, Niitzel 2014,
Harnik et al. 2017). In others (e.g. echinoids), features of the
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adult skeleton may be used to infer larval development modes
(e.g. Cunningham and Jeffery Abt 2009).

The temporal resolution of MFC reconstructions that can
be achieved through the study of fossil assemblages cannot be
lower than the range of time-averaging, which depends on abi-
otic and biotic factors (Kidwell 1997, 2001, Kowalewski et al.
2018, Albano et al. 2020, Agiadi et al. 2022, Ritter et al. 2023,
Tyler and Kowalewski 2023). Abiotic factors include the sed-
imentation rate, paleodepth, substratum, the level of mixing,
and other factors specific to the depositional environment. Bi-
otic factors are the marine production, the type of skeletal ma-
terial and its preservation potential, the presence of organisms
that disturb the sea bottom through burrowing, and so on.
Usually, fossil assemblages are time-averaged at centennial—
millennial ranges (e.g. Scarponi et al. 2013, Terry and Novak
2015, Tomasovych et al. 2015, Albano et al. 2020), but there
are notable exceptions, where temporal resolution can even
be decadal (e.g. Kowalewski et al. 2018).

Sclerochronological archives

Sclerochronology is the study of physical and chemical varia-
tions in the hard tissues of organisms, focusing primarily on
growth patterns and the variety of environmental factors in-
fluencing growth (Oschmann 2009). Analogous to the study
of tree rings, sclerochronology aims to reveal individual life-
history traits and reconstruct environmental changes through
time and space.

Marine taxa producing sclerochronological archives range
from mammals and fishes, bivalves, and gastropods (shells) to
corals and coralline algae (Table 3C-E) (Bagliniére et al. 1992,
Panfili et al. 2002, Trofimova et al. 2020).

Different resources can be exploited as sclerochronological
archives to obtain information on past MFC patterns over
timescales ranging from decades to millennia. These include
zooarchaeological samples obtained from middens, fossil
samples from sediment cores, and more recent collections
archived in fisheries institutes (e.g. otolith from research sur-
vey programs) and museums (e.g. biological material archived
from past expeditions to remote locations). The growth incre-
ments of sclerochronological archives provide two types of
information relevant to MFC: (i) life-history parameters and
events and (ii) past climate and environment, including human
impacts. Individual age and/or size at death is a key parameter
that is readily obtained from sclerochronological archives
and for some taxa can be complemented with information on
important life-history traits, such as metamorphosis and set-
tlement, age or size at maturity, growth pattern, and longevity,
which can be used to infer dispersal duration and timing as
well as movement behaviour (Campana and Thorrold 2001).
Sclerochronological archives, in particular the shells of
long-lived bivalves (e.g. Arctica islandica), have been suc-
cessfully employed to create multicentury composite records
of climate (e.g. Schone 2013), which can be used to infer
habitat characteristics and suitability for hindcasting species
distribution. Sclerochronological archives are also useful
tools to investigate human impacts on marine environments,
in particular comparing preindustrial and modern environ-
mental conditions and rates of exploitation. Archaeological
fish otoliths from the mid- to late-Holocene period indicated
larger size of individuals in the past, which may be related to
more recent fishing practices, introduced species and habitat
degradation (Disspain et al. 2012). Covering up to a century,
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otolith-increment-based chronologies have enabled re-
searchers to assess the impact of both climate change and
fishing on many different species around the world (e.g.
Morrongiello et al. 2019, Tanner et al. 2019, Denechaud et
al. 2020). Finally, sclerochronological archives from zooar-
chaeological sites can be used to determine the season of
capture, which is of broad interest to archaeologists, but may
also provide information on fish migration timing (Desse and
Desse-Berset et al. 1992, Van Neer et al. 1999, Cakirlar 2014,
Butler et al. 2019).

Genetic data

In the last decades, the potential of ancient DNA (aDNA)
analysis in marine conservation has been widely recognized.
The advancement of high-throughput DNA techniques has
revolutionized the field of palaeogenomics, enabling the
extraction and analysis of aDNA from fossil shells and
skeletal remains recovered from sediment cores (Der
Sarkissian et al. 2017, 2020, Nguyen et al. 2021; Table
3I). For example, through aDNA analysis of fossil bones
and baleen from museum specimens, Borge et al. (2007)
demonstrated that bowhead whale populations from the
North Atlantic and North Pacific were connected in the Early
Holocene, and raised questions about current whale stocks
in the Arctic. Sedimentary ancient DNA (sedaDNA) can also
be used for reconstructing palaeoecological communities and
inferring changes in past environments (De Schepper et al.
2019, Nguyen et al. 2021). While most studies are currently
restricted to the Holocene, this technique has the potential
for reconstructing communities dating back over a million
years (Kjer et al. 2022). By providing snapshots of historical
genetic diversity and community composition at different
points in time, this technique allows the reconstruction of
changes in marine assemblages, which can shed light on
historical biodiversity loss and patterns of migration and dis-
persal for both species and communities (Gomez-Cabrera et
al. 2019, Shaw et al. 2019, Barrenechea-Angeles et al. 2023).
These records of biotic change can describe how populations
have been connected or isolated over historical periods, and
can give useful insights for future marine conservation and
management.

Zooarchaeological remains

The remains of marine organisms found in archaeological sites
(specifically sites of human occupation) comprise the hard
parts of marine mammals and birds, fishes, molluscs, and
other invertebrates (e.g. mostly crustaceans, stony corals, sea
urchins, and cephalopods) (Colley 1987, Wheeler and Jones
1989, Claassen 1998, Theodoropoulou 2023), which can be
used to infer changes in MFC patterns in historical times
(Table 3]). Despite certain limitations, these archives may pro-
vide valuable information, especially during periods for which
other lines of evidence are lacking. Viewed over short spa-
tial and temporal scales, they can reflect local conditions and
small-scale changes in coastal areas close to past human habi-
tations. Over longer timescales, they can provide information
on human pressures on living resources or their body size that
led to shifts in species distributions, population connectivity,
and/or seasonal migration patterns of these animals (e.g. Allen
et al.2001, Leach and Davidson 2001, Desse and Desse-Berset
2002, Bernal-Casasola et al. 2016, Béarez et al. 2016). They
can also be correlated with known climatic events and the
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coastal geomorphological record to infer changes in struc-
tural connectivity between populations, habitats, or ecosys-
tems due to sea-level change or habitat degradation (e.g. Owen
and Merrick 1994, Rodrigo Garcia 1994, Johnsson 1995, Re-
itz 2001, Desse and Desse-Berset 2002, Cortés Sanchez et al.
2008, Hunt et al. 2011, Béarez et al. 2012, Rodrigues et al.
2016).

Archaeological artefacts and representations

Artefacts related to fishing, whaling, and other extractive prac-
tices are occasionally found in archaeological sites and may
inform us directly on the fishing techniques used and the
social organization of these activities, as well as indirectly
on the species/quantities/habitats targeted (e.g. Buchholz and
Joehrens 1973, Colley 1987, Cleyet-Merle 1991, Leach 2006).
It is important to keep in mind that, depending on the region,
usually only the hard parts of the fishing tackle (e.g. hooks,
harpoon points, and net weights) are preserved in the archaeo-
logical sediment, while equipment made from perishable plant
or animal materials (e.g. nets, floaters, lines, and baskets) will
only survive in extreme environmental conditions (dry, water-
logged, anaerobic, or frozen, e.g. Pedersen 1995; Table 3K).
Ideally, these should be compared with the results from his-
torical evidence and also from faunal analyses (Table 3]), al-
though the two may not always occur within a single archae-
ological site (e.g. Davidson and Leach 1996, Pickard and Bon-
sall 2004, Leach 2006, Michael 2023).

Pictorial evidence may also provide information on the
presence of marine species at a specific time/region, their size
and abundance, as well as the seasonal migration routes fol-
lowed by these organisms. Representations of marine organ-
isms (Fig. 2) date back to the Palaeolithic (Cleyet-Merle 1991,
Cleyet-Merle and Madelaine 1995) and provide valuable in-
formation on extinct and extirpated species. Some ancient civ-
ilizations recorded a wealth of information (e.g. Delorme and
Roux 1987, Kankeleit 2003, Kokkini 2016), such as the mo-
saics widely distributed along the coasts of the ancient Roman
Empire depicting images of fishing and fish species (Fig. 2) up
to the European art pieces that can provide evidence of ecolog-
ical variations and sociocultural drives and consequences (Tri-
bot et al. 2021; Table 3L). For instance, the c. 11 000 year old
El Medano rock art found along the Atacama Desert coast in
Chile shows in great detail the species hunted, the techniques
and devices employed to catch them and the social organiza-
tion around such activities (Ballester 2018). However, caution
must be made regarding these representations as they often
provide a distorted, i.e. exaggerated, displaced or misunder-
stood, image of marine ecosystems, or marine organisms are
misidentified or nonrecognizable.

Historical sources

Historical sources that can potentially be used to track
changes in MFC include documents such as natural history
treatises, diaries, logbooks, correspondence, legal documenta-
tion, governmental enquiries or statistical accounts, newspa-
pers and popular books, early scientific written observations
(Table 3M), maps, and nautical charts (Table 3N). Knowl-
edge or skills held by individuals and communities (i.e. in-
formation passed among generations verbally or via other
forms of nonwritten expression; Table 30), as well as mul-
tiple art and religious manifestations (Table 3P) can also hold
information on human-induced changes to marine popula-
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tions and habitats (M4dfiez et al. 2014, Engelhard et al. 2016,
Barrett 2019, Brito 2023). Evidence collated from these
sources can inform on past human activities, human percep-
tions and practices, and their ecological outcomes, and be used
to track the pathways, rates, and consequences of species dis-
tributions and movements at decadal to millennial timescales
(Bekker-Nielsen 2005, Jacobsen 2005, Orton et al. 2014, Brito
and Vieira 2016, Lenders et al. 2016). Additionally, they pro-
vide information on how human activities have contributed
to functional connections and disconnections. For instance,
the transport of nonindigenous species along shipping routes
(‘hitch-hikers’ on wooden hulls), and for aquaria and aquacul-
ture, has been documented from at least the 1200s (Lotze et al.
2014,Holm et al. 2022a, Hoffmann 2023). This is particularly
relevant to East—-West Atlantic connections, and Northern—
Southern hemispheres connections, since early European ex-
pansions and colonization of peoples, water, and territories,
through processes of geographic globalization, ecological
imperialism, and oceanic teleconnections (Crosby 2004, Holm
etal. 2022b). As well, the more recent construction of physical
connections, such as the Suez Canal, has led to unprecedented
rates of biological invasion (Por 1971, Albano et al. 2021).

Historical sources may provide evidence of changes
through, for example, historical accounts of species behaviour
or habit that are not observed in the modern day, or their his-
torical presence in locations that are outside of its known ge-
ographic range today (or, in the case of nonindigenous species
above, their notable absence in the historical record or the
timing of when they became a social or economic issue). His-
torical data on human exploitation can also provide evidence
of the drivers of the observed changes i.e. the scale and in-
tensification of historical increases in fishing effort, the intro-
duction of new gears or hunting techniques, of demand, taste
and preference, the opening of new extraction grounds, trade
routes, and new locations or species being exploited (Vieira
et al. 2019, van den Hurk et al. 2023, Vieira 2023). These
typologies of historical sources can and should be comple-
mented with other types of documentation, such as visual and
cartographic sources, material evidence and remains, objects
or art, combining a number of different data sources and in-
formation (e.g. as described in Table 3M, N, P-R) can improve
confidence.

The biases and limitations of using geohistorical
records to reconstruct past MFC

Whatever the source, utilization of geohistorical data and in-
formation for understanding MFC needs to account for the
historical, cultural, environmental, and geological contexts of
their production, and therefore requires a critical interpreta-
tion of the information (Table 3). In the past decades, method-
ological advances now allow extracting information to cre-
ate high-resolution records of ecosystem change, with variable
timescales (Table 3), which cover the last ¢. 540 million years
of MFC (Dietl and Flessa 2011, Kidwell 2015). Central to the
issue of the resolution of geohistorical data is the dating (ab-
solute or relative) of the records, because it is necessary for
constructing time-series of change, ordering events, and cal-
culating rates of change.

Additionally, integrating data of different types requires an
understanding of dynamic processes across spatial (local, re-
gional, and global) and temporal scales both for marine or-
ganisms and human populations. Employing the principle of
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consilience, we can weave together the separate evidence into
a coherent, temporally and spatially resolved picture of social—
ecological system states and changes. Temporal correlation be-
tween materials from different sources is critical to building a
timeline of change. Mapping those changes over spatial scales
is essential for understanding structural and functional con-
nectivity.

Historical, archaeological, and geological data are incom-
plete and discontinuous in time and space. This is also true
for ecological data, as natural and environmental scientists
sample the environment to detect spatial and temporal pat-
terns and the relationships that drive them. However, the sam-
pling in the case of geohistorical materials is more opportunis-
tic and determined by what materials are available and well-
preserved. For one, with few exceptions, only the hard tissues
of organisms are preserved in the fossil and archaeological
record, creating a gap in knowledge of micro- and mesozoo-
plankton and marine plants that do not contain hard parts.
Organisms such as jellyfishes, which play a critical role in the
marine ecosystem are virtually unknown to us from the past.
For those organisms that do leave hard parts, marine faunal
assemblages are more or less available depending on the pe-
riod (e.g. few Pleistocene sites have provided such remains;
increasingly they are more available from the early Holocene
down to Antiquity, and are also quite common in the Me-
dieval period) and region (e.g. available in the Mediterranean,
European Atlantic coasts, circum-Arabian peninsula, Indian
Ocean, Australia, and few studies from coastal Africa).

The quality and resolution of geological records is strongly
affected by anthropogenic factors, and human bias exists both
because of exploitation and during investigation. This is be-
cause the processes that govern the preservation of these re-
sources can be affected both positively (increased quality and
resolution) or negatively (decreased quality and resolution) by
human activities (Nawrot et al. 2024 and references therein).
Many archaeological and historical records are also biased ac-
cording to human interest in the species and the long-term
conservation potential of their tissues (Table 3): often the
best represented species are those that were exploited as a
source of food or for other uses, e.g. those that provide ecosys-
tem services. This is also true for the larger, more visible and
iconic species that were spiritually and culturally valued by
humans. For instance, the amount of geohistorical evidence
of marine animal migrations increased with the onset of hu-
man settlement that allowed documentation of such patterns
(Damm et al. 2022), and with advancements in fishing and
fish processing practices that facilitated the detection of mi-
grations (Avery and Underhill 1986, Boethius et al. 2021).
Additionally, the retrieval and recovery methods in both Ar-
chaeology and Palaeontology have vastly advanced in the last
200 years: indeed, many records from older expeditions were
quite coarsely resolved. Refined sampling methods during ex-
cavation, namely sieving, are required, otherwise the sample
may be biased towards larger taxa or larger/intact anatomical
parts (Theodoropoulou 2023; Table 3]). Using data from di-
verse geohistorical sources can provide a more complete pic-
ture that includes other species, e.g. using data on fisheries
by-catch, naturalists accounts, creative writing, other imagery,
and death assemblages (Table 3).

These materials will almost always be time-averaged, and
the extent of this averaging determines the temporal resolu-
tion achievable for a time series constructed from these ma-
terials (Table 3). These time-averaged records, being tempo-
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rally coarser than modern ecological records, do not preserve
short-term variations. However, they have been shown to be
more powerful for detecting ecological patterns over long
timescales and large spatial scales (Kidwell and Tomasovych
2013). Time-averaged materials may actually be better for
detecting rare species, metacommunity structure (i.e. the re-
gional species pool), identifying changes in biogeographic dis-
tributions, and evaluating historic habitat use. Specifically,
Kidwell and Tomasovych (2013) showed that fossil death as-
semblages capture 20% more regional diversity than life as-
semblages because of time averaging. For instance, they may
be used to confirm species absences, document the presence
of rare species, identifying biogeographic range changes, de-
scribing past habitat use, metacommunity size and structure,
community states, and shifted baselines. Many of these eco-
logical attributes are key for investigating MFC and how
it changes with natural and human drivers (Kidwell 2009,
Kidwell and Tomasovych 2013). Additionally, methods exist
today to assess the completeness of the fossil record, how
faithfully death assemblages reflect living assemblage (Table
3) and to unravel the postmortem and postburial processes
they have been subjected to (which itself can also yield valu-
able context, e.g. Tomasovych et al. 2021).

In some cases, the data represent only temporal snapshots
of the past: this may be the case with isolated fossilized or
nonfossilized remains in middens and material collections,
fossil lagerstatten, genetic data, much of the archaeological
data, and some historical sources (e.g. imagery, oral histo-
ries). These windows into the past can provide an, albeit
punctuated, perspective on a population, habitat, or commu-
nity and yield valuable biological or ecological information
on extinct species, contributing information on species distri-
butions, human activities, and impacts. In combination with
other sources, they can be used to extract quantitative data
that can be embedded into time series constructed from other
resources (Table 3).

Emerging approaches using aDNA and sedaDNA are sig-
nificantly affected by the environment of preservation, poten-
tial sample contamination, and are biased towards the more
abundant taxa, but as the technology advances they have
strong potential for providing direct information on species
distribution ranges, migratory life cycles and niche shifts, on
the changes in the structure of local communities over time
and on the evolutionary processes that modulate this func-
tional connectivity through time. However, obtaining reliable
sedaDNA data from marine organisms remains challenging in
many ways (Nguyen et al. 2021). One of its main limitations
is that sample collection requires specific technological in-
struments to collect long cores while avoiding contamination,
leading to very expensive oceanographic campaigns (Nguyen
et al. 2021). The acquisition of viable samples is limited to
certain environments, as environmental and physical factors
such as temperature, salinity, and sediment type influence the
preservation of DNA in the sedimentary records (reviewed in
Nguyen et al. 2021). In addition, the prevalence of sedaDNA
in the environment is related to the species-specific abundance,
and thus low-abundance organisms as top predators will be
hardly identified in these records (Kjer et al. 2022).

Finally, an important distinction should be made between
palaeontological and zooarchaeological material. Where fos-
sil assemblages offer both qualitative information (taxa, mor-
phology based on skeleton, season of capture, and exploited
habitats) and quantitative data (relative frequencies and body
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size) on the entire marine fauna and flora, assemblages from
archaeological sites can be considered as ancient exploitation
archives. They mostly represent the resources extracted, i.e.
caught or collected, by humans. In this sense, they are not con-
sidered direct proxies of past MFC. They indirectly reflect the
available habitats, but not the entire range of ecosystems. The
latter is even more relevant for earlier periods, when humans
exploited almost strictly coastal resources.

Case studies

Population connectivity during the Pleistocene
glacial-interglacial cycles

The Pleistocene glacial-interglacial cycles recorded recurring
shifts in the geographic distributions of many marine species,
whose ranges retracted (Kiessling et al. 2012, Scarponi et al.
2022) or expanded (Girone et al. 2006, Agiadi et al. 2018,
Melo et al. 2022) leading to the fragmentation (Rodder et al.
2013) or reconnection (Sabelli and Taviani 2014) of their pop-
ulations, respectively. The resulting dynamic pattern of MFC
is especially prominent in marginal and semienclosed seas,
such as the Mediterranean Sea. The most recent example of
such distribution shifts can be found in the Last Interglacial
marine isotope stage (MIS) Se (ca 135-116 ka), which repre-
sents one of the most recent climate analogues for the com-
ing decades (Yin and Berger 2015). During MIS Se, the geo-
graphic ranges of tropical molluscan species (‘warm guests’)
from the West African coast expanded into the Mediter-
ranean, and they regressed to the tropical belt during the
subsequent glaciation (Sabelli and Taviani 2014). Conversely,
‘cold invaders’ were commonly found in the Mediterranean
during glacial periods, but retracted during interglacials. Cold-
water fish (Girone et al. 2006, Agiadi et al. 2011, 2018, Lin
et al. 2017), bivalve (Rossi et al. 2018), and even plank-
tonic foraminifera (Marino et al. 2018, Quillévéré et al. 2019,
Girone et al. 2023) species have been repeatedly found in sed-
iments deposited in the Mediterranean during glacial periods,
especially those corresponding to the last 1.5 million years,
when climate started to shift towards its modern state (Mc-
Clymont et al. 2023). In addition to restricted seas, biogeo-
graphic shifts in response to Pleistocene glacial-interglacial
cycles have been recorded in the Pacific and North Atlantic
Oceans as well, with examples from ostracods (Yasuhara et
al. 2012, Yasuhara and Okahashi 2015, Huang et al. 2018),
shallow- (Mitsui et al. 2023), and deep-water fishes (Lin et al.
2023).

Mediaeval and early modern hunting of marine
mammals

Marine mammals are among the largest migratory organ-
isms in the oceans today, and a group for which geohistorical
records have much to contribute. Whaling is a paradigmatic
case of human exploitation, dominance, and impact on ma-
rine wildlife, leading to disconnected populations and the con-
traction of biogeographic ranges and changes in the trophic
structure of marine ecosystems. It is estimated that between
1900 and 1999, nearly 2.9 million large whales were killed
and processed globally by industrialized whaling (Rocha Jr et
al. 2014). However, the history of whaling encompasses the
entire history of human life as a practice of biomass and en-
ergy removal from the oceans. The fishing of several species
of cetaceans is reported since the first settlement of human
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populations in coastal areas and extends globally, e.g. from
the Atacama Desert coast in Chile from ¢. 11000 years ago
(Ballester 2018) to the littoral mountain of Arribida, 30 km
south of Lisbon in Portugal up to 106 000 years ago (Zil-
hdo et al. 2020). Data from environmental history and his-
torical ecology studies have been combined to describe the
changes and assess the ecosystem impacts of the removal of
whales. The analysis of historical documents related to prein-
dustrial whale exploitation (covering several centuries of data)
can help track changes in whale species and populations’ ge-
ographic distributions, behaviour, and their contributions to
seasonal/latitudinal and vertical MFC.

Very illustrative examples are found in records of Mediae-
val whaling in Europe that led to the extirpation of North
Atlantic whales’ populations and to the early modern whal-
ing in the South Atlantic. From the Roman period to the late
Middle Ages, data from historical documents and zooarchae-
ological records show that baleen whales and toothed whales
were valued and consumed in Europe (Teixeira et al. 2014, van
den Hurk et al. 2021, 2023). The main targets of exploitation
were three species of baleen whales: the North Atlantic right
whale (Eubalaena glacialis), nowadays only extant in west-
ern Atlantic waters, and listed as ‘critically endangered” by
the IUCN (Cooke 2020); the grey whale (Eschrichtius robus-
tus) assessed as ‘regionally extinct’ in European waters (IUCN
SSC Cetacean Specialist Group 2007); and the bowhead whale
(Balaena mysticetus) with a currently increasing population
trend. In the last few decades, with a growing number of ar-
chaeological and historical studies it has become possible to
infer the relative abundance of these species in the past (e.g.
van den Hurk et al. 2023). As a result, we can now better
understand changes in the structure and functioning of Arctic
ecosystems, since the extirpation of bowhead whales’ from the
Svalbard Archipelago is believed to have led to large increases
of zooplankton biomass due to the reduced grazing pressure
(Rodrigues et al. 2019). The ecosystem structure switched
from dominance by whale biomass, prior to the start of com-
mercial exploitation in 1596, towards a system dominated by
pelagic fishes, and their predators (piscivorous seabirds, seals,
and whales; Weslawski et al. 2000).

As humans began to understand that the number of whales
available for hunting in European coastal seas was decreas-
ing, new perceptions began to emerge on the abundance of
whales and other marine mammals (and the consequent po-
tential for gaining wealth) in America’s (North and South)
coastal waters. This was the case for several aquatic species
of Brazil within a colonial context of nature commodifica-
tion, confirming that early modern catch data, even if frag-
mentary, can provide information on species occurrences and
distribution (Vieira 2023). Historical data allows us to map
species past geographic distributions and realized niches, for
instance southern right whales (Eubalaena australis) that were
hunted at lower latitudes, outside the current species ranges
or, inversely, for West Indian manatees (Trichechus mana-
tus) that previously occupied higher latitudes than nowadays
(Vieira and Brito 2017). Also, historical accounts on the spa-
tial distribution and abundance of monk seals (Monachus
monachus) in the Caribbean prior to exploitation have been
used to model reef productivity and suggest that the extirpa-
tion of this species, as a major predator in the reef ecosys-
tems, had an ecological effect across the entire Caribbean re-
gion (Baker 2008). The continued exploitation and biomass
removal of such species of marine mammals through the cen-
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turies had significant impacts that are reflected in the extir-
pation of populations and the current conservation status of
these species, and most probably had an important impact on
MEC.

The formation of the Isthmus of Panama and the
cascading effects of ocean connectivity loss

Prior to formation of the Isthmus of Panama, Miocene fos-
sil records reveal taxonomic, ecological, and environmental
similarities across the entire Tropical American marine re-
gion as large amounts of energy, biomass, and genes were
exchanged between the Pacific and Caribbean (Leigh et al.
2014, Yasuhara et al. 2022). When the isthmus formed and
this link finally severed, the biodiverse tropical marine faunas
underwent major ecological, evolutionary, and biogeographic
disruption. The most striking consequence of this was the ul-
timate cessation of gene flow between marine populations in
either ocean, which occurred around 2.8 Ma (O’Dea et al.
2016). But Isthmus formation began more than 20 million
years earlier (Farris et al. 2011), and the movement of water,
nutrients, and energy from the Pacific into the Caribbean had
been substantially reduced by the late Miocene and Pliocene
as documented in serially sampled isotopic analysis of shells
(Grossman et al. 2019), which eventually created the olig-
otrophic Caribbean we know today. Quantitative analyses of
near-shore fossil assemblages of molluscs, corals, bryozoans,
urchins, fish teeth, and fish otoliths reveal how the ecologi-
cal structure of these diverse tropical communities responded.
In the Caribbean, filter feeders reliant on high planktic nu-
trients declined by a third, large-bodied predatory sharks de-
clined 50% giving way to small, bottom-dwelling demersal
fishes, and in the benthos predatory gastropods were replaced
by herbivorous snails (O’Dea et al. 2016). Cumulatively these
changes demonstrated decreasing MFC between the oceans,
a decline in population connectivity within the Caribbean,
and the consequential switch of the dominant source of en-
ergy in the Caribbean from widely distributed pelagic to spa-
tially limited benthic origins. Detailed measurements of the
size and shape of fossilized larval shells revealed that ani-
mals with long-lived planktonic-feeding larvae that connected
the two regions, became substantially rarer as feeding became
more challenging in the oligotrophic water column (Landau et
al. 2009). The consequence was a further reduction in MFC,
which ultimately contributed to an increase in provinciality in
the Caribbean (Leigh et al. 2014).

While the majority of these biotic responses to the envi-
ronmental changes were linear and predictable, others were
nonlinear. For example, Caribbean species that were poorly
adapted to the new, low nutrient conditions diminished at first,
but were able to cling on in small, isolated populations until
their eventual demise a million years later (O’Dea and Jackson
2009). This pattern can be best explained as isolated metapop-
ulations in deteriorating conditions (Nee and May 1992), and
reflects the model of ‘extinction debt’ where the final loss
of a species lags long after the ultimate cause (Tilman et al.
1994).

The proliferation of the Caribbean coral reefs and sea-
grasses also lagged a million years or more behind the for-
mation of the Isthmus and the collapse in planktonic pro-
ductivity, as observed in the rapid increase in abundance of
seagrass-specific lucinid bivalves and a sharp increase in coral
abundances and reef growth in the early to middle Pleistocene
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(Johnson et al. 2008, Jackson and O’Dea 2023). Both corals
and lucinids rely on MFC not only to disperse their larvae,
but also to horizontally acquire symbiotic microbes (dinoflag-
ellates and sulphur-oxidizing bacteria, respectively) critical to
nutrient acquisition in oligotrophic waters.

This case study highlights how geohistorical records can
provide information on changes to oceanic, energetic, and ge-
netic connectivity and quantify the resulting cascading effects,
especially when combined with an understanding of the func-
tional roles and life histories of the organisms and communi-
ties. This must therefore also be true if we wish to predict how
species and communities will respond to future changes in
connectivity. For example, connectivity between the nutrient-
poor upper and nutrient-rich lower ocean layers is consistently
predicted to decline in the tropics as oceans warm and strat-
ify (Moore et al. 2018). As the Isthmus of Panama case study
shows, such a reduction in vertical connectivity of energy will
likely manifest at multiple different biological levels, and per-
haps with extended and unpredictable time lags.

In general, this is an especially important topic for tropical
systems where many taxa have already reached their environ-
mental limits. The ability of tropical species, and their symbi-
otic microbes (Leray et al. 2021), to adapt, expand, or shift
their biogeographic range to occupy more favourable regions
will be critical to their future resilience in the face of climate
change. This may not be the case at higher latitude systems
where ocean warming is predicted, in contrast, to increase
productivity and connectivity to new habitats (see Mediter-
ranean case study). More tropical geohistorical records are
therefore essential to provide low-latitude-specific predictions
and recommendations for the most biodiverse and yet threat-
ened ecosystems in the world.

Roadmap

MEC refers to all the flows of matter, genes, and energy that
are caused by the passive and active movements of marine life
(Darnaude et al. 2022; Fig. 1). Here, we propose workflows
for studying long-term MFC (decadal to millions of years) and
scientific questions that we believe should be prioritized by
future research.

How to analyse and interpret geohistorical data in
the study of MFC

The application of geohistorical resources to understanding of
long-term changes in MFC varies with the process of interest
(Figs 3 and 4). Geographic distributions of the species sus-
pected to have performed seasonal latitudinal migrations can
be acquired from fossils, historical, and archaeological mate-
rials. Biogeochemical markers and sclerochronology from the
fossil hard parts of the target species or any hitchhikers can be
used to establish if migration was occurring and if so via what
routes, paleogeography, and ocean circulation can be used
confirm whether those routes were possible or not. Coastal-
to-deep connections can be interpreted from the taxonomic
composition and the traits of the species present from a range
of archives (Fig. 3). Fossils and sedimentary records addition-
ally provide evidence for water flows and paleogeographic
changes that may be used to reconstruct structural and func-
tional connections onshore-offshore (and through time). The
effects of large-scale oceanic circulation patterns on changes
in coastal-to-deep connectivity can be constrained with bio-
geochemical proxies from fossil materials. The possible roles
of human activities in facilitating or impeding seasonal latitu-
dinal migration or coastal-to-deep connections can be estab-
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lished from historical and archaeological records (Fig. 3). Fos-
sils can provide information on the presence of taxa suspected
to perform vertical migration, historical materials may also
provide this information, but include taxa that do not leave
fossil remains (e.g. jellyfishes, copepods, and so on; Hartman
et al. 2018, Fox et al. 2020; Fig. 3). Biogeochemical signals
and sclerochronology can confirm vertical migrations.
Within a defined drainage basin, human presence may be
determined from historical and archaeological evidence, and
this can be combined with biogeochemical data to quantify
and interpret the impacts of human activities on land-to-sea
connectivity (Fig. 3). If human activities were absent or in-
significant (in relation to the timescale of the study), the fos-
sil record can be used together with genetic, sclerochrono-
logical, and biogeochemical data to explore functional
connections from land-to-sea. The composition of microfos-
sil assemblages in laterally time-equivalent rock formations
and sediments and historical records can provide information
on plankton distributions and dispersal of plankton (Fig. 3).
Historical archives can provide specimens and direct measure-
ments of fish eggs or plankton/larvae, images e.g. plankton at-
lases and early drawings or measurements. Pelagic larval dis-
persal can also be inferred from the composition of microfossil
assemblages, particularly the presence of fossil larval forms
(e.g. for molluscs). Population connectivity can be assessed
through examination of laterally time-equivalent fossil assem-
blages, archaeological remains, or historical records for infor-
mation on taxonomic composition and the traits of species,
especially reproductive mode and larval development (Fig. 4).
Suspected connectivity of plankton, pelagic larvae, and popu-
lations can be confirmed using genetics, with palacogeography
and climate contexts indicating whether the necessary physical
connections existed. The role of humans in preventing or fa-
cilitating transport of adults and larvae between populations

can then be established from historical or archaeological ma-
terials (Fig. 4).

Directions for future research on long-term MFC

Based on the state-of-the-art presented in this paper, we pro-
pose a number of research questions that we believe are a pri-
ority for future research on MFC and should be addressed
using geohistorical resources.

Geohistorical data can provide ecological baselines that ex-
tend beyond the onset of modern, ecological monitoring pro-
grams (c. 1950s), that should be used as a basis for assess-
ing recent ecosystem changes due to anthropogenic activities,
including how they impact MFC. Although many datasets
now exist that might be used to establish preindustrial eco-
logical baselines (e.g. Thurstan 2022), these should be ex-
panded to explicitly include MFC processes, for instance by
reconstructing the biogeographic ranges and routes of sea-
sonal migrations of whales or large pelagic fishes during key
periods of palaeoenvironmental change, such as the last inter-
glacial. Moreover, preindustrial MFC as determined from his-
torical and archaeological records could be used to determine
the long-term (decadal-millennial) impacts of human activi-
ties (such as changing the physical connections e.g. between
basins or between the land and the sea) on MFC, as well as
quantifying the scale of those impacts and rates of change.

As the ocean is unambiguously intertwined with the climate
system, palaeoclimatic variability has had a considerable influ-
ence on the biological, chemical, and physical ocean processes,
with knock-on impacts on past MFC. Past climate analogues
(Yin and Berger 2015, Burke et al. 2018) offer insights into the
possible future ecosystem states and MFC under different cli-
mate change scenarios. Understanding long-term (centennial—
millions of years) MFC dynamics under natural climate vari-
ability, that includes the extreme changes associated with
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major climate transitions, can reveal tipping points for MFC.
Specifically, geohistorical data can help to infer how climate
change will impact MFC in marginal and semienclosed seas,
such as the Mediterranean Sea, that are experiencing acceler-
ated rates of environmental change (e.g. Albano et al. 2021,
Scarponi et al. 2022, 2024). At the same time, these past ana-
logues may help predict potential future MFC patterns due to
the formation of new connections, e.g. the opening of polar
corridors as the Earth continues to warm (e.g. Vermeij and
Roopnarine 2008).

The two-way connections between MFC and biogeochem-
ical cycles must have evolved since the first appearance of life
on Earth (Falkowski et al. 1998, Ridgwell and Zeebe 2005,
Ziveri et al. 2023) and yet remains largely unexplored beyond
the level of hypotheses. For example, assumptions are often
made regarding the efficiency of the biological carbon pump
during past hyperthermals that imply MFC changes (Li et al.
2023), but these are not validated with evidence for changing
MEC.

Continental configurations have ranged from periods
where there was one large supercontinent (Pangaea; e.g. Cavin
etal. 2008, Torsvik et al. 2021, Li et al. 2021) and the remain-
der of the Earth’s surface was open ocean, to periods when
there were extensive areas of shallow epicontinental seas (e.g.
in the Cretaceous; Lagomarcino and Miller 2012). Geohistor-
ical resources can be leveraged to ask: What are the effects
of the large-scale changes in MFC that are created by palaeo-
geographic reconfigurations? Restriction and disconnection of
oceanic basins severed the functional connections transferring
critical energy and genetic materials between basins or be-
tween the land and sea. Although some research addresses
this theme (e.g. O’Dea et al. 2016, Agiadi et al. 2024), there
are also many periods that could be studied further such as
the impacts of the opening of the Atlantic Ocean or the entire
evolution of the Paratethys.

Some deep-time ecosystems were structured very differently
from modern marine ecosystems and their study within an
MFC framework could demonstrate the broad range of MFC
possible. For instance, changes in MFC across major periods
of ecological reorganization, such as the Cambrian substrate
revolution wherein the seafloor first became colonized by in-
fauna (Bottjer 2010, Mangano and Buatois 2017, Herring-
shaw et al. 2017), or in the aftermath of mass extinctions such
as at the end of the Permian (Wignall and Bond 2023). The
communities and ecosystems produced by changes in MFC
may have functioned very differently than those prior.

We might ask: What were the impacts of deep-time changes
in oceanic circulation on larval and plankton dispersal? This
topic has been only partially addressed for phyto- and zoo-
plankton (Sexton and Norris 2008, Henderiks et al. 2020,
Boscolo-Galazzo et al. 2022) and not at all for higher trophic-
levels.

Geohistorical resources can show how the ecological
and evolutionary interdependence of populations over long
timescales has been affected by changes in MFC. Species’ abil-
ity to disperse through the seascape and connect with other
populations is linked with various biological traits (Burgess
et al. 2016). For instance, species larval dispersal capacity,
which is determined by the duration of larval development,
buoyancy, and behaviour, determines how far the species can
passively disperse via ocean currents (e.g. Shanks 2009, Leis
2020). Greater functional connectivity enhances the resilience
of ecosystems, allowing populations to survive environmental
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changes and persist over time (Magris et al. 2014). However,
evolution does not always lead to the selection of characteris-
tics that favour dispersal and connectivity (Magris et al. 2014).

How does the magnitude of MFC relate to the observed
genetic diversity and population or ecosystem resilience? Ex-
amples from geohistorical records may indicate whether there
is a minimum (or optimal) level of MFC required for healthy,
stable, and resilient marine ecosystems? The changes in the
palaeobiogeography of marine species associated with basin
restrictions (e.g. during the Messinian Salinity Crisis in the
Mediterranean; Agiadi et al. 2024), combined with paleo-
ceanographic data from within the restricted basin and out-
side it, can be used to elucidate such thresholds. This infor-
mation can be used to inform models of MFC patterns and
help to understand MFC at community and ecosystem lev-
els, which is critical for inferring future ecosystem health and
managing marine resources (Darnaude et al. 2022).

At what point does MFC become a disadvantage? If di-
verse ecosystems are more resilient to change because they
have greater potential for adaptation and evolution in the
face of environmental change, then will functionally very well-
connected and therefore genetically more homogeneous sys-
tems transfer the impacts of perturbations through ecosystems
faster and farther?
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