
Citation: Lasalo, M.; Jauffrais, T.;

Georgel, P.; Matsui, M. Marine

Microorganism Molecules as Potential

Anti-Inflammatory Therapeutics. Mar.

Drugs 2024, 22, 405. https://doi.org/

10.3390/md22090405

Academic Editor: Chang-Lun Shao

Received: 10 July 2024

Revised: 7 August 2024

Accepted: 13 August 2024

Published: 3 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

marine drugs 

Review

Marine Microorganism Molecules as Potential
Anti-Inflammatory Therapeutics
Malia Lasalo 1, Thierry Jauffrais 2 , Philippe Georgel 3 and Mariko Matsui 1,*

1 Group Bioactivities of Natural Compounds and Derivatives (BIONA), Institut Pasteur of New Caledonia,
Member of the Pasteur Network, Noumea 98845, New Caledonia; mlasalo@pasteur.nc

2 Ifremer, Institut de Recherche pour le Développement (IRD), Centre Nationale de la Recherche
Scientifique (CNRS), Université de la Réunion, Université de la Nouvelle-Calédonie, UMR 9220 ENTROPIE,
101 Promenade Roger Laroque, Noumea 98897, New Caledonia; thierry.jauffrais@ifremer.fr

3 Team Neuroimmunology and Peptide Therapy, Biotechnologie et Signalisation Cellulaire, UMR 7242,
University of Strasbourg, 67085 Strasbourg, France; pgeorgel@unistra.fr

* Correspondence: mmatsui@pasteur.nc; Tel.: +687-272666

Abstract: The marine environment represents a formidable source of biodiversity, is still largely
unexplored, and has high pharmacological potential. Indeed, several bioactive marine natural
products (MNPs), including immunomodulators, have been identified in the past decades. Here,
we review how this reservoir of bioactive molecules could be mobilized to develop novel anti-
inflammatory compounds specially produced by or derived from marine microorganisms. After a
detailed description of the MNPs exerting immunomodulatory potential and their biological target,
we will briefly discuss the challenges associated with discovering anti-inflammatory compounds
from marine microorganisms.
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1. Introduction

Chronic inflammatory diseases (CIDs) have emerged as a significant global concern,
with a prevalence of 5 to 7% of Western society in 2010 [1]. These illnesses, such as psoriasis,
rheumatoid arthritis (RA), inflammatory bowel disease (IBD), Crohn’s disease (CD), or
ulcerative colitis (UC), can be debilitating, leading to a reduced quality of life and, in the
most severe cases, premature death [2].

Conventional treatments based on corticoids and non-steroidal anti-inflammatory
drugs (NSAIDs) often lead to severe side effects, including gastrointestinal ulceration and
bleeding, osteoporosis, hypertension, and glaucoma. Drug development more recently
has focused on monoclonal antibodies targeting inflammatory cytokines such as tumor
necrosis factor-α (TNF-α) or interleukins (e.g., IL-6) [3], or inhibitors of pathways activated
by inflammatory cytokines, such as Janus Kinase inhibitors (Jakinibs) [4]. Although these
therapies have shown considerable clinical efficacy, many patients remain unresponsive,
and others may develop resistance to monoclonal antibody treatment. Furthermore, the
use of such immunomodulatory molecules carries a limited but notable risk of developing
opportunistic infections, such as Herpes Zoster Virus [5].

As life expectancy increases, there is an increased likelihood of developing CIDs, and
therefore, managing these diseases has become more challenging. Hence, continuing to
explore innovative treatment exploration and improving their response to these debilitating
diseases is crucial. In this regard, the discovery of bioactive molecules from marine microor-
ganisms represents a groundbreaking pharmaceutical development that could promote the
identification of novel therapeutic compounds to treat CIDs.
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Here, we aim to review marine microorganisms that produce molecules with poten-
tial pharmaceutical relevance, categorizing them based on producing genus and species,
compounds’ molecular structures, and their mechanism of action on immune signaling
pathways. Additionally, we will provide a brief overview of the difficulties related to
identifying anti-inflammatory compounds derived from marine microorganisms.

While previous reviews have primarily centered on symbiotic bacteria, to the best
of our knowledge, none have yet highlighted the anti-inflammatory properties of these
microorganisms. For this review, we selected 208 articles published from 2000 to 2024. One
anterior reference was retained for the historical aspect of a specific molecule. The search
engines Google Scholar, Science Direct, PubMed, and MarinLit databases were used with
the keywords “marine natural products” combined with “anti-inflammatory”, “macro-
organisms”, “microorganisms”, “clinical pipeline”, “clinical use”, and “bioactivities.” The
database Worms (https://www.marinespecies.org/, accessed on 17 January 2024) was
used to identify the species of marine organisms.

2. The Link between the Inflammation and CIDs

Harmful stimuli such as pathogens, toxic compounds, injuries, or irradiation induce
cell damage and trigger an inflammatory response, a crucial component of our innate im-
mune system [6]. This process involves the detection of danger signals that are recognized
by dedicated immune receptors [7], enabling the elimination of such unwanted signals and
the initiation of the healing process, thereby maintaining tissue homeostasis and a healthy
condition. However, this process requires strict control and must be initiated locally and
temporarily. In fact, systemic and chronic inflammations are associated with most human
diseases and mortality [2]. Although some features of inflammatory responses may vary
depending on the initial stimulus and its location in the body, they are characterized by
dedicated signaling pathways and transcriptional signatures.

2.1. Inflammatory Pathways

Deciphering the regulatory pathways and mediators involved in inflammation is
crucial for developing effective treatments against various diseases. A central player in
inflammation is the NF-κB transcription factor, which controls the production of pro-
inflammatory cytokines and, subsequently, the recruitment of immune cells. The nuclear
translocation of NF-κB is regulated by IκB, which, once phosphorylated by upstream
kinases in response to innate immune receptor engagement, is degraded by the proteasome
(reviewed in [8]). In the case of IBD, the overactivation of this pathway directly causes an
increase in the production of pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6,
consequently fueling chronic inflammation [9].

Similarly, Mitogen-activated Protein Kinases (MAPKs) are a family of protein kinases
that respond to various stimuli, including inflammatory cytokines. They influence cell
proliferation, differentiation, survival, and apoptosis. The activation of MAPKs leads
to the phosphorylation and activation of p38 transcription factors, which also activate
inflammatory response genes [10]. In the joint tissue of RA patients, the mentioned pathway
regulates the production of pro-inflammatory cytokines. Also, it has a crucial role in the
signaling cascade downstream of interleukin (IL-1), IL-17, and TNF-α, leading to cartilage
destruction [11].

The JAK-STAT pathway is another highly conserved signaling mechanism significantly
regulating inflammatory gene expression. Upon ligands (which are primarily cytokines,
such as interferons) binding to their cognate receptors, intracellular receptor-associated
Janus-activated kinases (JAKs) phosphorylate each other and dimerize, creating docking
sites for Signal Transducers and Activators of Transcription (STATs), which are latent,
cytoplasmic transcription factors. The cytoplasmic STATs undergo phosphorylation and
subsequent dimerization, enabling their translocation to the nucleus, where they modulate
immune-related gene expression [12]. Under normal conditions, this pathway is governed
by negative regulators of JAK/STAT, including the suppressor of cytokine signaling and
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protein inhibitor of activated STAT. However, in the context of rheumatoid arthritis (RA),
the malfunction of these regulators leads to joint damage commonly observed in affected
patients [13].

Finally, inflammasome (among which is the NOD-like receptor family, the pyrin do-
main containing three signaling, or NLRP3 is the best described) signaling is also activated
during many inflammatory responses. Inflammasomes require a sensor, an adaptor, and a
pro-caspase that, following puncta formation, leads to IL-1β secretion, an important player
in several (auto) inflammatory disorders, such as gouty arthritis [14].

Because dysregulation of NF-κB, MAPKs, JAK-STAT, or inflammasomes activity is
often associated with inflammatory, autoimmune, or metabolic diseases, a thorough inves-
tigation of the corresponding pathways offers tremendous opportunities to develop more
effective treatments for these diseases and improve patient outcomes.

2.2. Therapeutic Strategies to Target Inflammation

Until the end of the 20th century, CIDs therapeutics relied essentially on glucocor-
ticoids and other small chemicals (non-steroidal) based on their anti-inflammatory, im-
munomodulatory, or anti-proliferative properties. Over the past 20 years, the management
of patients who have rheumatoid arthritis (RA), one of the most frequent CIDs, witnessed
significant improvements with the development and marketing of biologic and targeted-
synthetic disease-modifying antirheumatic drugs (b/tsDMARDs). These molecules are
designed to target and neutralize cytokines (such as TNF-α) and their receptors, to deplete
specific cell populations (such as B lymphocytes with the anti-CD20 antibody), to mod-
ulate T cells activation (using the CTLA4-Ig) or to impact signaling pathways (with JAK
inhibitors for instance) [15].

In this regard, TNF-α inhibitors completely changed the therapeutic strategy of RA
patients, moving from relieving their symptoms to complete remission, which is the goal of
the current therapy.

However, despite that considerable progress, many unmet clinical needs persist for
CID patients. Indeed, even in the case of RA, a significant proportion of patients remain
refractory to available therapies, and others develop resistance to effective drugs (as can
be observed following anti-TNF-α treatment) [16]. For IBD patients, ~10% to 30% of pa-
tients resist the anti-TNF-α agent (primary non-responder), and 20% to 50% of responding
patients (secondary loss of response) develop a resistance to the treatment within one
year [17]. In addition, many chronic inflammatory syndromes (like scleroderma or Sjö-
gren syndrome) are still without any reference treatment [18]. Therefore, the search for
alternative therapeutic options remains current.
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Table 1. MNPs with anti-inflammatory activity. ?: no species identified.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Sponge Porifera Fasciospongia cavernosa Terpene lactone Cavernolide TNF-α, NO, and PGE2 inhibition in RAW
264.7 cells [19]

Sponge Porifera Dysidea spp. Sesquiterpene Dysidotronic acid TNF-α, IL-1, NO, PGE2 inhibition in
RAW 264.7 cells [20]

Sponge Porifera Plakortis spp. α-exomethylene-γ-
lactone Plakolide A iNOS inhibition in RAW 264.7 cells [21]

Sponge Porifera Luffariella variabilis Sesterterpene Manoalide Eicosanoids synthesis inhibition in
human polymorphonuclear leukocytes [22]

Caribbean sponge Porifera Cacospongia linteiformis Sesterterpene Cyclolinteinone iNOS and COX-2 inhibition in
LPS-stimulated J774 macrophages [23]

Sponge Porifera Dysidea sp. and
Petrosaspongia nigra

Merosesquiterpene
& Sesterterpene

Bolinaquinone and
petrosaspongiolide M

Protection against TNBS-induced colitis
in BALB/c mice [24]

Sponge Porifera Petrosia spp. Polyacetylenes

Petrocortyne D,
Petrocortyne E,
Petrocortyne F,
Petrocortyne G,
Petrocortyne H

Inhibition of PLA2 activity in K-562
cell line [25]

Sponge Porifera Petrosia spp. Polyacetylenic alcohol Petrocortyne A

TNF-α inhibition in LPS-activated RAW
264.7 and PMA/LPS-treated U937 cells

and NO inhibition in LPS- or
IFNγ-treated RAW 264.7 cells

[26]

Sponge Porifera Theonella swinhoe Steroid Solomonsterol A
Reduction in arthritic score in anti-type II

collagen antibody-induced arthritis
murine model

[27]

Sponge Porifera Geodia barretti Alpha amino acids and
derivatives Barettin TNF-α and IL-1β inhibition in

LPS-stimulated THP-1 cells [28]
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Table 1. Cont.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Sponge Porifera Geodia barretti Alkaloids

6-bromoindole derivatives
geobarettin B,

6-bromoindole derivatives
geobarettin C,

6-bromoindole alkaloids
6-bromoconicamin,

barettin

IL-12 p40 inhibition and IL-10 increasing
in dendritic cells [29]

Sponge Porifera Halichondria okadai Alkaloid Halichlorine

VCAM-1, ICAM-1, and E-selectin
inhibition in LPS-stimulated aortic

endothelial cells, inhibition of
macrophage adhesion to cultured cell

monolayers, an anti-inflammatory effect
associated with NF-κB pathway

[30]

Sponge Porifera Stylissa Alkaloid Pyrrole alkaloid (10Z)-
debromohymenialdisine

IL-1β, IL-6, TNF-α, iNOS, COX-2, NO
and PGE2 inhibition in co-cultures of

LPS-stimulated Caco-2 and THP-1 cells
[31]

Sponge Porifera Stylissa flabellata Alkaloids Stylissadine A,
Stylissadine B

Antagonistic effect on P2X7 receptors in
THP-1 cells [32]

Soft coral Cnidaria Sinularia dissecta Diterpene Seco-sethukarailin Inhibition of pro-inflammatory cytokines
in bone marrow-derived dendritic cells [33]

Soft coral Cnidaria Pseudopterogorgia
elisabethae Diterpenes Pseudopterosin E,

Pseudopterosin A

Reduction of PMA-induced mouse ear
edema; PGE2 and LCT4 inhibition in

zymosan-stimulated murine peritoneal
macrophages

[34]

Soft coral Cnidaria Sinularia gibberosa Steroid Gibberoketosterol
Inhibition of pro-inflammatory iNOS and

COX-2 proteins in LPS-stimulated
RAW264.7 cells

[35]

Okinawan soft coral Cnidaria Sinularia spp. Diterpenes Norcembranolide and
sinuleptolide

TNF-α and NO inhibition in
LPS-stimulated RAW 264.7 cells [36]
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Table 1. Cont.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Soft coral Cnidaria Sinularia lochmodes Sesquiterpene

Lochmolins A,
Lochmolins B

Inhibition of COX-2 expression in
LPS-activated RAW 264.7 cells [37]

Lochmolins C Inhibition of COX-2 expression in
LPS-activated RAW 264.7 cells [38]

Lochmolins D Inhibition of COX-2 expression in
LPS-activated RAW 264.7 cells [37]

Soft coral Cnidaria Lemnalia cervicorni Sesquiterpene Lemnalol

Inhibition of iNOS and COX-2 expression
in LPS-activated RAW 264.7 cells;

inhibition of iNOS and COX-2 expression
in carrageenan-activated rat paws

[39]

Soft coral Cnidaria Lemnalia flava Sesquiterpene Flavalin A iNOS and COX-2 inhibition in RAW
264.7 cells [40]

Soft coral Cnidaria Lobophytum crassum
Diterpenes

Crassumol E
1R,4R,2E,7E,11E-cembra-

2,7,11-trien-4-ol

Inhibition of NF-κB activation in
TNF-α-activated HepG2 cells [41]

Diterpenes Lobocrasol A,
Lobocrasol B

Inhibition of NF-κB activation in
TNF-α-activated HepG2 cells [42]

Soft coral Cnidaria Scleronephthya
gracillimum Steroid Sclerosteroid J Inhibition of iNOS and COX-2 expression

in LPS-activated RAW 264.7 cells [43]

Octocoral Cnidaria Pseudopterogorgia acerosa Diterpene Pseudopterane
Inhibition of NO, TNF-α, IL-1β and
IFNγ-induced protein production in

LPS-activated peritoneal macrophages
[44]
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Table 1. Cont.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Coral Cnidaria
Rumphella antipathies

(classification rhumphella
antipathes Linnaeus 1758)

Sesquiterpene Clovane compound 1 Inhibition of superoxide anions
generation and elastase release [45]

Sesquiterpene Clovane compound 2 Inhibition of elastase release in
fMLP/CB-activated human neutrophils [45]

Sesquiterpene Rumphellaone C Inhibition of superoxide anion generation
and elastase release in human neutrophils [46]

Sesquiterpene Rumphellol A Inhibition of superoxide generation and
elastase release in human neutrophils [47]

Sesquiterpene Rumpheloll B

Coral Cnidaria Briareum excavatum Diterpene Excavatolide B Inhibition of iNOS expression in
carrageenan-activated rat paws [48]

Coral Cnidaria Briareum excavatum Diterpene Excavatolide B

Inhibition of
12-O-tetradecanoylphorbol-13-acetate
(TPA)-induced vascular permeability;

inhibition of TPA-induced matrix
metalloproteinase-9 expression in mouse

skin; inhibition of IL-6 expression of
LPS-activated mouse bone

marrow-derived dendritic cells

[49]

Anemone Cnidaria Zoanthus kuroshio Alkaloid 5α-iodozoanthenamine
Anti-inflammatory effect

on—neutrophils, reduction of superoxide
anion generation, and elastase by cells

[50]

Anemone Cnidaria Zoanthus pulchellus Alkaloids
3-hydroxinorzoanthamine

Norzoanthine
Roanthamine

ROS and NO inhibition in LPS-stimulated
BV-2 cells [51]

Starfish Echinodermata Marthasterias glacialis Steroid Ergosta-7,22-dien-3-ol Inhibition of iNOS protein level in
LPS-activated RAW 264.7 cells [52]

Starfish Echinodermata Astropecten polycanthus Steroid Steroid compound 5
Inhibition of IL-12 p40, IL-6, and TNF-α
production in LPS-activated mice bone

marrow-derived dendritic cells
[53]
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Table 1. Cont.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Starfish Echinodermata Asterias amurensis Fatty acid Fatty acids

Inhibition of the expression of
inflammatory genes via NF-κB and

MAPK pathways in LPS-stimulated RAW
264.7 cells

[54]

Starfish Echinodermata Marthasterias glacialis Fatty acid Cis 11-eicosenoic and cis
11,14 eicosadienoic acids

Inhibition of iNOS, COX-2, IκBα, and
NF-κB gene expression in LPS-stimulated

RAW 264.7 cells
[52]

Starfish Echinodermata Protoreaster nodosus Steroid Oxygenated steroid
derivatives

IL-12 p40, IL-6, and TNF-α inhibition in
bone marrow-derived dendritic cells [55]

Starfish Echinodermata Protoreaster lincki Steroids

Protolinckioside A,
Protolinckioside B,
Protolinckioside C,
Protolinckioside D

Reduction of ROS formation and NO
production in LPS-stimulated RAW

264.7 cells
[56]

Starfish Echinodermata Anthenea aspera Steroid Anthenoside O [57]

Starfish Echinodermata Pentaceraster regulus Steroid
Pentareguloside C,
Pentareguloside D,
Pentareguloside E

Reduction of ROS formation and NO
production in LPS-stimulated RAW

264.7 cells
[58]

Starfish Echinodermata Acanthaster planci Pyrrole oligoglycoside Plancipyrroside A,
Plancipyrroside B

Reduction of ROS formation and NO
production in LPS-stimulated RAW

264.7 cells
[59]

Starfish Echinodermata Asterina batheri Pyrrole oligoglycoside
Astebatherioside B,
Astebatherioside C,
Astebatherioside D

IL-12 p40 inhibition in LPS-stimulated
bone marrow-derived dendritic cells [60]

Sea cucumber Echinodermata Holothuria grisea Protein Lectin

Inhibition of neutrophil migration to the
peritoneal cavity in carrageenan-activated

rats; reduction of myeloperoxidase
activity in carrageenan-activated rats

[61]
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Table 1. Cont.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Sea cucumber Echinodermata Apostichopus japonicus
and Stichopus chloronotus Sulfated polysaccharide Fucosylated

chondroitin sulfate

Reduction of neutrophil migration,
inhibition of paw edema in

carrageenan-induced paw edema in rats
[62]

Sea cucumber Echinodermata Isostichopus badionotus Sulfated polysaccharide Fucosylated
chondroitin sulfate

Suppression of TPA-mediated
up-regulation of TNF-α, IL-6, NF-κB,
iNOS, IL-10, IL-11, COX-2 and STAT3

genes in mouse ear tissue

[63]

Sea cucumber Echinodermata Isostichopus badionotus Sulfated polysaccharide Fucoidan

Regulation of serum inflammatory
cytokines (TNF-α, CRP, MIP-1, IL-1β,

IL-6, and IL-10) and their mRNA
expression, inactivation of JNK and

IκB/NF-κB pathways

[64]

Sea cucumber Echinodermata Holothuria albiventer and
Cucumaria frondosa Sulfated polysaccharide Sulfated fucan/FCS Suppression of TNF-α and IL-6

production [65]

Sea cucumber Echinodermata Holothuria tomasi Triterpenes glycoside Inhibition of IL-6, TNF-α levels in
STZ-induced diabetic rats [66]

Sea cucumber Echinodermata Pearsonothuria graeffei Triterpenes glycoside Holothurin A and
Echinoside A

Inhibition of IL-1β, TNF-α, IL-6 and
infiltration of macrophages in obese mice
via p-ERK/cPLA2/COX-1 pathway and

reduction of the PGE2 levels

[67]

Sea cucumber Echinodermata Aspostichopus japonicus
and Acaudina leucoprocta Peptide Oligopeptides

Downregulation of pro-inflammatory
cytokines transcription, upregulation of

anti-inflammatory cytokines, and
inhibition of TLR4/MyD88/NF-κB

signaling pathway

[68]

Sea cucumber Echinodermata Cucumaria frondosa Fatty acid Eicosapentaenoic acid

Inhibition of TNF-α, IL-6, and MCP1
expression, attenuation of macrophage

infiltration in the liver in mice,
attenuation of the phosphorylation of

NF-κB in RAW 264.7 cells

[69]
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Table 1. Cont.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Sea cucumber Echinodermata Cucumaria frondosa Lipid Frondanol

Reduction of inflammation-associated
changes in the colon in mice, reduction of

cytokine content at the protein and
mRNA level

[70]

Sea cucumber Echinodermata Cucumaria frondosa Lipid Sphingolipids

Inhibition of pro-inflammatory cytokines
IL-1β, IL-6 TNF-α and increasing

anti-inflammatory IL-10 via inhibition of
phosphorylation of JNK and

translocation of NF-κB

[71]

Sea cucumber Echinodermata Cucumaria frondosa Lipid Frondaol A5

Attenuation of circulating inflammatory
cytokines and suppression of mRNA

expression of inflammatory markers such
as 5-LOX and FLAP

[72]

Sea urchins Echinodermata Scaphechinus mirabilis Dark red pigment EchA

Attenuation of macrophage activation
and infiltration (neutrophils), inhibition

of TNF-α and IFNγ in
bleomycin-induced scleroderma

mouse model

[73]

Sea urchins Echinodermata ? Dark red pigment EchA
Decreasing DIA, improvement of colon

length and suppression of tissue damage,
suppression of macrophage activation

[74]

Sea urchins Echinodermata ? Dark red pigment EchA TNF-α and NF-κB inhibition in Lewis rats [75]

Sea urchins Echinodermata Paracentrotus lividus Dark red pigment EchA
Potent stabilizing effect on the human red
blood cells, suppression of the production

of IL-6 and TNF-α in septic rats
[76]

Sea urchins Echinodermata Scaphechinus mirabilis Pigment Spinochrome A Reduction of chronic inflammation in
cotton-pellet granuloma rat model [77]

Sea urchins Echinodermata Scaphechinus mirabilis Pigment Spinochrome B [77]
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Table 1. Cont.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Sea urchins Echinodermata

Echinometra mathaei,
diadema savignyi,

tripneustes gratilla and
Toxopneustes pileolus

Pigment Spinochromes

TNF-α inhibition in J774 macrophages [78]

Sea urchins Echinodermata

Echinometra mathaei,
diadema savignyi,

tripneustes gratilla and
Toxopneustes pileolus

Pigment EchA

Sea urchins Echinodermata Strongylocentrotus
droebachiensis Peptide Centrocin 1 (CEN1HC-Br) IL-12 p40, IL-6, IL-1β and TNF-α

inhibition in THP-1 cells [79,80]

Sea urchins Echinodermata Salmacis bicolor Isochroman derived
polyketide Salmachroman COX-2 and 5-LOX inhibition by using the

2, 7-dichlorofluorescein method [81]

Sea urchins Echinodermata Salmacis bicolor
Polyoxygenated

furanocembranoid
derivatives

Salmacembrane A
Salmacembrane B

COX-1, COX-2, and 5-LOX inhibition by
the 2, 7-dichlorofluorescein method [82]

Sea urchins Echinodermata Stomopneustes variolaris Cembrane type of
diterpene

4-hydroxy-1-
(16methoxyprop-16-en-15-

yl)-8-methyl-21,22-
dioxatricyclo[11.3.1.15,8]

octadecane-3,19-dione

Inhibition of 5-LOX, COX-1 and COX-2
inhibition by the 2, 7-dichlorofluorescein

method
[83]

Sea urchins Echinodermata Stomopneustes variolaris Macrocyclic lactone Stomopneulactones D COX-2, 5-LOX, iNOS inhibition in RAW
264.7 cells [84]

Sea urchins Echinodermata Brisaster latifrons Sulfonic acid (Z)-4-methylundeca-1,9-
diene-6-sulfonic acid

Inhibition of proinflammatory cytokines
by the inactivation of JNK/p38 MAPK

and NF-kB pathways
[85]

Sea urchins Echinodermata
Hemicentrotus

pulcherrimus and
Diadema setosum

Lipid Hp-s1 ganglioside
Inhibition of iNOS, COX-2, and cytokines,

downregulation of the NF-κB and
JNK/P38 MAPK signaling pathway

[86]
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Table 1. Cont.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Ascidian Chordata Aplidium orthium Alkaloids

Alkaloid tubastrine,
Orthidine A,
Orthidine B,
Orthidine C,
Orthidine E,
Orthidine F

Reduction of the superoxide synthesis in
PMA-stimulated neutrophils in vitro and

in in vivo models
[87]

Ascidian Chordata Aplidium spp. Alkaloids Ascidiathiazone A,
Ascidiathiazone B

Reduction of the superoxide production
by PMA-stimulated neutrophils in vitro

and in vivo in murine gout model
[88]

Ascidian Chordata Pycnoclavella kottae Alkaloid Kottamide D

Reduction of superoxide synthesis by
PMA and N-formylmethionyl-leucyl-

phenylalanine (fMLP)-activated
neutrophils in vitro

[89]

Red algae Rhodophyta Gracilaria opuntia Alkaloid Azocinyl morpholinone Inhibition of the carrageenan-induced
paw edema [90]

Green algae Chlorophyta Enteromorpha prolifera Chlorophyll Pheophytin Suppression of the production of
superoxide anion in mouse macrophages [91]

Green algae Chlorophyta Ulva lactuca Sterol 3-0-B-D-glucopyranosil-
stigmata-5,25,-dien sterol

Topical anti-inflammatory activity in
mouse edema [92]

Green algae Chlorophyta Caulerpa racemosa Alkaloid Caulerpin//Sulfated
polysaccharides

Inhibition of capsaicin-induced ear
edema model and significant reduction of
the number of recruited cells; reduction
in neutrophil counts in the peritoneal

cavity and paws of carrageenan-treated
rats; reduction of edema volume in
carrageenan and dextran-activated

mouse paws

[93,94]
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Table 1. Cont.

Macro-Organisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Green algae Chlorophyta Enteromorpha prolifera Chlorophyll Pheophytin A
Significant suppression of TPA-induced
inflammatory reactions such as edema

formation in BALB/c mouse ears
[91]

Green algae Chlorophyta Caulerpa mexicana Sulfated polysaccharides Sulfated polysaccharides

Reduction of edema volume and
neutrophilic infiltration in

carrageenan-activated raw paws;
Reduction of edema volume in dextran

and histamine-activated rat paws

[95]

Green algae Chlorophyta Caulerpa cupressoids Protein Lectin

Reduction of leukocyte counts and
myeloperoxidase activity in rat

temporomandibular joint synovial lavage
fluid in zymosan-activated rats

[96]

Brown algae Heterokontophyta Ecklonia cava Pholorotannin Dieckol
Inhibition of NO, PGE2, and the

expression of iNOS production in murine
BV2 microglia

[97]

Brown algae Heterokontophyta Undaria pinnatifida Fatty acid Ω-3 polyunsaturated
fatty acids

Inhibition of the mouse ear inflammation
induced by PMA [98]

Brown algae Heterokontophyta Laminaria japonica Sulfated polysaccharide Fucoidan NO and IL-6 inhibition in Caco-2 cells [99]

Brown algae Heterokontophyta Fucus vesiculosus Sulfated polysaccharide Fucoidan Reduction of NO, PGE2, TNF-α and
IL-1β production in RAW 264.7 cells [100]

Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Dinoflagellate
(microalgae) Dinoflagellata Symbiodinium spp. Amphoteric iminium 6,6,6-tricyclic iminium ring

and aryl sulfate moiety
Inhibition of the COX-2 activity in RAW

264.7 cells [101]

Haptophyte (microalgae) Haptophyta Isochrysis galbana Galactolipids Monogalactosyldiacylglycerols
Digalactosyldiacylglycerol

Inhibition of the synthesis of TNF-α,
IL-1β, IL-6, IL-17 in THP-1 cells [102]
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Table 1. Cont.

Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Green microalgae Chlorophyta Chlorella vulgaris Polyunsaturated fatty
acid

Linoleic acid and
α-linolenic

Inhibition of TNF-α, IL-6, PGE2, and NO
production in RAW 264.7 cells [103]

Red microalgae Rhodophyta Porphyridium cruentum Fatty acids Fatty acids
Inhibition of superoxide anion

production by peritoneal leukocytes
primed with PMA

[104]

Red microalgae Rhodophyta Porphyridium cruentum Exopolysaccharide (EPS) EPS
Inhibition of 77% of COX-2 in human
keratinocytes and murine fibroblasts

Balb/c-3T3
[105]

Pigment Phycoerythrin
Inhibition of COX-2 in human

keratinocytes and murine fibroblasts
Balb/c-3T3

[105]

Cyanobacteria Cyanobacteria Spirulina subsalsa
Lipids

(glycophospholipids,
phospholipids)

Sulfoquinovosyl
diacylglycerols, mono-

galactosylodiglycerides,
cerebrosides; ceramides,
phosphatidylcholines,

phos-
phatidylethanolamines

Inhibitory effects on platelet-activating
factor and thrombin-induced

platelet aggregation
[106]

Cyanobacteria Cyanobacteria Lyngbya majuscula Malyngamide Malyngamide F acetate Inhibition of the NO production in RAW
264.7 cells [107]

Cyanobacteria Cyanobacteria Caldora sp. Azirine Dysidazirine carboxylic
acid

Inhibition of the NO production by
almost 50% at 50 µM in RAW 264.7 cells [108]

Fungi Ascomycota Chaetomium globosum
QEN-14 Alkaloid Chaetoglobosin Fex Inhibition of TNF-α and IL-6 production

in LPS-activated RAW 264.7 cells [109]
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Table 1. Cont.

Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Fungi Ascomycota

Stachybotrys sp. HH1
ZSDS1F1-2 (isolated
from a sponge from

Xisha Island, China, in
April 2012)

Xanthonne

Xanthone derivatives 3
(others),

Inhibition of COX-2 [110]
Xanthone derivatives 4

(others),

Xanthone derivatives 11
(others)

Fungi Ascomycota Aspergillus spp. Diketopiperazine
alkaloids

5-prenyl-
dihydrovariecolorin F Inhibition of iNOS and COX-2 activity,

reduction of NO and PGE2 levels in
LPS-stimulated RAW 264.7 and BV2 cells

[111]
Fungi Ascomycota Aspergillus spp. Diketopiperazine

alkaloids
5-prenyl-

dihydrorubrumazine A

Fungi Ascomycota Aspergillus sp. SF-6354 Polyketide TMC-256C1 NO and PGE2 inhibition in LPS-activated
BV2 cells [112]

Fungi Ascomycota Aspergillus sp. SCSIO
Ind09F01 Polyketides

Diorcinol,
Cordyol C,

3,7-dihydroxy-1,9-
dimethyldibenzofuran

Inhibition of COX-2 (IC50 = 2.4–10.6 µM) [113]

Fungi Ascomycota
Aspergillus sp. SF-5974

and Aspergillus sp.
SF-5976

Polyketides

Cladosporin
8-0-α-ribofuranoside,

Cladosporin,
Asperentin

6-O-methyl ether
Cladosporin

8-O-methyl ether,
4′-hydroxyasperentin,
5′-hydroxyasperentin

Inhibition of NO and PGE2 expression,
(IC50 = 20–65 µM) in LPS-activated

microglial cells
[114]

Fungi Ascomycota Aspergillus sp. SF-5044 Polyketide Asperlin Inhibition of NO and PGE2 expression in
LPS-activated murine macrophages [115]
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Table 1. Cont.

Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Fungi Ascomycota Aspergillus sp. Peptide Aurantiamide acetate Inhibition of NO and PGE2 expression in
LPS-activated BV2 cells [116]

Fungi Ascomycota A.europaeus
WZXY-SX-4-1 Polyketides

Eurobenzophenone B,
Euroxanthone A,

3-de-O-methylsulochrin,
Yicathin B,

Dermolutein,
Methylemodin

Inhibition of NF-κB activation and NO
expression in LPS-activated SW480 cells [117]

Fungi Ascomycota Aspergillus sp. ZLO-1b14 Terpenes

Aspertetranone A,
Aspertetranone B,
Aspertetranone C,
Aspertetranone D

Inhibition of IL-6 expression in
LPS-activated RAW 264.7 cells [118]

Fungi Ascomycota A.sydowii J05B-7F-4 Polyketide Violaceol II, Cordyol E
Inhibition of NO (IC50 = 73 µM)

expression in LPS-activated RAW
264.7 cells

[119]

Fungi Ascomycota A.niger SCSIO Jcsw6F30 Polyketides
Aurasperone F,
Aurasperone C,
Asperpyrone A

Inhibition of COX-2 expression
(IC50 = 11.1, 4.2, and 6.4 µM for F, C, and
A, respectively) in LPS-activated RAW

264.7 cells

[120]

Fungi Ascomycota A. flocculosus 16D-1 Alkaloids

Preussin C,
Preussin D,
Preussin E,
Preussin F,
Preussin G,
Preussin H,
Preussin I,
Preussin J,
Preussin K

Inhibition of IL-6 expression in
LPS-activated THP-1 cells [121]
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Table 1. Cont.

Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Fungi Ascomycota A.versicolor Alkaloids

Asperversiamide B,
Asperversiamide C,
Asperversiamide F,
Asperversiamide G

Inhibition of iNOS expression in
LPS-activated RAW 264.7 cells [122]

Fungi Ascomycota A.terreus Alkaloid Luteoride E Inhibition of NO in LPS-activated RAW
264.7 cells [123]

Fungi Ascomycota A.terreus Terpene Lovastatin Inhibition of NO production in
LPS-activated RAW 264.7 cells [123]

Fungi Ascomycota A.terreus CFCC 81836 Terpene Brasilanone A Inhibition NO production in
LPS-activated RAW 264.7 cells [124]

Fungi Ascomycota A.terreus CFCC 81836 Terpene Brasilanone E [124]

Fungi Ascomycota
(phylum) A.terreus Polyketide Versicolactone G Inhibition of NO production (IC50 = 15.72

and 29.34 µM for G and A, respectively)
in LPS-activated RAW 264.7 cells

[123]
Fungi Ascomycota A.terreus Polyketide Territrem A

Fungi Ascomycota A.terreus Peptide

Methyl
3,4,5-trimethoxy-2-(2-

(nicotinamido)benzamido)
benzoate

Inhibition of NO production in
LPS-activated RAW 264.7 cells [123]

Fungi Ascomycota
A. terreus (isolated from

the coral Sarcophyton
subviride)

Aliphatic alcohol

(3E,7E)-4,8-dimethyl-
undecane-3,7-diene-1,11-

diol,
14α-hydroxyergosta-

4,7,22-triene-3,6-dione

Inhibition of NO expression in
LPS-activated RAW 264.7 cells [123]

Fungi Ascomycota Aspergillus sp. SCSIOW2 Terpenes Dihydrobipolaroxins B-D
Dihydrobipolaroxin NO inhibition in RAW 264.7 cells [125]

Fungi Ascomycota Eurotium sp., SF-5989 Alkaloid Neoechinulin B Inhibition of NO production in
amyloid-β 1-42-activated BV-2 cells [126]

Fungi Ascomycota Eurotium sp. SF-5989 Polyketide Flavoglaucin
Isotecrahydroauroglaucin

Inhibition of NO and PGE2 expression in
LPS-activated RAW 264.7 cells [127]
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Table 1. Cont.

Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Fungi Ascomycota Eurotium spp. Indolic alkaloid Neoechinulin A

Reduction of NO and PGE2 production
by inhibiting iNOS and COX-2 expression

and reduced the production of IL-1β,
TNF-α in LPS-stimulated RAW 264.7 cells

[126]

Fungi Ascomycota Eurotium sp. SF-5989 Alkaloid Neocechinulin A Inhibition of NO and PGE2 in
LPS-stimulated RAW 264.7 macrophages [126]

Fungi Ascomycota E.amstelodami Polyketide Asperflavin
Inhibition of 4.6% and 55.9% of NO and

PGE2 expression, respectively, in
LPS-activated RAW 264.7 cells

[128]

Fungi Ascomycota E.amstelodami Polyketide Questinol
Inhibition of 73% and 43.5% of NO and

PGE2 expression, respectively, in
LPS-stimulated RAW 264.7 cells

[129]

Fungi Ascomycota Penicillium sp. SF-5859
(isolated from a sponge) Polyketides

Curvularin,
(11R,15S)-11-

hydroxycurvularin,
(11S,15S)-11-

hydroxycurvularin,
(11R,15S)-11-

methoxycurvularin,
(11S,15S)-11-

methoxycurvularin,
(10E,15S)-10,11-

dehydrocurvularin,
(10Z,15S)-10,11-

dehydrocurvularin

Inhibition of NO and PGE2 expression
(IC50 values ranging from 1.9 to 18.7 µM)

in LPS-stimulated RAW 264.7 cells
[130]

Fungi Ascomycota Graphostroma sp. MCCC
3A00421 Terpene Graphostromane F Inhibition of NO in LPS-activated RAW

264.7 cells [131]

Fungi Ascomycota Graphostroma sp. MCCC
3A00421 Terpene Khusinol B Inhibition of NO expression in

LPS-activated RAW 264.7 cells [132]
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Table 1. Cont.

Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Fungi Ascomycota P.chrysogenum
SCSIO41001 Alkaloid Chrysamide C Inhibition of IL-17 expression in

mice T-cells [133]

Fungi Ascomycota Penicillium sp. SF-5295 Alkaloid Viridicaol
Inhibition of NO and PGE2 expression in

LPS-activated RAW 264.7 and in
LPS-activated BV2 cells

[134]

Fungi
Fungi Ascomycota Penicillium sp. Alkaloids Brevicompanine E,

Brevicompanine H
Inhibition of NO production in
LPS-activated RAW 264.7 cells [135]

Fungi Ascomycota Penicillium sp. SF-5995 Alkaloid Methylpenicinoline
Inhibition of NO, PGE2, iNOS and COX-2

expression in LPS-induced RAW 264.7
cells and BV2 microglia

[136]

Fungi Ascomycota Penicillium sp. SF-5497 Terpenes

7-acetoxydehydroaustinol,
Austinolide,

7-acetoxydehydroaustin,
11-hydroxyisoaustinone,
11-acetoxyisoaustinone

Inhibition of NO expression in
LPS-activated BV-2 cells [137]

Fungi Ascomycota Penicillium sp. SF 6013 Terpenes
2E,4Z-tanzawaic acid D,

Tanzawaicacids A,
Tanzawaicacids E

Inhibition of NO expression in
LPS-activated RAW 264.7 cells [138]

Fungi Ascomycota Penicillium sp. SF-5629 Polyketide Citrinin H1
Inhibition of NO and prostaglandin E2
expression (IC50 = 8.1 and 8.0 µM) in

LPS-activated BV2 cells
[139]

Fungi Ascomycota Penicillium sp. SF-5292 Polyketide Penicillospirone
Inhibition of NO and PGE2 expression
(with IC50 values of 21.9–27.6 µM) in

LPS-activated RAW 264.7 and BV2 cells
[134]

Fungi Ascomycota Penicillium sp. SF-5292 Polyketide Penicillinolide A

Inhibition of NO, PGE2, TNF-α, IL-1β,
and IL-6 expression (IC50 = 20.47, 17.54,

8.63, 11.32, and 20.92 µM, respectively) in
LPS-activated RAW 264.7 and BV2 cells

[140]
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Table 1. Cont.

Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Fungi Ascomycota Penicillium sp. J05B-3-F-1 Hexylitaconic acid
derivatives

Methyl 8 -hydroxy-3-
methoxycarbonyl-2-

methylenenonanoate,
(3S)-Methyl 9-hydroxy-3-

methoxycarbonyl-2-
methylenenonanoate

Inhibition of pro-inflammatory cytokines
and NO expression in LPS-activated

RAW 264.7 cells
[141]

Fungi Ascomycota P. atrovenetum Terpene Citreohybridonol Anti-neuroinflammatory activity [142]

Fungi Ascomycota P.steckii 108YD142 Terpenes

Tanzawaic acid Q,
Tanzawaic acid A,
Tanzawaic acid C,
Tanzawaic acid D,
Tanzawaic acid K

Inhibition of NO expression in
LPS-activated RAW 264.7 cells [143]

Fungi Ascomycota P.paxililli Polyketide Pyrenocine A Inhibition of TNF-α and PGE2 expression
in LPS-activated RAW 264.7 cells [144]

Fungi Ascomycota P.thomii KMM 4667 Terpene Thomimarine E Inhibition of 22.5% of NO production in
LPS-activated RAW 264.7 cells [145]

Fungi Ascomycota P.thomii KMM 4667 Polyketide Guaiadiol A, 4,10,11
trihydroxyguaiane

Inhibition of 24.1% and 36.6% of NO
production at 10 µM in LPS-activated

RAW 264.7 cells
[145]

Fungi Ascomycota P.citrinum SYP-F-2720 Peptide
(S)-2-(2-

hydroxypropanamido)
benzoic acid

Reduction of the inflammation in
xylene-induced mouse ear edema model [146]

Fungi Ascomycota Hypocreales sp. HLS-104 Terpene 1R,6R,7R,10S-10-hydroxy-
4(5)-cadinen-3-one

Inhibition of NO expression in
LPS-activated RAW 264.7 cells with Emax

value of 26.46% at 1 µM

[147]

Fungi Ascomycota Hypocreales sp. HLS-104 Polyketide (R)-5,6-dihydro-6-pentyl-
2H-pyran-2-one

Fungi Ascomycota F.heterosporum CNC-477 Sesterpene polyol Mangicol A Inhibition of PMA-induced mouse ear
edema assay [148]

Fungi Ascomycota F.heterosporum CNC-477 Sesterpene polyol Mangicol B
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Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Fungi Basidiomycota Chondrostereum sp.
NTOU4196 Sesquiterpenes

Chondroterpene A,
Chondroterpene B,
Chondroterpene H,

Hirsutanol A,
Chondrosterin A,
Chondrosterin B

Inhibition of NO expression in
LPS-activated BV-2 cells [149]

Fungi Ascomycota Pleosporales sp. Terpenes
Pleosporallin A,
Pleosporallin B,
Pleosporallin C

Inhibition of IL-6 expression in
LPS-activated RAW 264.7 cells [150]

Fungi Ascomycota Phoma sp. NTOU4195 Polyketide Phomaketides A-C,
FR-111142

Inhibition of NO expression (IC50 values
ranging from 8.8 to 19.3 µM) in
LPS-activated RAW 264.7 cells

[151]

Fungi Ascomycota Stachybotrys chartarum
952 Terpenes

Stachybotrysin C,
Stachybonoid F,

Stachybotylactone

Inhibition of NO expression in
LPS-activated RAW 264.7 cells [152]

Fungi Ascomycota Leptosphaerulina
chartarum 3608 Polyketide (4R,10S,4′S)-

leptothalenone B
Inhibition of NO in LPS-activated RAW

264.7 cells (IC50 = 44.5 µM) [153]

Fungi Ascomycota Glimastix sp. ZSDS1-F11 Polyketides

Expansol A,
Expansol B,
Expansol C,
Expansol D,
Expansol E,
Expansol F

Inhibition of COX-1 (IC50 = 5.3, 16.2, 30.2,
41 and 56.8 µM, for A, B, C, E, F

respectively) and COX-2 (IC50 = 3.1, 5.6, 3,
5.1, 3.2 and 3.7 µM, for A, B, C, D, E,

F, respectively)

[154]

Fungi Ascomycota Diaporthe sp. HLY-1 Polyketide Mycoepoxydiene
Inhibition of NO and TNF-α, IL-6, and

IL-1β expression in LPS-activated
macrophages

[155]

Fungi Ascomycota Aspergillus violaceofuscus Peptides Violaceotide A,
diketopiperazine dimer

Inhibition of IL-10 expression in
LPS-activated THP1 cells [156]
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Microorganisms

Organisms Classification
(Phylum) Species Type of Molecules Molecules Target/Mode of Action Ref(s).

Fungi Ascomycota Acremonium sp. Peptide Oxepinamide A Inhibition of RTX-activated mouse ear
edema assay [157]

Fungi Ascomycota Alternaria sp. Peptide Alternaramide Inhibition NO and PGE2 expression in
LPS-activated RAW 264.7 and BV2 cells [158]

Fungi Ascomycota
Trichoderma citrinoviride
(isolated from green alga

Cladophora)
Sorbicillinoid Trichodermanone C Inhibitory effect on nitrite levels in

LPS-activated J774A.1 macrophages [159]

Fungi Ascomycota Paraconiothyrium sp.
VK-13 Polyketide

1-(2,5-dihydroxyphenyl)-
3-hydroxybutan-1-one,

1-(2,5-dihydroxyphenyl)-
2-buten-1-one

Inhibition of NO and PGE2 expression in
LPS-activated RAW 264.7 cells

(IC50 = 3.9–12.5 µM).
[160]

Fungi Basidiomycota Cystobasidium larynges
IV17-028 Phenazine derivatives

6-[1-(2-
aminobenzoyloxy)ethyl]-
1-phenazinecarboxylic

acid,
Saphenol,

(R)-saphenic acid,
Phenazine-1-carboxylic

acid,
6-(1-hydroxyethyl)

phenazine-1-carboxylic
acid,

6-acetyl-phenazine-1-
carboxylic acid

Inhibition of NO production in RAW
264.7 cells [161]

Fungi Ascomycota Penicillium sp JF-55
(polyketide) Phenylpropanoid Penstyrylpyrone

Inhibition of NO, PGE2, TNF-α, IL-1β in
LPS-activated murine peritoneal

macrophages
[162]

Bacteria Actinobacteria Streptomyces spp. Alkaloid Actinoquinoline A
Inhibition of COX-1 and COX-2 [163]

Actinoquinoline B
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Bacteria Actinobacteria Streptomyces caniferus Macrolide Caniferolide A
Inhibition of NF-κB p65 translocation and
pro-inflammatory cytokines expression in

BV2 microglial cells
[164]

Bacteria Actinobacteria Nocardiopsis sp. Macrolide Fijiolide A
Reduction of TNF-α-induced NF-κB in

human embryonic kidney cells 293
(IC50 = 0.57 µM)

[165]

Bacteria Actinobacteria Kocuria sp. strain AG5 Exopolysaccharide EPS5
Inhibition of LOX-5 and COX-2
(IC50 = 15.39 ± 0.82 µg/mL and
28.06 ± 1.1 µg/mL, respectively)

[166]

Bacteria Bacillota Bacillus subtilis B5 Macrolactin derivative
7,13-epoxyl-macrolactin A;

7-O-2′E-butenoyl
macrolactin A

Inhibition of inducible nitric oxide
synthase (iNOS), interleukin-1β (IL-1β),

and interleukin-6 (IL-6) expression in
LPS-stimulated RAW 264.7 macrophages

[167]
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3. Marine Microorganisms vs. Macro-Organisms: Who Are the Actual Producers
of Metabolites?

Oceans are a vast and unexplored world, teeming with life and diversity. Recent
advancements in bioprospecting and molecular technologies foster the identification of
new marine organisms, from macroscopic to microscopic biota, in this fascinating ecosys-
tem [168]. However, the number of unknown marine species is estimated between 60,000
and 1,950,000, depending on the literature [169]. In the early days, bioprospecting cam-
paigns focused on larger species like cnidarians, sponges, or soft corals due to technical
limitations [170]. Between the 1990s and the 2010s, marine invertebrates have been found
to produce almost 10,000 new marine natural products (MNPs) [171]. These discoveries
have revealed the immense potential of marine organisms for developing innovative com-
pounds for therapeutic and industrial applications. Many metabolites produced by marine
macro-organisms have shown promising biological properties, such as anti-inflammatory
activity for 43.7% of compounds (Figure 1a). These metabolites belong to different classes
of molecules like terpenes (26%), alkaloids (20%), lipids (20%), pigments (8%), polysaccha-
rides (6%) as shown in Figure 1b. Among macro-organisms, those belonging to the phylum
Echinodermata produce the most anti-inflammatory molecules (Table 1), inhibiting pro-
inflammatory cytokines and the NF-κB pathway but also reducing inflammation in vivo
(Table 1). Since then, the possibility of further exploring and leveraging marine ecosystems
has been genuinely exciting as it could unlock countless benefits for human health.

Mar. Drugs 2024, 22, x  21 of 32 
 

 

3. Marine Microorganisms vs. Macro-Organisms: Who Are the Actual Producers of 
Metabolites? 

Oceans are a vast and unexplored world, teeming with life and diversity. Recent 
advancements in bioprospecting and molecular technologies foster the identification of 
new marine organisms, from macroscopic to microscopic biota, in this fascinating 
ecosystem [168]. However, the number of unknown marine species is estimated between 
60,000 and 1,950,000, depending on the literature [169]. In the early days, bioprospecting 
campaigns focused on larger species like cnidarians, sponges, or soft corals due to 
technical limitations [170]. Between the 1990s and the 2010s, marine invertebrates have 
been found to produce almost 10,000 new marine natural products (MNPs) [171]. These 
discoveries have revealed the immense potential of marine organisms for developing 
innovative compounds for therapeutic and industrial applications. Many metabolites 
produced by marine macro-organisms have shown promising biological properties, such 
as anti-inflammatory activity for 43.7% of compounds (Figure 1a). These metabolites 
belong to different classes of molecules like terpenes (26%), alkaloids (20%), lipids (20%), 
pigments (8%), polysaccharides (6%) as shown in Figure 1b. Among macro-organisms, 
those belonging to the phylum Echinodermata produce the most anti-inflammatory 
molecules (Table 1), inhibiting pro-inflammatory cytokines and the NF-κB pathway but 
also reducing inflammation in vivo (Table 1). Since then, the possibility of further 
exploring and leveraging marine ecosystems has been genuinely exciting as it could 
unlock countless benefits for human health. 

 
Figure 1. Chemical classification of MNPs with anti-inflammatory activity as reported between 2000 
and 2024. Percentage of known anti-inflammatory compounds produced by marine organisms (a), 
by marine macro-organisms (b), and microorganisms (c) according to the structure type. 

Figure 1. Chemical classification of MNPs with anti-inflammatory activity as reported between 2000
and 2024. Percentage of known anti-inflammatory compounds produced by marine organisms (a), by
marine macro-organisms (b), and microorganisms (c) according to the structure type.



Mar. Drugs 2024, 22, 405 25 of 35

An ongoing exploration of marine ecosystems has extended to extreme environments
such as deep ocean trenches, geographical poles, or hydrothermal vents; furthermore,
technological improvement of microorganisms conservation during collects prompted
bioprospecting campaigns to focus on microorganisms such as microalgae, marine fungi,
cyanobacteria, and other groups of marine microorganisms. These microscopic life forms
represent over 90% of the marine biomass and play a critical role in geochemical processes
necessary for terrestrial life [172]. They are also remarkable for their ability to thrive, even in
the harshest environments, producing rare and unique compounds that cannot be found in
terrestrial biotopes. Furthermore, marine microorganisms are highly metabolically efficient,
producing large amounts of metabolites while consuming limited energy [173]. Over the
past year, MNPs obtained from marine bacteria, fungi, and cyanobacteria increased by 22%,
85%, and 61%, respectively, between 2018 and 2020, underscoring the impact of marine
microorganisms on scientific research [174]. Yet, macro-organisms such as sponges and
cnidarians have also been shown to produce MNPs [175]. The identification of these sources
has led to inquiries and discussions about the actual producers of these metabolites.

Recent studies have uncovered that certain compounds previously thought to be
specifically produced by marine macro-organisms are actually the metabolic byproducts of
associated microorganisms [176], as illustrated by bryostatin, which has been confirmed
to originate from microbes. The discovery of this metabolite has been made through the
identification of polyketide synthase genes involved in its biosynthesis and found in the
genome of the bryozoan bacterial symbiont Candidatus Endobugula sertula [177]. Another
striking example is the fungus Penicilium canescens found in the ascidian Styela plicata, which
exhibited anti-inflammatory activity. Furthermore, the findings presented in Figure 1a
indicate that 58.3% of common anti-inflammatory classes of molecules are produced by
both marine macro-organisms and microorganisms. This suggests that microorganisms
may play a crucial role in producing these compounds, as many microorganisms live in
symbiosis with macro-organisms.

In comparison with macro-organisms, microorganisms represent a significant source
of anti-inflammatory molecules, contributing a noteworthy 56% of these compounds
(Figure 1a). Moreover, the diversity of their metabolites is astounding, including ter-
penes (27%), alkaloids (18%), peptides (4%), lipids (2%), and pigments (1%) as indicated
in Figure 1C. However, the most intriguing aspect is the specific type of molecules, such
as polyketides (32%) and phenazine derivatives (4%) produced by marine fungi that tar-
get pro-inflammatory cytokines like TNF-α or IL-6, as well as inflammatory markers like
NO (Table 1, Figure 2). Given that these mediators are produced upon activation of the
NF-kB pathway or are involved in the activation of the JAK-STAT pathway, it is plausible
that the MNPs derived from fungi may inhibit these pathways. Additionally, marine mi-
croorganisms, particularly bacteria, can produce specific compounds that are not found in
macro-organisms. These compounds, such as exopolysaccharides, macrolides, and azirine,
can target inflammatory mediators such as cyclooxygenases, NO, TNF-α, and the NF-κB
pathway (Table 1, Figure 2). It is worth noting that among microorganisms, most of the
compounds are produced by fungi, particularly those belonging to the Ascomycota phy-
lum (Table 1). In addition, they are the major producers of polyketides, one of the specific
molecules mentioned above. Furthermore, although most specific molecules targeted the
NF-κB pathway (Table 1), their structural characteristics prompt consideration of whether
their modes of action could reveal new pathways and targets for modulating inflammation,
thus extending our understanding of the interplay between marine compounds and the
inflammatory process. These results suggest that fungi could potentially serve as valuable
sources of anti-inflammatory molecules.

Considering the vast potential of microorganisms in the production of anti-inflammatory
compounds, further research must be conducted to unlock their full potential and develop
new treatments for inflammatory diseases.
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4. Challenges and Future Directions

Exploring the potential of marine microorganisms as anti-inflammatory agents presents
a myriad of challenges and promising future opportunities. One significant challenge lies in
the development of anti-inflammatory drugs derived from marine sources, which may en-
counter barriers impacting the speed and efficiency of the process. Additionally, regulatory
hurdles could potentially impede the approval and commercialization of marine-derived
pharmaceuticals for anti-inflammatory purposes. Scaling up the production of bioactive
compounds from marine microorganisms to meet demand poses a significant challenge,
while ensuring the cost-effectiveness of extracting and utilizing these compounds for anti-
inflammatory therapies is a critical consideration. The intricate complexity of marine
ecosystems and the vast diversity of microorganisms further address the challenges in
identifying and isolating effective anti-inflammatory compounds.

Looking towards the future, the quest for potent and effective anti-inflammatory
natural products from marine organisms requires ongoing and rigorous research. It is
essential to explore innovative approaches in marine drug discovery to uncover new and
promising anti-inflammatory compounds. In the future, efforts should be focused on
optimizing the drug development process from marine sources to enhance its efficacy and
speed. Collaboration among researchers, industry members, and regulatory bodies is cru-
cial for advancing marine-based anti-inflammatory therapies. Furthermore, emphasizing
sustainable harvesting practices for marine microorganisms intended for anti-inflammatory
purposes is vital for ensuring long-term viability.
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By addressing these challenges and focusing on future directions, we can unlock
marine microorganisms’ full potential as valuable sources of anti-inflammatory agents,
leading to significant advancements in healthcare and therapeutic treatments.

5. Conclusions

The inter-relations between microorganisms and macro-organisms are complex, rang-
ing from parasitic to symbiotic systems. In this regard, metagenomic analysis offers major
insights to decipher the complexity of a micro-environment comprising a macro-organism
and its hosts without providing any clues as to which among the various interacting, living
species is actually responsible for the synthesis of the bioactive metabolites (Figure 3). On
the other hand, microbiota identification and microbial isolation from a macro-organism
is an attractive alternative, enabling the isolation and identification of specific bacterial
species, their culture, and, ultimately, the demonstration of their ability to produce com-
pounds of pharmaceutical interest. Indeed, microorganisms have emerged as a promising
avenue for drug discovery, offering a solution to the challenges posed by low quantities
of secondary metabolites and the difficulty of obtaining sufficient biomass necessary for
pharmaceutical companies to perform clinical trials. Bacterial or microalgal cultures can
provide a continuous source of biomass production within a subsequent purification of
bioactive metabolites. These steps could revolutionize drug discovery by making it also
more environmentally friendly by reducing the exploitation of marine resources.
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Figure 3. Metagenomic approach to discover the metabolites produced by the microbiota of marine
macro-organisms. Two strategies are illustrated. In the top figure, whole metagenomics sequenc-
ing enables the identification of most species present in a microenvironment without driving the
determination of a species/activity relationship. In the bottom part, microbiota isolation from the
environment or macro-organisms leads to bacterial identification, specific culture, and a possible link
between a metabolite and bioactivity.
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