
Sébastien de La Forest Divonne et al., 2024 eLife. https://doi.org/10.7554/eLife.102622.1 1 of 54

Immunology and Inflammation

Diversity and functional
specialization of oyster immune
cells uncovered by integrative
single cell level investigations
Sébastien de La Forest Divonne, Juliette Pouzadoux, Océane Romatif, Caroline Montagnani,
Guillaume Mitta, Delphine Destoumieux-Garzon, Benjamin Gourbal, Guillaume M Charrière,
Emmanuel Vignal

IHPE, Univ Montpellier, CNRS, Ifremer, Univ Perpignan Via Domitia, Montpellier, France • Ifremer, IRD, Institut

Louis-Malardé, Univ Polynésie française, UMR 241 SECOPOL, Taravao, Tahiti - Polynésie française, France • IHPE,

Univ Montpellier, CNRS, Ifremer, Univ Perpignan Via Domitia, Perpignan, France

https://en.wikipedia.org/wiki/Open_access

Copyright information

eLife Assessment

This manuscript offers an exploration of the immune cells in the oyster Crassostrea
gigas, by correlating distinct hemocyte morphotypes with specific single-cell
transcriptional profiles. The evidence supporting the conclusion is convincing,
deriving from the comprehensive dataset that not only captures unicellular diversity
but also associates these cells with distinct immune roles, making it an important
resource for the broader research community. There are some concerns on the data
presentation that leave some questions.
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Abstract

Mollusks are a major component of animal biodiversity and play a critical role in ecosystems
and global food security. The Pacific oyster, Crassostrea (Magallana) gigas, is the most farmed
bivalve mollusk in the world and is becoming a model species for invertebrate biology.
Despite the extensive research on hemocytes, the immune cells of bivalves, their
characterization remains elusive. Here we were able to extensively characterize the diverse
hemocytes and identified at least seven functionally distinct cell types and three
hematopoietic lineages. A combination of single-cell RNA sequencing, quantitative cytology,
cell sorting, functional assays and pseudo-time analyses was used to deliver a comprehensive
view of the distinct hemocyte types. This integrative analysis enabled us to reconcile
molecular and cellular data and identify distinct cell types performing specialized immune
functions, such as phagocytosis, reactive oxygen species production, copper accumulation,
and expression of antimicrobial peptides. This study emphasized the need for more in depth
studies of cellular immunity in mollusks and non-model invertebrates and set the ground for
further comparative immunology studies at the cellular level.

Reviewed Preprint
v1 • November 13, 2024
Not revised

https://doi.org/10.7554/eLife.102622.1
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.7554/eLife.102622.1.sa3
https://elifesciences.org/


Sébastien de La Forest Divonne et al., 2024 eLife. https://doi.org/10.7554/eLife.102622.1 2 of 54

Introduction

Mollusca is the second largest invertebrate phylum, after Arthropoda, and the largest marine
phylum, comprising approximately 23 % of all known marine organisms (1     ). Among them,
bivalves exhibit a high diversity and a rich evolutionary history (2     ). The Pacific oyster
Crassostrea (Magallana) gigas (C. gigas - Thunberg, 1793) (NCBI:txid29159) is a sessile filter-feeding
bivalve that thrives in a variety of stressful environments ranging from intertidal to deep-sea
conditions (3     ). It is a key species for the aquaculture industry worldwide (4     ). Several
infectious diseases affect C. gigas at different life stages, which impacts its production. Given the
significant socio-economic value of this species, there has been an increased focus on
understanding and mitigating these diseases (5     ). The causes of these mortalities can involve a
variety of pathogens, including viruses, bacteria and parasites that can be responsible for the
mortality events affecting C. gigas (6     ). One of the most extensively researched infectious
diseases is POMS (Pacific Oyster Mortality Syndrome), a polymicrobial disease responsible for
mass mortalities of juvenile oysters (7     ). The disease is triggered by the OsHV-1 μVar herpesvirus,
which alters the immune defenses of oysters, allowing the colonization of opportunistic bacteria,
including Vibrio, that cause hemocyte lysis and bacteremia, ultimately leading to animal death
(7     ). Other bacterial pathogens have also been identified as a contributing factor in mass
mortalities of adult Pacific oysters in several countries. The most notable is Vibrio aestuarianus
which affects adult oysters in Europe (8     , 9     ). To date, the majority of oyster pathogens or
opportunistic pathogens that have been characterized in detail have been found to subvert
hemocyte defenses for their own benefit. These include the OsHV-1 μVar herpesvirus (10     ) and
virulent Vibrio strains of the species Vibrio crassostreae and Vibrio tasmaniensis (11     ), Vibrio
aestuarianus and Vibrio harveyi (12     ), highlighting the critical role of hemocytes in oyster
immunity. The development of immune-based prophylactic treatments, such as immune-priming
and immune-shaping, represents a promising avenue for enhancing the natural defenses of
oysters against pathogens and increasing their survival rate. Nevertheless, the advancement of
such therapies is still constrained by a dearth of knowledge regarding the underlying molecular
and cellular mechanisms (13     , 14     ).

The study of hemocytes has a long history, dating back to the 1970s (for review see (15     )).
Hemocytes are cellular effectors of the immune system. They engage in phagocytosis to engulf and
destroy potential pathogens, neutralizing parasites by encapsulation, or preventing pathogen
dissemination by cell aggregation and the release of extracellular DNA traps (16     ). Furthermore,
they engage in the humoral response by releasing cytokines, antimicrobial peptides, and reactive
oxygen species (ROS), which enable them to combat pathogens (17     ). In addition to their role in
oyster immunity, hemocytes have been implicated in numerous physiological processes, including
shell repair (18     ), wound healing, nutrient transport, and environmental contaminant removal
(19     ). Despite this acquired knowledge, hemocytes remain an under-characterized population of
circulating immune cells. The lack of a unified classification and of molecular and functional
genetic tools hinders our understanding of lineage ontogeny and functional specialization. Several
studies have proposed different classifications of hemocytes in the Ostreidae family, with 3 to 4
hemocyte types reported (15     ). These classifications are primarily based on either microscopic or
flow cytometry analyses. In C. gigas, three primary hemocyte cell types have been classically
identified : blast, hyalinocyte, and granulocyte cells. While the immune response of C. gigas has
been extensively studied using classical transcriptomics at the whole animal, tissue, or circulating
hemocyte levels, these approaches have failed to consider the diversity of hemocyte cell types and
lineages that underpin these responses (20     ). However, it is still imperative to accurately
describe the diversity of these cells, understand their ontogeny, and delineate cell lineages to
comprehend their specific roles. The advent of single-cell RNA sequencing (scRNA-seq) techniques
has enabled the monitoring of global gene expression at the single-cell level with thousands of
individual cells in a single experiment. This provides a unique opportunity to overcome these
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limitations and deepen our understanding of hemocyte diversity and function in bivalves.
Recently scRNA-seq was used to provide a first molecular description of a hemocyte population in
the oyster Crassostrea hongkongensis (21     ). However, in the absence of morphological and/or
functional characterization studies, the authors could not deduce the hemocyte cell types to be
matched to the transcriptomic profiles generated by scRNA-seq. While numerous transcriptomic
analyses have been conducted on C. gigas hemocytes, none have adopted a single-cell approach. In
this study, we present an integrative analysis of the diversity of C. gigas hemocytes at the single-
cell level. To this end, we combined scRNA-seq from a pathogen-free adult oyster combined with
cytological, cell fractionation and functional assays. This approach allowed us to create a
comprehensive transcriptomic, cytological and functional atlas of hemocyte cell types. Our scRNA-
seq analyses identified 7 distinct transcriptomic populations and functional annotation revealed
distinct populations with specific functions, including phagocytosis, oxidative burst, energetic
metabolism, enhanced transcription, translation and cell division. Quantitative cytology enabled
the identification of 7 morphologically distinct hemocyte cell types, which allowed us to reconcile
molecular and cytological data. Density gradients were used to separate hemocyte cell types and
qPCR or functional assay analyses were performed to validate cell type-specific markers. By
employing this integrated approach, we could identify 1 type of hyalinocyte, 2 types of blasts and 4
types of granular cells. Furthermore, we identified cell types that perform antimicrobial functions
through phagocytosis, ROS production, copper accumulation, and expression of antimicrobial
peptides. Finally, trajectory analysis of scRNA-seq data combined with functional analysis revealed
distinct differentiation pathways that may control hemocyte ontology and differentiation
processes. Based on these findings, we propose a more comprehensive and up-to-date
classification of C. gigas hemocytes, with a more accurate description of the different cell types,
their potential ontology and a precise description of their sub-functionalization.

Results

Single-cell RNA sequencing reveals 7 distinct transcriptomic
clusters of circulating immune cells in oysters
Oysters are known to exhibit a high degree of individual genetic polymorphism, including Copy
Number Variation (CNV) and Presence Absence Variation (PAV) (22     ). To prevent
misinterpretation of the single-cell transcriptomic data, and to characterize the hemocyte cell
types and their heterogeneity, we sampled hemocytes from a unique pathogen-free animal
(Ifremer Standardized Animal, 18-month-old) and applied single-cell drop-seq technology to 3,000
single hemocytes (Fig. 1A     ). The scRNA-seq library was generated and sequenced, resulting in
127,959,215 high-quality filtered reads available for single-cell analysis (ENA project accession
number PRJEB74031). Primary bioinformatics analysis was performed using the STAR solo aligner
software (23     ) against the C. gigas genome (Genbank reference GCA_902806645.1) from the
Roslin Institute (24     ). Of the 127,959,215 reads, 97 % showed a valid barcode and 89.2 % were
successfully mapped to the genome with a saturation of 75.6 %. A total of 2,937 cells were profiled,
yielding a median of 1,578 genes and 4,412 unique molecular identifiers (UMIs) per cell among the
23,841 total genes detected, with a sequencing saturation of 75.6 % (Supp. Table 1     ). Secondary
bioinformatic data processing was conducted using the Seurat R package (version 4.3.0) (25     ).
The data set was filtered to remove data corresponding to empty droplets or cell doublets. Cells
with a gene number between 750 and 4,000 and less than 5 % mitochondrial genes were retained.
After quality control processing, 120 cells corresponding to empty droplets and cell doublets were
removed, and 2,817 cells were processed for data normalization. Finally, we performed linear
dimensional reduction and clustering on the 3,000 most variable genes from 2,817 cells (Supp. Fig.
S1     ). Dimension reduction and clustering led to identifying 7 transcriptomic clusters, within
which hemocytes were distributed. These 7 different clusters represented 27.6, 23.1, 17.8, 16.9, 7,
4.6 and 3 % of the total cells (Fig. 1B     ). For each transcriptomic cluster, a pattern of over- and
under-represented transcripts in each cell was identified (Fig. 1C     ). Average Log2FC values and
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percentage of expression in each cluster relative to all other clusters were calculated for the ten
most differentially expressed genes (Fig. 1D      and Table 1     ). Clear transcriptomic cell clusters
were detected as well as specific gene markers for each cluster (Supp. Data 1). Only the
transcriptomic signature of cluster 4 was less contrasting than that of the other clusters (Fig.
1D     ).

KEGG pathways and GO-terms analyses reveal
functional diversity in C. gigas hemocytes
The ScRNA-seq data demonstrated that specific functions are carried out by the hemocyte cell
types that comprise the seven transcriptomic clusters. A preliminary overview of the functions
over-represented in each cluster was obtained through a KEGG pathway analysis on the
overrepresented transcripts (Log2FC > 0.25) using the C. gigas annotation provided by the DAVID
consortium (26     ), thereby identifying pathways specifically enriched in each cluster. Cluster 1
demonstrated enrichment in viral processing and endocytosis (Figure 2A      and Supplemental
Table S2     ). Additionally, it demonstrated enrichment in pyruvate metabolism,
glycolysis/gluconeogenesis and the pentose phosphate pathways. Clusters 1 and 3 exhibited a
distinctive enrichment in carbohydrate metabolism and endocytosis. In particular, cluster 3
exhibited enriched transcripts associated with glycolysis/gluconeogenesis and TCA cycle activities.
Cluster 4 was enriched in protein synthesis, including transcription (spliceosome, ribosome,
nucleocytoplasmic transport and mRNA surveillance pathway) folding, sorting and degradation of
protein pathways. Clusters 2, 5 and 6 exhibited a shared signature of enrichment in ribosome-
related genes. Cluster 2 demonstrated a specific enrichment in motor protein-coding genes
responsible for cell motility and xenobiotic metabolism. Remarkably, clusters 1, 3, 4 and 5
exhibited enriched oxidative phosphorylation transcripts, whereas the transcripts of cluster 7
were enriched in vesicular trafficking and endo-lysosomal pathways (endocytosis, endosome,
phagosome, lysosome, auto and mitophagy).

For a more detailed functional characterization of each transcriptomic cluster, we performed a re-
annotation of the C. gigas genome using a combination of tools to enhance the GO term richness of
the existing annotation prior to functional GO term analysis. To this end, we used the C. gigas
genome (Genbank reference GCA_902806645.1) and the associated gff3 annotation file from the
Roslin Institute (24     ). These files were used to extract and process the longest CDSs for GO-term
annotation using the Orson pipeline (see Materials and Methods). Of the 30,724 extracted CDSs,
22,462 were annotated (GO-terms and sequence description), yielding an annotation percentage of
73.1 %. Of the 30,724 CDSs, 22,391 were annotated with Molecular Functions (MF), Biological
Processes (BP), and Cellular Components (CC) GO-terms (Supp. Fig. S2      and Supp. Data 2). Using
the GO-term annotation and the Log2FC of genes calculated after scRNA-seq processing in each
cluster, GO enrichment analysis was performed by rank-based gene ontology analysis (RBGOA)
(27     ). RBGOA analysis was performed on the GO-terms identified in each cluster (Supp. Data 3).
The results are presented in Figures 2B, C      and D     .

The scRNA-seq-based analysis identified seven distinct transcriptomic profiles for each cell cluster,
thereby shedding light on greater heterogeneity and functional diversity of C. gigas hemocytes
than previously described. Cluster 1, comprising 27.6 % of cells, is characterized by its morphology
and capacity to remodel actin cytoskeleton, as well as oxidoreductase activity. This is evidenced by
an enrichment in oxidoreductase activity acting on NAD(P)H and kinase activities BP, actin
nucleation MF and lamellipodium and early endosomes CC. Cluster 2, comprising 23.1 % of cells,
has an increased translation activity, as indicated by enrichment in BP, MF and CC terms related to
rRNA binding, cytoplasmic translation, maturation of LSU-rRNA, and ribosomes respectively.
Cluster 3, representing 17.8 % of cells, shows enrichment in cellular oxidation and actin
nucleation, as evidenced by an enrichment in BP and MF related to oxidoreductase activities
acting on metal ions, electron transfer, cellular oxidation and actin nucleation, and CC related to
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Fig. 1.

scRNA-seq analysis of C. gigas circulating hemocytes reveals 7 transcriptomic cell clusters

(A) Schematic of the scRNA-seq 10X Genomics Chromium microfluidic technology and bioinformatics processing workflow
used. Dissociated hemocytes were collected from a pathogen-free oyster and encapsulated in droplets for processing. After
sequencing, the data were processed bioinformatically. (B) Uniform Manifold Approximation and Projection (UMAP) plot for
dimensional reduction of the data set and summary of cells and the number of Differentially Expressed Genes (DEGs) in each
cluster. The table shows the characteristics (number of cells, percentage of total cells and number of Differentially Expressed
Genes in each cluster) of the seven clusters identified. (C) Heatmap showing the top 10 overexpressed genes in each cell per
cluster as determined by FindAllMarkers() function in Seurat, corresponding to clusters in UMAP plots from Fig. 1B     , ranked
by log2FC. (D) Dot plot representing the ten most enriched DEGs per cluster based on average expression (avg_log2FC). The
color gradient of the dot represents the expression level, while the size represents the percentage of cells expressing each
gene per cluster.
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Table 1.

Top 10 overexpressed genes identified in each transcriptomic cluster.

The first column indicates the gene number according to the annotation. ‘log2FC’ represents the log2 fold change of the
gene in the cluster compared to all other cells. ‘Pct1’ is the percentage of cells expressing the gene in the cluster and ‘Pct2’ is
the fraction of cells expressing the gene in all other clusters. The description is the annotation of the expressed gen.
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Fig. 2.

KEGG and Gene Ontology analysis of the gene signature in each cluster.

(A) A synthetic representation of the KEGG pathway analysis is shown. Colored columns represent the 7 transcriptomic
clusters. Each row is a KEGG pathway, the colored dot represents the −log(p-value) and the dot size represents the number
(count) of enriched genes in each pathway category. The fold enrichment is shown on the x-axis. Panels (B), (C) and (D) show
the results of Gene Ontology terms (GO-terms) for Biological Processes (BP), Cellular Components (CC) and Molecular
Functions (MF) respectively, obtained with the overexpressed genes of each cluster (Absolute value Log2FC > 0.25 and
significant p-value < 0.001) using RBGOA analysis (p-value <= 0.001) for three different ontology universes. Each panel
corresponds to one ontology universe, and the analysis highlights over- and under-enriched terms. The number in the
heatmap and the scale indicate the proportion of significant positive GO-terms. Positive values indicate over-enrichment and
negative values indicate under-enrichment of the respective BP, CC and MF ontologies.
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cytochromes, oxidoreductase complex, and mitochondrial protein-containing complexes. Cluster
4, representing 16.9 % of cells, has transcriptomic signatures reminiscent of spliceosome assembly,
rRNA maturation, and ATP biosynthesis (BP related to RNA binding, translation, and proteasome,
MF related to spliceosome assembly, rRNA maturation, and ATP biosynthesis, and CC related to
nuclear bodies and ribosomes). Cluster 5, comprising 7 % of cells, demonstrates enrichment in
structural molecule activity, hydrolase regulation, and gene expression, as evidenced by its BP, MF,
and CC related to ribosome, midbody, and spindle localization. Cluster 6, comprising 4.6 % of cells,
is characterized by a specific nucleosome organization, translation, and biosynthetic processes,
with related BP, MF, and CC tied to ribosomes, ribonucleoprotein complex and rRNA binding.
Cluster 7, representing a mere 3 % of cells, is characterized by multivesicular body sorting,
vacuolar transport, vacuole organization, and G protein-coupled receptor signaling, with related
BP, MF, and CC of the ESCRT machinery.

Seven morphologically distinct immune cell types are
identified by quantitative cytology and transcriptomic markers
Cytological studies were conducted using MCDH staining to better characterize the diversity of
circulating hemocytes in C. gigas. Seven distinct hemocyte morphotypes were identified: 3 non-
granular (acidophilic blasts, basophilic blasts and hyalinocytes) and 4 granular (small granule
cells, big granule cells, vesicular cells and macrophage-like) (Fig. 3      and Supp. Fig. S3     ).
Hyalinocytes (30 % of total hemocytes) are large cells with an irregular spreading membrane.
They contain an azurophilic cytoplasm without granulations and their irregular nucleus varies in
size (Fig. 3A      panel H). Macrophage-like cells (19 % of the hemocytes) present an irregular
membrane punctuated by rare pseudopodia with a polylobed nucleus and a basophilic cytoplasm
where polychromatic inclusions of various sizes could be observed (Fig 3A     . panel ML).
Basophilic blasts characterized by a basophil cytoplasm (Fig. 3A      panel BBL) and acidophilic
blasts with acidophil cytoplasm (Fig. 3A      panel ABL) accounted for 18 % and 15 %, respectively,
of the total hemocytes. They are rounded cells without granulation, with a uniform and regular
dense nucleus and a high nucleo-cytoplasmic ratio. Small granule cells (12 % of total hemocytes)
have an irregular membrane punctuated by rare pseudopodia, an acidophilic cytoplasm, and
numerous homogeneous purple granules (Fig. 3A      panel SGC). Big granule cells (4 % of total
hemocytes) are rounded cells with a basophilic cytoplasm containing large, slightly dark purple to
black vesicles of heterogeneous size (Fig. 3A      panel BGC). Vesicular cells (2 % of total hemocytes)
are rounded cells with acidophilic cytoplasm, rich in homogeneous transparent and fluorescent to
UV light vesicles with an irregular nucleus (Fig. 3A      panel VC). Only blasts (BBL, ABL) have a
nucleo-cytoplasmic ratio less than 1, whereas the other hemocytes described have a nucleo-
cytoplasmic ratio greater than 1. To gain further insight into the functional characterization of
these diverse hemocyte morphotypes and to associate them with the transcriptomic clusters
identified in the scRNA-seq, we enhanced an existing hemocyte fractionation approach using an
isopycnic Percoll density gradient to sort the hemocytes (28     ). Cell sorting was performed using a
discontinuous Percoll gradient with densities ranging from 1.0647 to 1.1049. Seven distinct density
fractions were established (Fig. 3B     ) and the hemocyte composition was then characterized by
cytological analysis of each fraction (Fig. 3A     ; see also Supp. Fig. S4      for statistical
significance). The uneven distribution of hemocyte morphotypes along the density gradient
enabled a relative separation of the different cell populations (Supp. Fig S4     ). In summary,
hyalinocytes were significantly enriched in the first fraction, while macrophage-like cells were
significantly enriched in fraction 3 and fraction 4. Acidophilic blasts were significantly enriched in
fraction 2. Basophilic blasts were significantly enriched in fractions 2 and 3. Vesicular cells were
enriched in fraction 5, big granule cells were enriched in fraction 4 and small granule cells in
fractions 6 and 7 (Fig. 3C      and Supp. Fig. S4     ).

To identify the transcriptomic cell clusters corresponding to the different hemocyte morphotypes,
we used RT-qPCR to detect the expression of different cluster-specific marker genes in the
different hemocytes in the Percoll density fractions. The marker genes were selected without any a
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Fig 3.

C. gigas naive hemocyte formula and Percoll gradient hemolymph fractionation

(A) Morphology, percentages and characteristics of the 7 cell types identified by MCDH staining. H : Hyalinocyte, ML :
Macrophage Like, BBL : Basophilic Blast Like cell, ABL : Acidophilic Blast Like cell, SGC : Small Granule Cell, BGC : Big Granule
Cell, VC : Vesicular Cell. Scale bar : 5 µm. Hyalinocytes (54 %) and blast cells (ABL & BBL) (35 %) were predominant in the first
fraction. The second fraction showed an increase in blasts (ABL 26 %, BBL 36 %) and a decrease in hyalinocytes (21 %).
Fraction 3 had a mixed content with a decrease in hyalinocytes and blasts (15 %), and a majority of blasts and macrophage-
like cells. Fraction 4 had an increase in granular cells (SGC 22 %, BGC 10 %, VC 15 %) and a decrease in blasts (ABL 8 %, BBL 9
%). Fraction 5 showed an increase in small granule cells (36 %) and vesicular cells (28 %), and a decrease in big granule cells
(5%). Fraction 6 had fewer hyalinocytes, macrophage-like cells, and blast cells compared to small granule cells and vesicular
cells. The last fraction consisted mainly of small granule cells (81 %). (B) Sorting of hemocytes on a discontinuous Percoll
gradient. 7 fractions were identified along the gradient at the top of each density cushion (from d=1.0647 at #1 to d= 1.1049
at #7). (C) Representation of the average values (from 5 different fractionation experiments) of the different hemocyte types
in the seven percoll gradient fractions compared to the average hemolymph composition of a naive oyster (Total). VC :
Vesicular Cells, BGC : Big Granule Cells, SGC : Small Granule Cells, ABL : Acidophilic Blast Like cells, BBL : Basophilic Blast Like
cells, ML : Macrophage Like cells and H : Hyalinocytes respectively. (Supp. Fig. S4      for statistics).
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priori assumptions based solely on their expression levels (Log2FC) and their percentage of
expression (Pct1 / Pct2 ratio) in the cluster of interest relative to all other cell clusters (Table 2     ).
The expression level of each marker in the seven different clusters confirmed that the 14 selected
marker genes were differentially expressed in each scRNA-seq transcriptomic cluster (Supp. Fig.
S5     ).

RT-qPCR expression profiles in the hemocyte fractions obtained from the Percoll density gradient
revealed distinct patterns according to the different transcriptomic cluster marker genes (Fig.
4A     ). Cluster 1 markers (LACC24 and CLEC) were overexpressed in fractions 1, 2, 3 and
underexpressed in the remaining fractions relative to total hemocytes. Cluster 2 markers (EGFL
and LEVAR) showed a decreasing pattern of expression from fraction 1 to fraction 7. Cluster 3
markers (TGC and XBOX) showed a significant increase in expression in fractions 4 to 7. Cluster 4
markers (MLDP and HMGB1) showed a gradually decreasing expression pattern from fraction 2 to
fraction 7. Cluster 5 marker genes (GAL and CUBN) were underexpressed in fractions 4 to 7, but
not differentially expressed in fractions 1 to 3 compared to total hemocytes. Cluster 6 marker
genes (CAV and NAT1) were overexpressed in fraction 3, expressed similarly to total hemocytes in
fraction 2, and underexpressed in fractions 1, and 4 to 7. Finally, cluster 7 marker genes (MOX and
GPROT) were overexpressed only in fractions 3 to 7. Correlation analysis and statistical validation
demonstrated a clear association between hemocyte morphotypes and 14 gene markers (Fig.
4B     , Fig. 4C      and Supp. Table S4     ). Cluster 3 marker genes (TGC and XBOX) correlated
positively (r = 0.74 & 0.75) and specifically with small granule cells (SGC). Cluster 7 markers (MOX
and GPROT) correlated (r = 0.68 and r = 0.56) with vesicular cells (VC). Cluster 2 markers (EGFL and
LEVAR) correlated positively with hyalinocytes (H) (r=0.85 and r=0.81). No specific markers could
be identified for blasts and macrophage-like cells.

By employing RT-qPCR, cell sorting on Percoll gradients, and scRNA-seq analysis, we could identify
cell types corresponding to three transcriptomic clusters. Cluster 3 corresponds to small granule
cells (SGC), cluster 2 to hyalinocytes (H), and cluster 7 to vesicular cells (VC). Cluster 3, cluster 2
and cluster 7 represent 17.8 %, 23 % and 3 % of the total cells analyzed by scRNA-seq, respectively.
This is consistent with cytological data, which indicated the presence of 12.5 % +/− 5 % Small
Granule Cells, 30 % +/− 9.3 % Hyalinocytes and 2.3 % +/− 1.6 % Vesicular Cells (Fig. 1B      and Fig.
3A     ). Furthermore, the molecular and cellular functions derived from GO-term and KEGG
analyses (Fig. 2     ) were in alignment with the anticipated functions for these three cell types.

Only macrophage-like and small granule
cells behave as professional phagocytes
The hemocytes separated on the Percoll gradient were characterized functionally to gain further
insight into their functional specialization. Two hemocyte functions, namely phagocytosis and
production of Reactive Oxygen Species (ROS), are known to carry out major cellular antimicrobial
activities. Granular cells have been suggested to be the professional phagocytes specialized for
these functions (29     ). Phagocytosis and oxidative burst were studied using cell response toward
zymosan particles (30     ).

The phagocytic activity of hemocytes was first tested on a sample of total oyster hemolymph. Cells
were incubated for 1 hour with either zymosan particles or the bacterial strain Vibrio
tasmaniensis LMG20012T. Only the small granule cells and the macrophage-like cells exhibited
efficient phagocytosis for both zymosan or vibrios, as observed after MCDH staining (Fig. 5A     ,
Supp. Fig. 6      and Supp. Fig. 7A     ). Macrophage-like cells and small granule cells showed a
phagocytic activity of 49 % and 55 %, respectively, and a phagocytosis index of 3.5 and 5.2 particles
per cell respectively (Fig. 5B      and Supp. Fig. 7B     ), as confirmed in 3 independent experiments.
Very limited phagocytic activity was observed for hyalinocytes (1.7 %), basophilic blasts (0.18 %),
and big granule cells (2.7 %) with a phagocytosis index of 2, 1, and 2.5 particles per cell,
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Table 2.

Table of the 14 marker genes specific to the different transcriptomic clusters.

Gene number, average Log2FC, pct1/pct2 ratio (percentage of cells expressing this transcript in the cluster divided by the
percentage of all other cells expressing this transcript) and cluster number are reported. The description is taken from our
annotation and the marker name is derived from the description.

https://doi.org/10.7554/eLife.102622.1
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Fig 4.

Characterization of molecular markers specific to the different hemocyte morphotypes.

(A) Relative expression level of the 14 markers in the various fractions after gradient density sorting. The graphs show the
relative expression of genes compared to their expression in total hemocytes in the various fractions (red dotted line).
Standard deviations were calculated based on four independent experiments. (B) Average percentage of each hemocyte type
in the 7 Percoll gradient fractions used to quantify marker gene expression by qPCR. (C) Correlation matrix between the
relative gene expression of each marker gene in each fraction and the percentage of each hemocyte type in the same
fractions. Values and color scale represent the Pearson correlation coefficient (r) ranging from −1 (inverse correlation) to +1
(full correlation). H : Hyalinocyte, ML : Macrophage Like, BBL : Basophilic Blast Like cell, ABL : Acidophilic Blast Like cell, SGC :
Small Granule Cell, BGC : Big Granule Cell, VC : Vesicular Cell. LACC24 : Laccase 24, CLEC : C-type lectin domain-containing
protein, EGFL : EGF-like domain-containing protein 8, LEVAR : Putative regulator of levamisole receptor-1, TGC : TGc domain-
containing protein, XBOX : X-box binding protein-like protein, MLDP : ML domain containing protein, HMGB1 : High mobility
group protein B1, CUBN : Cubilin, GAL : Galectin, CAV : Caveolin, NAT1 : Natterin-1, MOX : DBH-like monooxygenase protein
1, GPROT : G protein receptor F1-2 domain-containing protein.
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respectively (Fig. 5B      and Supp. Fig. 7B     ). These results confirmed that only small granule cells
and macrophage-like cells behave as professional phagocytes demonstrating robust phagocytic
activity.

Only macrophage-like cells produce Reactive Oxygen Species
The next step was to assess the capacity of C. gigas hemocytes in each Pecoll fraction to produce
Reactive Oxygen Species (ROS) upon stimulation by zymosan, utilizing the Luminol oxidation
assay. Luminol luminescence peaked 25 minutes after exposure of hemocytes (isolated from total
hemolymph) to zymosan, indicating a robust oxidative burst (Fig. 5C     ). The production of ROS
was dependent on a NADPH oxidase, as it was completely inhibited by the NADPH oxidase-specific
inhibitor apocynin (Fig. 5C     ). To ascertain which hemocyte types were involved in ROS
production we tested Percoll density-sorted hemocytes for oxidative burst activity. Fractions 2 and
3 displayed higher oxidative burst activity than the other fractions. The burst intensity of fraction
3 was twice that of total hemocytes, and fraction 2 also exhibited significantly increased burst
activity. In contrast, fraction 4 showed a significant decrease in oxidative burst, and no activity
was observed for fractions 1, 6 and 7 (Fig. 5D     ). These results indicate that NADPH-dependent
oxidative burst activity is carried out by fractions enriched in macrophage-like (ML) cells and
blast-like cells (ABL and BBL).

Previous studies have shown that granular cells can produce ROS (29     ). In contrast, we found
that small granule cells collected in fraction 7 could not produce ROS through an oxidative burst.
To identify which type of hemocyte from blast-like cells and macrophage-like cells produces ROS
within a few minutes after exposure to zymosan, ROS production was investigated using
NitroBlueTetrazolium (NBT) reduction to stain hemocytes directly. Correlative microscopic
analysis using MCDH staining can then be conducted after the NBT reduction reaction.
Macrophage-like cells were strongly and significantly stained by NBT reduction (33.2 %) (Fig.
5E     , panels a & d). In contrast, some small granule cells were lightly stained by NBT reduction
(Fig. 5F     ). Blast-like cells, big granule cells, vesicular cells, and hyalinocytes were never NBT
stained, confirming that these cell types were not involved in ROS production (Supp. Fig. S7     ).
Taken together, these observations demonstrate that small granule cells and macrophage-like cells
are the two professional phagocytes among hemocytes. However, only macrophage-like cells are
capable of oxidative burst upon exposure to zymosan. In light of these new functional data, we
further analyzed the expression level of NADPH-oxidase-related enzymes in the scRNA-seq
dataset. The cells in cluster 1 predominantly expressed two NADPH oxidase isoforms (gene
numbers G34908 and G23852) compared to other clusters (Fig. 5H     ). Furthermore, this cluster
expresses macrophage-specific genes such as the angiopoietin receptor (Table 1     ), as well as
maturation factors for dual oxidase, an enzyme involved in peroxide formation (Supp. Fig. S8     ).
Collectively, these data indicated that cells of transcriptomic cluster 1 corresponded to
macrophage-like cells.

Small granule cells and big granule
cells accumulate intracellular copper
The effects of copper on oyster hemocytes have been studied extensively due to its abundance in
polluted marine environments (19     ). In addition, several studies have shown that Vibrio species
pathogenic for C. gigas possess copper resistance genes, which are crucial for their survival within
hemocytes (9     ). This prompted us to investigate which hemocyte types are involved in copper
metabolism. To this end, total hemocytes were isolated from naive oysters and stained with
rhodanine to reveal copper storage in cells. Rhodanine staining revealed that 33 % +/− 2 % of small
granule cells and 30 % +/− 10 % of big granule cells exhibited a specific reddish/brown staining
indicative of a high concentration of copper in their granules (Fig. 5G      and Supp. Fig. S9     ).
These results provide functional proof that SGC are specialized in metal homeostasis in addition to
phagocytosis, as suggested by the scRNAseq data (Cluster 3).
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Fig 5.

Phagocytosis, Reactive Oxygen Species production capacity and copper storage of hemocytes.

(A) Images of small granule cells (SGC) and macrophage-like (ML) cells with phagocytosed zymosan particles (panels a & c -
red stars) and Vibrio tasmaniensis LMG20012T bacteria (panels b & d - red stars) from whole hemolymph sample. Scale bar :
5 µm. (B) Quantification of the phagocytic activity of zymosan particles by each cell type. The graph shows the result of 3
independent experiments. (C) Luminescence recording to detect the production of Reactive Oxygen Species (ROS). In orange,
a biphasic curve was obtained on naive oyster hemolymph after zymosan addition at t = 0 min. In blue, the control condition
corresponds to hemocytes without zymosan addition. (D) Graph showing the intensity of ROS production in each Percoll
fraction. Normalized burst intensity was calculated from the luminescence peak obtained from each fraction. In blue, no drug
was added to the experiment, in orange, ROS production was impaired by the addition of apocynin. (E) NBT
(NitroBlueTetrazolium) staining of hemocytes exposed to zymosan particles. Hemocytes morphology after MCDH staining:
Macrophage Like (a), Basophilic (b) and Acidophilic (c) Blast cells. NBT staining of the different types of hemocytes (d-f). Red
stars show zymosan and bacteria particles. Black arrows indicate Macrophage-Like cells. Scale bar : 10 µm (F) Quantification
of NBT-positive cells present in the total hemolymph of oysters exposed to zymosan. (H) UMAP plots showing cells
expressing NADPH oxidase found in the scRNA-seq dataset and their expression level. (G) Labeling of intracellular copper
stores in C.gigas hemocytes. MCDH (upper panels) and rhodanine (lower panels) staining of oyster hemocytes to reveal
copper accumulation. Scale bar : 10µm. For panels (B), (D) and (F) the alphabetic characters displayed above the data points
in each plot represent statistically significant differences among the groups, as determined by Tukey’s test following ANOVA.
Groups denoted by different letters differ significantly at the p < 0.05 level of statistical significance. H : Hyalinocytes, ABL :
Acidophilic Blast-Like cells, BBL : Basophilic Blast-Like cells, ML : Macrophage-Like cells, SGC : Small Granule Cells, VC :
Vesicular Cells and BGC : Big Granule Cells.
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Antimicrobial peptides are expressed by
agranular cells, blasts and hyalinocytes
Antimicrobial peptides (AMPs) have long been studied for their role in the invertebrate humoral
immune response. They are expressed by hemocytes, including those in C. gigas (31     ). The aim
was to ascertain whether different hemocyte cell types expressed distinct AMPs. However, due to
the limited sequencing depth, the scRNA-seq analysis was not sensitive enough to reveal AMP
expression. This limitation was addressed by investigating AMP expression through RT-qPCR on
Percoll density-fractionated hemocytes. The results indicated that Cg-Bigdefs 1-2, Cg-BPI and
hemocyte defensin were predominantly expressed by agranular cells, blasts and hyalinocytes
(ABL, BBL and H) (Fig. 6A, B      and C     ). The expression of these AMPs was associated with Blasts
abundance, while the expression of Cg-BigDefs 1-2 was only associated with hyalinocytes (Fig.
6D     ). Granular cells (VC, ML, BGC and SGC) did not seem to express any of the analyzed AMPs.
These data suggest that some of the agranular cells are specialized in the production of humoral
effectors.

Tentative model of hemocyte lineages
and differentiation pathways in C. gigas
The ontogeny, lineage and differentiation pathways of bivalves remain largely unknown (32     ).
However, there are some indications of circulating and proliferating hemocyte progenitors in the
hemolymph of C. gigas (33     ). GO-terms analysis of the 7 transcriptomic clusters revealed
different functional signatures, including the transcriptomic signature of cluster 4, which showed
a high expression level of ribosomal proteins (Supp. Fig. S1J     ). This particularity has been
observed in hematopoietic stem cells in vertebrates (34     –36     ). Furthermore, scRNA-seq
approaches can now be used to deduce differentiation pathways from mRNA splicing variant
analysis using bioinformatic tools like Monocle3 (37     ). This revealed an overexpression of genes
involved in the splicing, transcription and translation continuum in the same fourth cluster (Fig.
2     ), thereby reinforcing the hypothesis of a pool of quiescent or immature cells that can
differentiate upon stimulation.

Cluster 4 was chosen to enroot the pseudotime analysis to deduce differentiation pathways and
cell lineages using Monocle3. (Fig. 7A     ). By temporally ordering the 2817 cells analyzed by
scRNA-seq, 5 cell lineages could be defined (Fig. 7B     ). Differentiation pathway 1 leads to
hyalinocytes (H) (Fig. 7C     ). This transition is characterized by the downregulation of 8 genes, two
of which are transcription factors (G7003 and G31522). The hyalinocyte cluster was also
characterized by the overexpression of genes involved in cell contractility (G22824, G153 and
G11418). Differentiation pathway 2 leads to cells of cluster 5 and is characterized by the
downregulation of about 30 genes, and 3 genes related to Zn finger protein, actin cleavage and Ig-
like domain proteins were specifically overexpressed (G30887, G28864 and G32340) (Fig. 7D     ).
Differentiation pathway 3 leads to cells of cluster 6 and is characterized by the down-expression of
12 genes, and the upregulation of a GATA family transcription factor (G31054) (Fig. 7E     ). The
pathways between clusters 4, 5 and 6 found by Monocle3 analysis were pseudo temporally short
and few specific markers were identified, suggesting that they were transcriptionally close.
Differentiation pathway 4 leads to vesicular cells (VC) (Fig. 7F     ) where a large number of genes
were silenced to give rise to these cells. Seven genes were specifically overexpressed in VC
(G32111, G17226, G687, G16200, G32756, G10149 and G23495). Interestingly, 6 genes encoding
potential transcription factors were downregulated in this lineage (G30997, G10637, G1067,
G13555, G2123 and G27827). Differentiation pathway 5 leads to macrophage-like cells (ML), and is
characterized by the underexpression of 35 genes and the overexpression of 13 genes. Among the
35 genes, 6 are putative transcription factors (G2123, G10637, G13555, G27827, G1067 and G11196)
(Fig. 7G     ). Finally, we can outline a lineage ending in small granule cells (SGC) (Fig. 7H     ). This
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Fig 6.

Hemocyte expression profiles of some antimicrobial peptides.

(A) (B) and (C) Relative Gene Expression in the 7 Percoll hemocyte fractions of Big-Defensin1 & 2 (Cg-BigDefs), BPI (Cg-BPI)
and hemocyte defensin (Cg-Defh), respectively, in comparison to the gene expression level in unfractionated hemolymph. (D)
Correlation matrix between the relative gene expression of BigDefensin1 & 2, BPI and hemocyte defensin gene in each
fraction and the percentage of each hemocyte type in each fraction (H : Hyalinocytes, ABL : Acidophilic Blast Like, BBL :
Basophilic Blast Like, SGC : Small Granule Cell, ML : Macrophage Like, BGC : Big Granule Cell, VC : Vesicular Cell. Values and
color scale represent the Pearson correlation coefficient (r) ranging from −1 (inverse correlation) to +1 (full correlation).
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pathway involved cluster 4 (immature cells), VC, ML and SGC and was characterized by the
downregulation of 27 genes, including 5 potential transcription factors (G10637, G13555, G27827,
G1067 and G2123). SGC showed a distinct transcriptomic signature with 61 overexpressed genes,
including 3 transcription factors (G1708, G21091 and G30622). Based on these findings, we
postulate that immature cluster 4 cells possess pluripotent potential and can give rise to four
terminally differentiated cell types : cluster 5 and 6 cells, hyalinocytes and small granule cells, and
two other transient hemocyte cell types : vesicular cells and macrophage-like cells. All data from
the Monocle3 analyses are available as Supplementary Data (Supp. Fig. S10     ).

Differentiation pathway analysis thus revealed the over- or under-expression of various
transcription factors in the identified pathways. Given the established role of transcription factors
as master regulators of cell differentiation and their utility in delineating cell lineages, we
investigated the combinatorial expression patterns of transcription factors among the different
transcriptomic cell clusters. Based on GO-terms annotation, 28 different sequences corresponding
to transcription factors were isolated from the scRNA-seq dataset. The transcription factor
function was confirmed by manual annotation (Supp. Table S5     ) and Figure 7I      shows the
average expression profiles of these factors in the different clusters. Supplementary Figure S11     
illustrates their expression levels in single cells. Two transcription factors, CgATF5 and CgCRBL1,
exhibited a contrasting expression profile with an increased average expression in macrophage-
like cells, hyalinocytes and small granule cells versus a low expression profile in cells in clusters 4,
5, 6 and vesicular cells. We also identified transcription factors that were specifically expressed in
the different transcriptomic clusters : CgSPDEF, CgSOCS3, CgFOS and CgTFEB were specific for
vesicular cells, CgSOX8, CgXBOX and CgELF3 were specific for small granule cells, CgCR3L1 and
CgTAL1 for hyalinocytes, and CgJUN, CgKLF5, CgKLF6 and CgCREM for macrophage-like cells. Eight
additional transcription factors were specifically identified in cluster 6 (CgGATA3, CgPU.1 and
CgELF2), cluster 5 (CgELF2, CgELK3 and CgIRF1) and cluster 4 (CgTAL1 and CgFOS1). These data
potentially define four distinct hematopoietic lineages originating from one type of immature
blast cells and give rise to hyalinocytes, SGC (via VC and ML), or two distinct differentiated blast-
like cells. We also identified a combination of transcription factors specific to lineages and cell
types that are potential master regulators of cell fate during hematopoiesis.

Discussion

The findings of our study represent a significant advancement in our understanding of the
functional diversity and lineages of C. gigas hemocytes. Single-cell RNA-seq and cytology were
combined to identify seven distinct hemocyte transcriptomic cell clusters and an equivalent
number of morphotypes. These include four granular cell types (big granule cells, macrophage-like
cells, small granule cells and vesicular cells), two distinct blast-like cells (basophilic and acidophilic
blast-like cells), and one agranular epithelial-like cell type (hyalinocytes). A significant challenge
was to identify correlations between transcriptomic and cytological data to fully define each
cytological cell type. This challenge was overcome by combining multiple approaches, including
isopycnic Percoll density gradient fractionation combined with the analysis of transcriptomic
markers expression, and functional assays including phagocytosis, oxidative burst, copper
accumulation, AMP expression and finally pseudotime analysis of gene expression. These results
confirmed the historical classification of the 3 main cell groups : blasts, hyalinocytes, and granular
cells (15     ) and deepened our understanding of the functional specificities of poorly characterized
cell types. In particular, we identified distinct transcriptional and functional subtypes among
blasts and granular cells with complementary immune specialization and lineage relationships
between cells.

One significant outcome of the present study is the identification of cell types involved in
antimicrobial activities, including phagocytosis, intracellular copper accumulation, an oxidative
burst and antimicrobial peptide production. These cell types have been extensively studied for
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Figure 7.

Pseudotime ordering of cells revealed 6 potential differentiation pathways of hemocytes.

(A) UMAP plot of scRNA-seq analysis showing the 7 transcriptomic clusters used for pseudotime analysis. 4 clusters were
identified cytologically (SGC for small granule cells - cluster 3, H for hyalinocytes - cluster 2, ML for Macrophage Like - cluster
1 and VC for vesicular cells - cluster 7), cl.4, cl.5, and cl.6 represent clusters 4, 5, and 6, respectively. (B) Graphical
representation (UMAP projection) of the Monocle 3 pseudo-time order of the clustered cells. Cluster 4 (cl.4) was used as the
origin for the pseudotime analysis. (C) (D) (E) (F) (G) and (H) show the gene expression level of selected marker genes
obtained from the monocle3 trajectory analysis at the beginning and end of the modelized differentiation pathways (in red
on the UMAP plot) from cluster 4 to hyalinocytes, to cluster 5 cells, to cluster 6 cells, to Vesicular Cells (VC), to Macrophage-
Like cells (ML) and to Small Granule Cells (SGC) respectively. The color scale represents the normalized expression level of
each gene. (I) Dot plot showing the average expression and the percentage of cells expressing identified transcripts
encoding for transcription factors in the scRNA-seq dataset. Average expression is expressed in Log2FC.
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their role in antibacterial and antiparasitic defenses, as they are found in the large majority of
invertebrates (17     ). Nevertheless, there has been considerable debate surrounding the cell types
specialized for these critical immune functions in bivalves, particularly oysters. Moreover, the
involvement of the different hemocyte subpopulations in immune functions is not yet fully
understood.

Our findings reveal that the macrophage-like (ML) cells and small granule cells (SGC) are the sole
hemocyte cell types that function as professional phagocytes, as demonstrated against Zymosan or
Vibrio. These two distinct cell types could be distinguished functionally. First, two distinct
transcriptomic clusters were identified for each cell type (Cluster 1 for ML / BGC and Cluster 3 for
SGC). Secondly, only ML induced a measurable oxidative burst. Thirdly, only SGC accumulated
intracellular copper in specific granules. The two types of professional phagocytes belong to the
same granular cell lineage, as determined by pseudotime analysis. The notion that ML could serve
as a precursor for SGC may seem counterintuitive. However, this is not an isolated phenomenon
among invertebrate hemocytes. For instance, in Drosophila larvae (38     ), some populations of
professional phagocytes, the sessile plasmatocytes, give rise to crystal cells or lamellocytes that are
morphologically and functionally distinct from plasmatocytes (39     ). Similarly, the existence of
multiple professional phagocytes in the oyster is reminiscent of vertebrate macrophages,
polynuclear neutrophils and dendritic cells, which possess distinct functional specializations,
including efferocytosis (40     ), oxidative burst, NETosis, or antigen presentation (41     ).

The characterization of professional phagocytes in oysters is of particular importance for a deeper
understanding of oyster-Vibrio interactions during pathogenesis. Some of the most extensively
studied oyster pathogens, including strains of V. tasmaniensis and V. aestuarianus francensis,
harbor virulence traits that enable them to disrupt the phagocytic activity of hemocytes during
pathogenesis. For instance, V. tasmaniensis behaves as a facultative intracellular pathogen with
phagocytosis-dependent cytotoxicity (11     ). Additionally, both V. tasmaniensis and V. aestuarianus
display resistance to copper toxicity through CopA and CusA/B transporters. This trait is essential
for the survival and virulence of these pathogens in oysters (9     , 42     ). Since SGCs have been
demonstrated to be professional phagocytes with copper-rich granules, the cellular interactions
between SGCs and these vibrios are likely to be critical during the antibacterial host response and
pathogenesis. ML are phagocytes that possess a very potent NADPH-oxidase-dependent oxidative
burst. The oxidative burst is a rapid and potent antimicrobial response observed in professional
phagocytes, such as polynuclear neutrophils in mammals. It is worth noting that NADPH-
dependent ETosis has been observed in C. gigas in a manner analogous to that observed in human
neutrophils (43     ). This cell death is characterized by the projection of DNA extracellular traps
that capture and kill some pathogens like Vibrio (43     ). Therefore, it is reasonable to hypothesize
that ML may also be involved in ETosis.

The specialized functions of the two other types of granular cells, the BGCs and the VCs, remain
unclear. Despite the difficulty in identifying a specific scRNAseq transcriptomic cluster for BGCs,
the level of expression of laccase 24 was found to be higher in a particular subcluster among ML
(Supp. Fig. S8     ) and pseudo-time analysis highlighted the same subcluster as an alternative
differentiation state among ML (Fig. 7B     ). The enrichment of transcripts involved in oxido-
reduction pathways, particularly laccase 24, aligns with their potential role in melanization and
response to oxidative stress (44     ). While melanin-like deposits have been observed in some cases
of infestation by the parasites Martelia or Bonamia in the Sydney rock oyster (45     ), this
mechanism is not as robust as that described in arthropods, which perform melanization through
a prophenoloxidase activation cascade (46     , 47     ). In many marine invertebrates (44     ), a type
of hemocyte known as Brown Cells could be related to the BGCs described here. When observed
without any staining (as in Fig. 5F     ), their big granules with a yellow to dark brown content
appear to align with the historical description of brown cells that often infiltrate tissues (like gills)
in animals exposed to polluted waters (44     ). It has therefore been theorized that these cells are
involved in detoxification processes. Our pseudotime analysis indicates that they likely originate
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from ML, with limited phagocytosis activity and a specialized role in melanization and potentially
heavy metal detoxification, as evidenced by rhodanine staining showing copper accumulation in
some of their granules (Fig. 5G     ). Further studies are recommended to clarify the role of BGCs,
particularly in the context of parasitic infestation or exposure to toxic stresses. Lastly, VC are
granular cells that remain to be functionally characterized. Their transcriptomic profile suggests
strong intracellular vesicular trafficking and autophagy activity. However, our functional assays
did not reveal any particular immune-related function. Their clear granules appear auto-
fluorescent when illuminated with UV light (Supp. Fig. S11     ) but the biochemical nature of the
content of these granules remains to be characterized. As they also appear as cell intermediates
along the granular cell differentiation pathway in pseudotime analysis, they could represent
functionally immature precursors of the other three granular cell types, much like promyelocytes
which possess specific azurophilic granules but are functionally immature precursors during
granulocyte differentiation in humans. However, the enrichment of autophagy-related transcripts
in VC calls for further investigation into a potential role in antiviral immunity, as autophagy has
been suggested to play a role in the response to OsHV-1 virus (48     ).

Hyalinocytes are a homogenous cell type, with only one morphotype matching one transcriptomic
cluster. It can be deduced from pseudotime analysis that they originate from a specific and very
different differentiation pathway than the granular cells. According to the literature, hyalinocytes
are involved in the early stages of inflammation and can infiltrate wounds and interact with
foreign particles. In the flat oyster Ostrea edulis, they contribute to shell production and wound
healing (49     ). In the Sydney rock oyster they play a role in cell aggregation (50     ), while in C.
virginica (51     ) they contribute to encapsulation, reminiscent of lamellocytes in Drosophila. Our
results suggest an important role of AMP expression in the immune response. Indeed, Cg-BigDefs,
which participate in the control of oyster microbiota (52     ), were found to be expressed in both
hyalinocytes and blast-like cells. Moreover, hyalinocytes from the oyster O. edulis have been
shown to express the AMP Myticin C (53     ), which lends further support to this immune function.
Among the AMPs, we also found that Cg-BPI and Cg-Defh, are more expressed in BBL, ABL than in
other cell types. These results are somewhat unexpected, given the prevailing assumption that
AMPs are stored in granules of granular cells, rather than agranular cells (16     ). These results
highlight the necessity to reassess the role of specific agranular cell types in the active production
of humoral immune effectors. Our findings suggest that hyalinocytes and/or the blast-like cells
may be a cellular target of the OsHV-1 virus, the causal agent of POMS, which dampens the
expression of certain AMPs (7     ), thereby inducing bacterial dysbiosis. It is still unclear whether
this is due to a decreased expression of AMPs and/or inhibition of immature blast cell
differentiation involved in the renewal of agranular cell types.

It should be noted that the complexity of blast-like cells could not be fully elucidated in this study,
as 3 clusters and only 2 morphotypes were identified. Cell fractionation using Percoll gradient
failed to yield pure blast-enriched fractions (ABL and BBL), preventing precise functional
characterization. The enrichment in transcripts of the transcription synthesis degradation
continuum aligns with the definition of undifferentiated blast-type cells and with the basophilic
staining obtained in MCDH for BBL cells, as immature blast cells are characterized by a basophilic
cytoplasmic staining in humans. However, our results show that certain blast populations can
produce AMPs, suggesting that these cells may also play a role in the production of humoral
effectors. Ultimately, it remains unclear whether these circulating immature cells are indeed the
stem cells from which all hemocytes originate.

In the animal kingdom, the innate immune system relies on specialized cells derived from
pluripotent precursors through hematopoiesis. Transcription factors in particular have been
found to exhibit a high degree of conservation throughout the animal kingdom, from
invertebrates to vertebrates. However, the mechanisms underlying the functional differentiation
of bivalves are only partially available or understood (54     ). Recent research has indicated the
potential existence of hemocyte progenitors, also known as blast-like cells in several bivalve
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species. These include clams, mussels, scallops, marine mussels, freshwater mussels, oysters, pearl
oysters, and wing shells (54     ). However, various models for hematopoiesis in bivalves have been
proposed and extensively debated without a clear consensus or definitive proof. Single-cell RNA
sequencing and pseudotime analysis have enabled us to propose a refined model of hematopoiesis
at an unprecedented level of detail. In this model, the different types of hemocytes are likely
produced through four differentiation pathways that originate from a common progenitor. One
pathway results in the formation of agranular hyalinocytes, while another independent pathway
gives rise to the granular cells, including VC, ML, BGC, and SGC. Furthermore, two additional
differentiation pathways have been identified that may lead to terminally differentiated blast-like
cells. The differentiation of mature hemocytes involves the establishment of lineage-specific gene
expression profiles, which rely on transcription factors to modulate the expression of their target
genes. Our study identified a combination of transcription factors that are differentially expressed
during C. gigas hematopoiesis and are specific to differentiation stages and cell lineages, including
many well-known hematopoietic transcription factors such as GATA, PU-1, TAL1 and SOX factors,
which are positioned in this model of C. gigas hematopoiesis (55     –57     ) (Fig. 8     ).

This study significantly advances our understanding of bivalve immunity, especially in
comparison to arthropods. By introducing a standardized reference hemocytogram for oysters
using MCDH staining, defining cell type-specific markers and key transcription factors likely
involved in cell fate determination, as well as clarifying the functions of different hemocytes, we
have paved the way for future in-depth studies. This will facilitate further studies of the oyster’s
immune response to various biotic and abiotic stress at the cellular level. Improved
comprehension of antiviral and antibacterial responses in bivalves, along with an enhanced
understanding of immune priming and immune memory at the cellular level in bivalves, will
benefit health and population management practices for sustainable aquaculture production.
These findings will also contribute to the broader field of evolutionary immunology by enabling
comparative studies and elucidating the diversification of immune cells and immunity-related
genes in a protostome.

Materials and Methods

Conservation of oysters
The work described here was performed using two different sources of oysters of the same species
Crassostrea (Magallana) gigas. ISA (Ifremer Standardized Oysters - La tremblade - France) oysters
for the scRNA-seq experiment and oysters provided by a local supplier (https://www.huitres-
bouzigues.com     ). Animals were washed and kept in 10 L tanks containing seawater and a bubbler
to oxygenate and homogenize the water. Water was changed daily and oyster health was
monitored. All animals used in this study were 18 months of age.

Hemocyte collection and processing
Crassostrea gigas hemocytes were collected from live animals by puncture of the adductor muscle.
The oyster shell was incised on the posterior side with forceps. Hemolymph was collected using a
23Gx1” needle mounted on a 5 mL syringe prefilled with 2 mL of ice-cold Alsever modified
medium (20.8 g glucose – 8 g trisodium citrate - 22.5 g sodium chloride - 0.4 g BSA - pH=7.5).
Samples were centrifuged for 4 minutes at 200 g – 4 °C and the supernatant was removed and
replaced with 1 mL of fresh Alsever modified medium. Each hemocyte sample was thoroughly
checked for quality, counted under a microscope using KOVA (Kova International, USA) slides, and
stored on ice prior to processing. For scRNA-seq analysis, resuspended hemocytes were filtered on
30 µm filters, counted, the solution was adjusted to 1.106 cells per mL and stored on ice prior to
10X genomic library preparation.

https://doi.org/10.7554/eLife.102622.1
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Figure 8.

Proposed hemocyte ontology in Crassostrea gigas based on the
transcriptomic, cytological and functional results obtained.

Cells are colored according to the same color code as the transcriptomic clusters. Cluster numbers and cell types are
indicated. To the left of the cells are the overexpressed transcription factors and to the right are the identified marker genes
in each cluster. Functional characteristics of hyalinocytes, macrophage-like cells and small granule cells are marked in red.
(AMP : AntiMicrobial Peptide, Burst : ROS production, Phago : phagocytosis)

https://doi.org/10.7554/eLife.102622.1
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C. gigas genome annotation
The C. gigas genome (Genbank GCA_905397895.1) (24     ) was used as a reference. Prior to
annotation, the longest CDS sequences were extracted from the gff3 file. Annotation was realized
using the ORSON script (https://gitlab.ifremer.fr/bioinfo/workflows/orson     ). ORSON combines
cutting-edge tools for annotation processes within a Nextflow pipeline. The ORSON script performs
a sequence similarity search with BLAST (58     ) against the Uniprot-Swissprot and Uniprot-
trEMBL databases, and functional prediction with InterProScan (59     ) and eggNOG (60     )
orthogroup annotation. Interproscan analysis was performed against Pfam, Prosite, CDD, TIGR,
SMART, SuperFamily, PRINTS and Hamap databases. Results were collected and processed using
Blast2GO (61     ) for annotation mapping and validation.

Drop Seq-based scRNA-seq library generation
The 10X Genomics protocol, Single Cell 3’ Reagent Kits v2 User Guide from the manufacturer (10X
Genomics, USA) was followed to prepare gel in emulsion beads (GEM) containing single cells,
hydrogel beads, and reverse transcription reagents, perform barcoded cDNA synthesis, and
generate sequencing libraries from pooled cDNAs. The concentration of single-cell suspensions
was approximately 1000 cells / μL, as estimated by manual counting, and cells were loaded
according to the 10X protocol to capture approximately 3000 cells per reaction. Library
construction (after GEM digestion) was performed using 10X reagents according to the
manufacturer’s instructions. Libraries (paired-end reads 75 bp) were sequenced on an Illumina
NovaSeq (Illumina, USA) using two sequencing lanes per sample.

scRNA-seq analysis
Reads were aligned to the C. gigas reference genome (Genbank GCA_905397895.1) (27     ) using
STAR solo software (v 2.7.10) (23     ). Unique molecular identifiers (UMIs) were extracted and
counted for each cell, and an expression matrix was generated for further analysis. Single-cell
RNA sequencing (scRNA-seq) data analysis was performed using the R programming language
(version 4.2.1) (R Core Team, 2018) and the Seurat package (version 4.3.0) (62     ). The data were
then pre-processed to remove unwanted sources of variation and to normalize gene expression.
Cells with small library sizes and a high proportion of mitochondrial genes were excluded. Data
normalization was performed using the SCTransform method. After normalization, highly
variable genes were identified using the FindVariableFeatures function and the top variable genes
were selected for downstream analyses. Dimensionality reduction was performed using Principal
Component Analysis (PCA), followed by Uniform Manifold Approximation and Projection (UMAP)
to visualize the data. Cell clustering was performed using the ‘FindClusters’ function, using the
previously identified significant principal components (dims = 6) and a resolution parameter (r =
0.1) to define cluster granularity. Differential expression analysis was performed using the
‘FindAllMarkers’ function (pct.min = 0.25) to identify genes differentially expressed between
clusters, with statistical significance determined using the Wilcoxon rank sum test. Functional
enrichment analysis of differentially expressed genes was performed using gene set enrichment
analysis (RBGOA) (27     ).

KEGG pathway analysis
KEGG analysis was performed using DAVID Bioinformatics Resources (NIAID/NIH) (26     ). Gene
lists of specifically overexpressed genes in each cluster were obtained after scRNA-seq processing
(genes with Log2FC > 0.25 and significant p-value < 0.001) and used for KEGG annotation. The C.
gigas reference genome from the DAVID bioinformatics resource was used for this analysis, with
thresholds of 2 for counts and 0.05 for EASE value (p-value). KEGG annotation results were post-
processed and presented as a heatmap showing the KEGG pathway, fold enrichment, p-value
significance and number of positive terms.
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Rank-Based Gene Ontology Analysis
RBGOA first clusters GOs according to their representative genes to identify the most significant
GOs, and then ranks the identified biological processes according to their average expression
levels (over all representative genes). Finally, biological processes, molecular functions and
cellular components significantly enriched in DEGs are identified by a Mann-Whitney rank test
with a strict FDR correction. The files generated by the GO-MWU scripts (https://github.com/z0on
/GO_MWU     ) were post-processed to extract the category names and the fraction indicating the
number of “good candidates” relative to the total number of genes belonging to that category. The
“good candidates” were the genes that exceeded an arbitrary ‘absValue’ cutoff (defined as 0.001) in
their significance measure. The results were presented as a heatmap.

Percoll Density Gradient Separation of Hemocytes
A concentration series of Percoll (Cytiva, Sweden) diluted in Alsever modified medium was
prepared as follows: 10, 20, 30, 40, 50, 60 and 70 % (vol/vol). Discontinuous density gradients (from
10 % Percoll with a density of 1.0647 to 70 % Percoll with d=1.1049) were made using 1.5 mL of
each concentration and loaded with 1 mL of the hemocyte suspension corresponding to
approximately 2.107 cells. Centrifugation was performed (30 min, 800 g, 4 °C) in a swinging bucket
on a Beckman Coulter JS-13.1 rotor (Beckman Coulter, USA). Hemocytes concentrated at each
density interface were collected separately with a 70 mm long 20Gx2.75” needle mounted on a 1
mL syringe. The hemocytes were then washed from the Percoll by adding 10 mL of ice-cold
Alsever modified medium, pelleted by centrifugation (10 min, 200 g, 4°C) and resuspended in
Alsever modified medium or filtered seawater.

Cytological description of the hemocyte populations
200,000 fresh hemocytes were seeded onto a slide using a Cytospin 4 centrifuge (Thermo Scientific,
USA). The samples were then stained using the panoptic MCDH (Micro Chromatic Detection for
Hematology) (Cellavision, Sweden) staining protocol. This protocol produces purple hues typical of
Romanowsky-Giemsa staining results. After staining, the samples were observed using a LEICA
DMR (Leica AG, Germany) transmitted light microscope with a 40x magnification objective. Each
slide was imaged and the hemocytes were counted and characterized based on their morphology.

Real Time-quantitative Polymerase Chain Reaction (RT-qPCR)
Total RNA was extracted using the RNeasy kit (Qiagen, the Netherlands) and cDNA was
synthesized from 1 μg total RNA using the Superscript IV kit (ThermoFisher Scientific, USA) with
oligo(dT) primers. RT-PCR was performed on LightCycler© 480 thermocycler using the SYBR Green
1 Master kit (Roche, Switzerland). Primers were used at 200 nM. Primer sequences are listed in
Supplementary Table S3     . Expression was normalized to Cg-rps6 reference gene. The standard
cycling conditions were 95°C pre-incubation for 3 minutes followed by 40 cycles of 95°C for 10
seconds, 60°C for 20 seconds, and 72°C for 25 seconds. Each pair of primers was first tested and
validated on a total hemocyte RNA preparation to control melting curves and establish calibration
lines.

Oxidative Burst Assay
The production of reactive oxygen species was quantified by luminescence assay. Briefly,
hemocytes from hemolymph puncture or Percoll density gradient were washed once with filtered
sterile water. 50 µL of hemocytes were plated in triplicate on a 96-well plate (3.105 cells/cm²). 50 µL
of 40 mM luminol (Merck and Co, USA) was added to each well. After 45 minutes of incubation at
room temperature, the oxidative burst was induced by adding 100 µL of zymosan (Merck and Co,
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USA) at a multiplicity of infection (MOI) of 50:1. The plate was immediately placed in a Berthold
Centro XS3 LB 960 luminescence microplate reader (Berthold GmbH, Germany) to measure
luminescence emission every 2 minutes for 2 hours.

Phagocytosis assay
400 µL of filtered, sterile water-washed hemocytes were seeded in a 24-well plate at a
concentration of 3.105 cells/cm². After 15 minutes, 50 µL of zymosan was added to the fractions at
an MOI of 20:1. For LMG20012T Vibrio, 50 µL of bacteria was added to a total hemolymph at an
MOI of 5:1. After 1 hour of contact at room temperature, the cells were resuspended and 200 µL of
the suspension was applied to a microscope slide using a Cytospin centrifuge. The slides were then
stained with MCDH and observed under a LEICA DMR transmitted light microscope with a 40x
magnification objective (Leica AG, Germany) to count phagocytic cells.

NitroBlueTetrazolium (NBT) staining
ROS production was measured using NitroBlue Tetrazolium reduction after zymosan stimulation.
Briefly, 1 mL (1.106 cells) of hemocyte solution was mixed with 50 µL of filtered NBT solution (15
mg/mL in water). Zymosan was added at a 4:1 MOI and the mixture was incubated at room
temperature for 10 minutes on a rocking shaker. Then, 50 µL of each sample was plated onto glass
coverslips and observed under a transmitted light microscope LEICA DMR with a 40x
magnification objective (Leica AG, Germany) to count NBT-positive cells. The positions of positive
NBT cells were recorded prior to MCDH staining to identify hemocyte types.

Rhodanine copper staining of hemocytes
The storage of copper by hemocytes was examined by Rhodanine staining. Briefly, 1.105 hemocytes
were plated on Superfrost slides using a cytospin and circled with a hydrophobic pen to retain the
staining solution. The Copper Stain Kit (SkyTek, USA) was used to stain the hemocytes. As
described by the kit manufacturer, one drop of Rhodanine solution was added to 9 drops of
acetate to form the working solution. Five drops were placed on the cytospin cells and a 5 mL
Eppendorf tube with the cap removed was placed over the cells to prevent evaporation of the
working solution. The slide and the balanced Eppendorf tube were placed in a beaker of boiling
distilled water for 20 minutes. The slide was then washed with 5 drops of acetate and 3 drops of
hematoxylin were placed on the slide for 1 minute at room temperature. The slides were then
washed a final time with acetate and observed under a LEICA DMR transmitted light microscope
with a 40x magnification objective (Leica AG, Germany) to count rhodanine-positive cells. The
positions of rhodanine-positive cells were recorded prior to MCDH staining to identify hemocyte
types.

Pseudotemporal ordering of cells with Monocle3
Cells from the C. gigas dataset were analyzed using Monocle3 (https://github.com/cole-trapnell-lab
/monocle3     ) (37     ). The Monocle3 analysis was performed on the Seurat object following the
aforementioned processing steps. Clustering information (features, genes, partitions, clusters and
UMAP coordinates) was transferred to a CDS object. The cell trajectory was calculated using the
learn_graph function. The choose_graph_segments function was used to select three lineages. The
gene expression along pseudotime data was extracted from the result. Then, the data were used to
plot genes along pseudotime in three lineages using ggplot2 v3.4.4 R package and the heatmap was
generated using the pheatmap v1.0.12 R package.

Statistical Analysis
To evaluate differences between samples, a statistical analysis was performed using (version 4.2.1)
(R Core Team, 2018) and appropriate packages. All data were examined for normality, and
statistical tests were selected accordingly. One-way analysis of variance (ANOVA) was used for
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normally distributed data. Seven different hemolymph samples were used for cytological analysis.
Oysters were provided by our local supplier) and approximately 300 hemocytes were counted per
sample. Seven independent experiments were performed for Percoll density gradient separation.
A Tukey test was used to evaluate the statistical difference between the proportions of hemocyte
types. The phagocytic capacity of hemocytes was tested in three independent experiments and
statistical differences were evaluated using the Tukey test for both the phagocytic capacity
between hemocyte types and the number of particles per phagocyte. Finally, oxidative burst
capacity was tested 3 times on Percoll-separated hemocytes. The Tukey test was also used to assess
statistical differences between conditions. The null hypothesis was rejected at a significance level
of p = 0.05.
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Supplementary Materials

Data S1. Single-cell RNA-seq analysis result file. CSV file containing the scRNA-seq analysis
results with cluster number (<cluster>), gene number (<gene>), chromosome reference where the
gene is located (<chromosome>), average expression level (<avg_log2FC>), percentage in the
cluster (<pct1>) and in other clusters (<pct2>), pct1 / pct2 ratio (<pct. ratio>), adjusted p-val and p-
val values (<p-val> and <p_val_adj>), and gene description (<description>).

Data S2. Annotation file of CDS extracted from the Crassostrea gigas genome file. CSV file
containing the annotation results collected and processed using Blast2GO for annotation mapping
and validation.

Data S3. Compilation file for RBGOA results. CSV file containing concatenated results of all
RBGOA tests used to draw gene ontology analysis heatmaps with cluster number
(<cluster_number>), GO term universe (<goterm_universe>), number of good gene candidates
(<number_of_good_candidates>), total number of genes in this GOTerm category
(<total_number_of_genes_of_this_category>), GO term name (<goterm_name>), adjusted p-value
(<pval-adj>) and GO term name variation (<variation>).
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Table S1.

STARsolo summary metrics report.

Metrics dashboard obtained after the STARsolo step, describing the quality of the sequencing and the various characteristics
of the cells detected after aligning the reads to the C. gigas genome from the Roslin Institute.
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Table S2.

Table presenting the result of KEGG analysis performed using DAVID Bioinformatics Resources.

GO term enrichment analysis was conducted on specifically overexpressed genes in each cluster obtained after scRNA-seq
processing (genes with Log2FC > 0.25 and significant p-value < 0.001) to highlight the most relevant GO terms associated with
a given gene list. The visualization of the different pathways can be obtained from the KEGG website using the KEGG prefix
and KEGG number (https://www.genome.jp/kegg/pathway.html     )
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Table S3.

Sequences of primers used in this study.

Name of the transcript targeted by the primer pair, name of the primer used in this study and nucleotide sequence of each
primer.
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Table S4.

Hemocyte composition of the 7 Percoll fractions used for qPCR analysis.

For each cell type in each fraction, the table presents the average percentage, standard deviation, standard error, minimum,
maximum, and median count values.
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Table S5.

Transcription factors identified in the scRNA-seq dataset of Crassostrea gigas hemocytes.

Transcription factors identified in the scRNA-seq dataset and their homology with human proteins, as indicated by the blast
alignment results. Each entry includes the gene identifier, the protein it represents in C.gigas, and its human counterpart. The
bit score and coverage indicate the strength and extent of the alignment, respectively.
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Figure S1.

ScRNA-seq quality control metrics.

Distribution of A) unique molecular identifiers (UMIs), B) genes and C) percentage of mitochondrial genes detected per cell.
Each dot represents one cell. D) Plot of the percentage of mitochondrial genes versus the number of genes detected in each
cell. The red box represents the cells selected for further analysis (number of genes detected between 750 and 4000 and with
a percentage of mitochondrial genes less than 5%) E) The FindVariableFeatures() function was used to identify features with
high cell-to-cell variation in the dataset to highlight the biological signal in the single cell dataset. F) Table summarizing some
quality control metrics. The table shows the thresholds to remove poor quality cells (doublets or empty droplets). The
number of cells, UMIs and genes before and after filtering are shown. G) Uniform Manifold Approximation and Projection
(UMAP) plot of the cells with the number of expressed genes. H) UMAP plot of the number of reads per cell. I) UMAP plot of
the percentage of mitochondrial genes in each cell. J) UMAP graph of the percentage of ribosomal protein transcripts in each
cell.

https://doi.org/10.7554/eLife.102622.1
https://doi.org/10.7554/eLife.102622.1


Sébastien de La Forest Divonne et al., 2024 eLife. https://doi.org/10.7554/eLife.102622.1 34 of 54Sébastien de La Forest Divonne et al., 2024 eLife. https://doi.org/10.7554/eLife.102622.1 34 of 54

Figure S1.  (continued)
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Figure S2.

Results of the C. gigas genome re-annotation.

A) The number and percentage of Coding DNA Sequences (CDS) with valid annotation after each annotation step are shown.
A BLAST query was performed against the TrEMBL/Uniprot database and InterproScan annotation against Pfam,
PrositeSiteProfiles, CDD, TIGRFAM, PRINTS, SMART, SUPERFAMILY and Hamap databases. Blast and InterProScan results were
compiled and processed using Blast2Go. A first mapping step was used to enrich the Blast result with GO-terms, and the
annotation step was used to optimize and validate the GO-terms annotations. B) C) and D) show the distribution of the
various categories of GO-terms across the three primary domains of Gene Ontology : Molecular Function, Cellular
Component and Biological Process, respectively.
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Figure S3.

Whisker plot showing the distribution of counts of different hemocyte populations.

Hemolymph was collected from eight different oysters and hemocytes were plated on a slide using cytospin centrifugation.
The proportion of each hemocyte type in these hemolymphs was calculated after MCDH staining. H : Hyalinocytes, ML :
Macrophage-Like cells, BBL : Basophilic Blast-Like cells, ABL : Acidophilic Blast-Like cells, SGC : Small Granule Cells, BGC : Big
Granule Cells, and VC : Vesicular Cells. The calculation of the proportion of each cell type in these hemolymphs reveals a
heterogeneous composition of hemocytes between individuals as well as between cell types.
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Figure S4.

Statistical significance of enrichment in different hemocyte types in Percoll gradient fractions.

(A) a,b,c,d,e,f, and g : MCDH staining of cells from the 7 fractions isolated from the percoll gradient in (B). Scale bar : 10 µm.
Fraction 1 to 7 : Quantification of the different types of hemocytes found in each of the 7 fractions from 5 independent
fractionation experiments. (B) Statistical significance of enrichment of different hemocyte types in Percoll gradient fractions.
Results are from six independent experiments. Statistical significance is indicated by letters, as different letters indicate a
significant difference between enrichments of cell types within the Percoll density gradient fractions (ANOVA, Tukey’s test, p-
value <0.05). Hyalinocytes (H) were significantly enriched in the first fraction compared to the other fractions and compared
to unsorted hemocytes. However, they were significantly depleted in fractions 4, 5, 6 and 7 compared to unsorted hemocytes.
Macrophage-like cells (ML) were significantly enriched in fractions 3 and 4 compared to fractions 1, 6 and 7. They were
depleted in fraction 1 compared to unsorted hemocytes. Acidophilic blasts (ABL) were significantly depleted in fractions 4, 5,
6, and 7 compared to unsorted hemocytes. Basophilic blasts (BBL) were significantly enriched in fractions 2 and 3 compared
to fractions 4, 5, 6, and 7 and in fraction 1 compared to fractions 6 and 7. Compared to unsorted hemocytes, basophilic blasts
(BBL) were significantly enriched in fraction 2 and depleted in fractions 6 to 7. Small granule cells (SGC) were significantly
depleted in fractions 1, 2, and 3 compared to fractions 4, 5, 6, and 7, and also significantly depleted in fractions 4 and 5
compared to fractions 6 and 7. In addition, small granule cells (SGC) were significantly enriched in fractions 5, 6, and 7
compared to unsorted hemocytes. The distribution of the big granule cells (BGC) showed a significant enrichment in fraction
4, compared to fractions 1 and 2, but no significant changes were observed with unsorted hemocytes. Vesicular cells (VC)
were enriched in fraction 5 compared to fractions 1, 2, 3, 6, 7 and unsorted hemocytes in fractions 1, 2, and 3 compared to
fraction 5 and enriched in fraction 5 compared to fraction 7 and unsorted hemocytes.
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Figure S5.

Cluster specificity and expression level of the 14 selected cluster markers

A) Violin graph showing the average expression level (Log2FC) of the 14 selected marker transcripts specific to the different
scRNA-seq clusters. B) Identification of cells expressing the selected markers on the UMAP plot. Positive cells are colored
purple according to the Log2FC value. LACC24 and CLEC are specific of cluster 1, EGFL and LEVAR of cluster 2, TGC and XBOX
of cluster 3, MLDP and HMGB1 of cluster 4, CUBN and GAL of cluster 5, CAV and NAT1 of cluster 6 and MOX and GPROT of
cluster 7. LACC24 : Laccase 24, CLEC : C-type lectin domain-containing protein, EGFL : EGF-like domain-containing protein 8,
LEVAR : Putative regulator of levamisole receptor-1, TGC : TGc domain-containing protein, XBOX : X-box binding protein-like
protein, MLDP : ML domain-containing protein, HMGB1 : High mobility group protein B1, CUBN : Cubilin, GAL : Galectin, CAV
: Caveolin, NAT1 : Natterin-1, MOX : DBH-like monooxygenase protein 1, GPROT : G protein receptor F1-2 domain-containing
protein.
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Figure S6.

Measurement of the ability of C.gigas hemocytes to phagocytose Vibrio tasmaniensis LMG20012T.

Oyster hemocytes were challenged with non-pathogenic Vibrio tasmaniensis LMG20012T and phagocytosis was measured by
observing intracellular bacteria after MCDH staining. (A) MCDH staining of hemocytes after phagocytosis assay. Scale bar :
10µm. (B) Bar plot showing the proportion of each cell type and the proportion of phagocytic cells. H : Hyalinocytes, ABL :
Acidophilic Blast-Like cells, BBL : Basophilic Blast-Like cells, ML : Macrophage-Like cells, SGC : Small Granule Cells, VC :
Vesicular Cells and BGC : Big Granule Cells.
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Figure S7.

NBT (NitroBlueTetrazolium) staining of oyster hemolymph exposed to zymosan particles.

(A) Hemocyte morphology after MCDH staining : Macrophage Like (a), Small Granule Cells (b), Hyalinocyte (c), Basophilic (d)
and Acidophilic (e) Blast cells, Big Granule Cells (f) and Vesicular Cells (g). NBT staining of the different hemocyte types (h-n).
Red stars show zymosan and bacteria particles. Black arrows identify Macrophage-Like cells. Scale bar : 10 µm. (B)
Quantification of the phagocytic activity of each cell type for zymosan particles from 3 independent experiments. Results of
quantification of the phagocytic activity of each cell type and number of zymosan particles per cell type. The graph shows the
result of 3 independent experiments.
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Figure S8.

Uniform Manifold Approximation and Projection (UMAP)
plots of cells expressing Macrophage-Like markers.

Cluster numbers are indicated on each cluster. Each point in the UMAP plot represents a single hemocyte, and the clustering
of these points reveals the distinct transcriptional profiles of macrophage-like specific markers within the hemocyte
population.
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Figure S9.

Labeling of intracellular copper stores in C.gigas hemocytes.

MCDH (upper panels) and rhodanine (lower panels) staining of oyster hemocytes to reveal copper accumulation. Cells were
first processed for copper staining and then stained according to MCDH protocol. H : Hyalinocytes, ABL : Acidophilic Blast-
Like cells, BBL : Basophilic Blast-Like cells, ML : Macrophage-Like cells, SGC : Small Granule Cells, VC : Vesicular Cells and BGC
: Big Granule Cells. Bar : 10µm.
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Figure S10.

Results of scRNA-seq trajectory analysis using Monocle3.

Analysis was performed using cluster 4 as the zero pseudotime. (A) Lineage from immature cells to hyalinocytes, (B) to
cluster 5 cells, (C) to cluster 6 cells, (D) to vesicular cells, (E) to macrophage-like cells and (F) to small granule cells. For each
lineage, cell trajectories are shown in red and heat maps of pseudo time-dependent genes are shown. Blue indicates low
expression, and red indicates high expression. Pseudotime flows from right to left.
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Figure S11.

Uniform Manifold Approximation and Projection
(UMAP) plots of cells expressing transcription factors.

28 UMAP representation for the transcription factors identified in the scRNA-seq dataset. Each UMAP plot shows cells
expressing the transcription factor in purple. Log2FC expression level is also reported.
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Figure S12.

Observation of autofluorescence of vesicular cells in hemolymph.

Freshly punctured total hemolymph was cytospun, directly observed under a microscope using a DAPI filter set (DAPI Blue ex
: 350/50 nm, DC : 400 nm and em : 460/50 nm) and then processed for MCDH staining. Arrows indicate autofluorescent cells.
Scale bar : 10 µm
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Reviewer #1 (Public review):

Summary:

In this manuscript, De La Forest Divonne et al. build a repertory of hemocytes from adult
Pacific oysters combining scRNAseq data with cytologic and biochemical analyses. Three
categories of hemocytes were described previously in this species (i.e. blast, hyalinocyte, and
granulocytes). Based on scRNAseq data, the authors identified 7 hemocyte clusters presenting
distinct transcriptional signatures. Using Kegg pathway enrichment and RBGOA, the authors
determined the main molecular features of the clusters. In parallel, using cytologic markers,
the authors classified 7 populations of hemocytes (i.e. ML, H, BBL, ABL, SGC, BGC, and VC)
presenting distinct sizes, nucleus sizes, acidophilic/basophilic, presence of pseudopods,
cytoplasm/nucleus ratio and presence of granules. Then, the authors compared the
phenotypic features with potential transcriptional signatures seen in the scRNAseq. The
hemocytes were separated in a density gradient to enrich for specific subpopulations. The cell
composition of each cell fraction was determined using cytologic markers and the cell
fractions were analysed by quantitative PCR targeting major cluster markers (two per
cluster). With this approach, the authors could assign cluster 7 to VC, cluster 2 to H, and
cluster 3 to SGC. The other clusters did not show a clear association with this experimental
approach. Using phagocytic assays, ROS, and copper monitoring, the authors showed that ML
and SGC are phagocytic, ML produces ROS, and SGC and BGC accumulate copper. Then with
the density gradient/qPCR approach, the authors identified the populations expressing anti-
microbial peptides (ABL, BBL, and H). At last, the authors used Monocle to predict
differentiation trajectories for each subgroup of hemocytes using cluster 4 as the progenitor
subpopulation.

The manuscript provides a comprehensive characterisation of the diversity of circulating
immune cells found in Pacific oysters.

Strengths:

The combination of the two approaches offers a more integrative view.

Hemocytes represent a very plastic cell population that has key roles in homeostatic and
challenged conditions. Grasping the molecular features of these cells at the single-cell level
will help understand their biology.

This type of study may help elucidate the diversification of immune cells in comparative
studies and evolutionary immunology.

Weaknesses:

The study should be more cautious about the conclusions, include further analyses, and
inscribe the work in a more general framework.
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Reviewer #2 (Public review):

Summary:

This work provides a comprehensive understanding of cellular immunity in bivalves. To
precisely describe the hemocytes of the oyster C. gigas, the authors morphologically
characterized seven distinct cell groups, which they then correlated with single-cell RNA
sequencing analysis, also resulting in seven transcriptional profiles. They employed multiple
strategies to establish relationships between each morphotype and the scRNAseq profile. The
authors correlated the presence of marker genes from each cluster identified in scRNAseq
with hemolymph fractions enriched for different hemocyte morphotypes. This approach
allowed them to correlate three of the seven cell types, namely hyalinocytes (H), small
granule cells (SGC), and vesicular cells (VC). A macrophage-like (ML) cell type was correlated
through the expression of macrophage-specific genes and its capacity to produce reactive
oxygen species. Three other cell types correspond to blast-like cells, including an immature
blast cell type from which distinct hematopoietic lineages originate to give rise to H, SGC, VC,
and ML cells. Additionally, ML cells and SGCs demonstrated phagocytic properties, with SGCs
also involved in metal homeostasis. On the other hand, H cells, non-granular cells, and blast
cells expressed antimicrobial peptides. This study thus provides a complete landscape of
oyster hemocytes with functional validation linked to immune activities. This resource will
be valuable for studying the impact of bacterial or viral infections in oysters.

Strengths:

The main strength of this study lies in its comprehensive and integrative approach,
combining single-cell RNA sequencing, cytological analysis, cell fractionation, and functional
assays to provide a robust characterization of hemocyte populations in Crassostrea gigas.

(1) The innovative use of marker genes, quantifying their expression within specific cell
fractions, allows for precise annotation of different cellular clusters, bridging the gap
between morphological observations and transcriptional profiles.

(2) The study provides detailed insights into the immune functions of different hemocyte
types, including the identification of professional phagocytes, ROS-producing cells, and cells
expressing antimicrobial peptides.

(3) The identification and analysis of transcription factors specific to different hemocyte types
and lineages offer crucial insights into cell fate determination and differentiation processes
in oyster immune cells.

(4) The authors significantly advance the understanding of oyster immune cell diversity by
identifying and characterizing seven distinct hemocyte transcriptomic clusters and
morphotypes.

These strengths collectively make this study a significant contribution to the field of
invertebrate immunology, providing a comprehensive framework for understanding oyster
hemocyte diversity and function.

Weaknesses:

(1) The authors performed scRNAseq/lineage analysis and cytological analysis on oysters
from two different sources. The methodology of the study raises concerns about the
consistency of the sample and the variability of the results. The specific post-processing of
hemocytes for scRNAseq, such as cell filtering, might also affect cell populations or gene
expression profiles. It's unclear if the seven hemocyte types and their proportions were
consistent across both samples. This inconsistency may affect the correlation between
morphological and transcriptomic data.
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(2) The authors claim to use pathogen-free adult oysters (lines 95 and 119), but no supporting
data is provided. It's unclear if the oysters were tested for bacterial and viral contaminations,
particularly Vibrio and OsHV-1 μVar herpesvirus.

(3) The KEGG and Gene Ontology analyses, while informative, are very descriptive and lack
interpretation. The use of heatmaps with dendrograms for grouping cell clusters and GO
terms is not discussed in the results, missing an opportunity to explore cell-type relationships.
The changing order of cell clusters across panels B, C, and D in Figure 2 makes it challenging
to correlate with panel A and to compare across different GO term categories. The
dendrograms suggest proximity between certain clusters (e.g., 4 and 1) across different GO
term types, implying similarity in cell processes, but this is not discussed. Grouping GO terms
as in Figure 2A, rather than by dendrogram, might provide a clearer visualization of main
pathways. Lastly, a more integrated discussion linking GO term and KEGG pathway analyses
could offer a more comprehensive view of cell type characteristics. The presentation of
scRNAseq results lacks depth in interpretation, particularly regarding the potential roles of
different cell types based on their transcriptional profiles and marker genes. Additionally,
some figures (2B, C, D, and 7C to H) suffer from information overload and small size, further
hampering readability and interpretation.

(4) The pseudotime analysis presented in the study provides modest additional information
to what is already manifest from the clustering and UMAP visualization. The central and
intermediate transcriptomic profile of cluster 4 relative to other clusters is apparent from the
UMAP and the expression of shared marker genes across clusters (as shown in Figure 1D).
The statement by the authors that 'the two types of professional phagocytes belong to the
same granular cell lineage' (lines 594-596) should be formulated with more caution. While the
pseudotime trajectory links macrophage-like (ML) and small granule-like (SGC) cells, this
doesn't definitively establish a direct lineage relationship. Such trajectories can result from
similarities in gene expression induced by factors other than lineage relationships, such as
responses to environmental stimuli or cell cycle states. To conclusively establish this lineage
relationship, additional experiments like cell lineage tracing would be necessary, if such tools
are available for C. gigas.

(6) Given the mention of herpesvirus as a major oyster pathogen, the lack of discussion on
genes associated with antiviral immunity is a notable omission. While KEGG pathway
analysis associated herpesvirus with cluster 1, the specific genes involved are not elaborated
upon.

(7) The discussion misses an opportunity for comparative analysis with related species.
Specifically, a comparison of gene markers and cell populations with Crassostrea
hongkongensis, could highlight similarities and differences across systems.

Conclusion:

The authors largely achieved their primary objective of providing a comprehensive
characterization of oyster immune cells. They successfully integrated multiple approaches to
identify and describe distinct hemocyte types. The correlation of these cell types with specific
immune functions represents a significant advancement in understanding oyster immunity.
However, certain aspects of their objectives have not been fully achieved. The lineage
relationships proposed on the basis of pseudotime analysis, while interesting, require further
experimental validation. The potential of antiviral defense mechanisms, an important aspect
of oyster immunity, has not been discussed in depth.

This study is likely to have a significant impact on the field of invertebrate immunology,
particularly in bivalve research. It provides a new standard for comprehensive immune cell
characterization in invertebrates. The identification of specific markers for different
hemocyte types will facilitate future research on oyster immunity. The proposed model of

https://doi.org/10.7554/eLife.102622.1
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hemocyte lineages, while requiring further validation, offers a framework for studying
hematopoiesis in bivalves.

https://doi.org/10.7554/eLife.102622.1.sa1

Reviewer #3 (Public review):

The paper addresses pivotal questions concerning the multifaceted functions of oyster
hemocytes by integrating single-cell RNA sequencing (scRNA-seq) data with analyses of cell
morphology, transcriptional profiles, and immune functions. In addition to investigating
granulocyte cells, the study delves into the potential roles of blast and hyalinocyte cells. A key
discovery highlighted in this research is the identification of cell types engaged in
antimicrobial activities, encompassing processes such as phagocytosis, intracellular copper
accumulation, oxidative bursts, and antimicrobial peptide synthesis.

A particularly intriguing aspect of the study lies in the exploration of hemocyte lineages,
warranting further investigation, such as employing scRNA-seq on embryos at various
developmental stages.

In the opinion of this reviewer, the discussion should compare and contrast the
transcriptome characteristics of hemocytes, particularly granule cells, across the three
species of bivalves, aligning with the published scRNA-seq studies in this field to elucidate the
uniformities and variances in bivalve hemocytes.

https://doi.org/10.7554/eLife.102622.1.sa0
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