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1. Executive Summary 

Photos and videos taken underwater enable us to get a visual impression of ocean processes which 

would otherwise remain hidden from our eyes. Marine imaging is used to explore and monitor the 

marine environment and creates comprehensible material for captivating ocean narratives. Imaging 

can address questions about the ocean across many spatial and temporal scales from in-situ microscopy 

to satellite remote sensing, and from slow-motion capture to long-term observatories. 

Marine imaging, as a method, covers a range of technical aspects, which makes it a versatile technology 

employed in many research, industry and public applications. This includes aspects such as sensors, 

cameras, platforms, illumination, human interaction such as annotation, automated information 

extraction such as machine learning, or Findable, Accessible, Interoperable and Reusable (FAIR) image 

publication. And this range is expanding as general technology advancements such as hyperspectral 

imaging or deep learning are making their way into ocean applications. The wider availability of 

underwater platforms equipped with camera systems creates ever-increasing volumes of big data. The 

availability of commercial low-cost camera systems for deep-sea exploration is not only increasing 

survey coverage, but is proving critical to expand this capacity to areas of the world previously unable 

to survey deep-sea ecosystems. 

During the iAtlantic project, selected aspects across the marine imaging data workflow were 

conceptualised, implemented, deployed and operated. This document provides a summary of the 

developments that occurred, partly during the global Covid-19 pandemic. It includes details on imaging 

technology, image data, image metadata, and image processing methods. Four main aspects are 

described: a) underwater hyperspectral imaging that was trailed and successfully demonstrated by 

IFREMER; b) a low-cost camera system that was designed and built by IMAR and the successful 

deployment of this system in Portuguese waters; c) making marine image data FAIR for robust science, 

and d) efficient machine learning applications, both led by GEOMAR. 

Imaging research described in this technical report contributes to iAtlantic objectives in several ways. 

The efforts in making marine image data FAIR and developing a FAIR machine learning infrastructure 

support to align and standardise ocean observing across geographical regions, marine science domains, 

research institutes and marine sectors. Similarly, the publication of the low-cost camera system and its 

widespread adoption can lead to the creation of standardised data sets across the Atlantic Ocean. This 

camera system has been successfully deployed to map deep and open-ocean ecosystems at local and 

regional scale in the Azorean Exclusive Economic Zone (EEZ). An adoption of the open hardware 

concept by others can similarly support creating ecosystem data at a global scale. These data have 

already been used in other aspects of iAtlantic research to assess the stability, vulnerability, and tipping 

points of ecosystems, e.g., in habitat mapping applications. 

However, the most prominent contribution of the imaging work is towards the objective to build and 

enhance human and technological capacities which is represented by the innovative approaches to link 

underwater hyperspectral imaging with 3D reconstructions, the low-cost camera hardware 

development, operationalising seagoing high-performance computers and the standardisation efforts 

and software development for the FAIR marine image and the FAIR machine learning environments. 

These technologies have been presented and advertised and are potential elements for 

commercialisation, supporting a sustainable blue economy. 

The technology readiness levels (TRLs) of the three proposed aspects of marine imaging (low-cost 

cameras, hyper-spectral imaging, machine learning) were advanced as expected since the start of the 
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project. The newly developed concept of FAIR marine images added a fourth marine imaging aspect for 

which the state-of-the-art before iAtlantic was TRL 2 which could be advanced through the project 

efforts to TRL 7. The Azor drift-cam has been advanced through the project from TRL 6 to TRL 7. For 

the machine learning, selected methods were implemented operationally at TRL 8 (from 7). With the 

additionally developed FAIR machine learning infrastructure, a generalisation of efficient machine 

learning towards TRL 9 has been proposed and needs operationalising through future projects. The 

technology for hyper-spectral imaging was already at TRL 8 through employing a proven off-the-shelf 

system. Integration into operational, mission-proven equipment at IFREMER is currently progressing 

towards TRL 9. 

The developments described in detail below have led to ideas for future innovation and requirements 

for their implementation that are described in the outlook section at the end of this document.  
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2. Introduction 

Synopsis:  

This is Deliverable 2.4 of the iAtlantic project - a technical report on the development of new underwater 

imaging, image management, and image analysis techniques. It includes details on imaging technology, 

image data, image metadata, and image processing algorithms. Four main topics are described: 

underwater hyperspectral imaging, low-cost stereo-camera systems and their use, machine learning 

applications to extract information from images and FAIR image metadata. 

2.1 Overview 

The term imaging sounds straightforward– yet it disguises a great variety of aspects such as scopes, 

technology, big data, algorithms, impressions, and visual narratives. All these imaging aspects are linked 

to each other, though specific applications of underwater imaging target a fraction of these. In this 

technical report, the focus lies on four aspects of imaging technology development that were 

conducted within the iAtlantic project: i) machine-learning approaches for automated image analysis; 

ii) hyperspectral imaging; iii) the development of low-cost cameras and their deployment for marine 

science applications; and iv) the development of guidelines and tools for FAIR marine image data. These 

technology developments were aligned with the overarching goals of iAtlantic: to standardise ocean 

observing methods; to map ecosystems at local to basin scale; to assess ecosystem vulnerability and to 

build and enhance technological capacities for cost-effective imaging. 

Highlights 

Key outcomes of the imaging work conducted within the framework of the iAtlantic project that are 

described within this technical report are: 

1. The operationally proven Azor drift-cam low-cost camera system. 

2. An operational metadata schema enabling FAIR marine image data. 

3. A status review of underwater hyperspectral imaging. 

4. A concept of a FAIR machine learning environment. 

2.2 Motivation 

Two key aspects of imaging are competing in a never-ending trade-off: the capacity to gain more 

information with images and the associated costs to do so. Gaining more information is critical for 

applications such as autonomous vehicles, long-term time-series image acquisition, 4K videos, 

crowdsourcing, spectral imaging, etc. Each of these methods is associated with an increased cost: a 

high financial burden for deep-diving robots or hyperspectral cameras, a high personnel burden for 

analysing big data sets of state-of-the-art image resolution, a high curation effort to standardise 

heterogeneous data sources such as crowd-sourced material. 

Within iAtlantic, four imaging technologies were advanced to mitigate this trade-off. Hyperspectral 

imaging was applied to gain more spectral information, e.g., to assess the health status of ecosystems, 

yet with the scope of high-throughput analysis. Low-cost cameras were developed and successfully 

deployed to mitigate the ever-increasing cost of robotic camera platforms and to enable deep seafloor 

imaging with near-shore shipping capacity available from the blue economy. Machine learning (ML) 

approaches for automated image analysis focussed on the development of standards for FAIR and open 

publication of image data and annotations for training ML algorithms to reduce the cost of developing 

tailored ML systems for new data sets.  
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3. Low-cost camera systems 

Contributions from: Carlos Dominguez-Carrió, Telmo Morato and the co-authors of the peer-reviewed 

paper that contributed to this section1. 

3.1 Introduction 

Large efforts have recently been placed in improving our understanding of the diversity and 

functioning of deep-sea ecosystems, the ocean's deepest layers. However, and due to its huge 

extension and difficult access, vast areas remain largely unexplored2. The development of marine 

technology provided us with a series of underwater imaging tools that can gather high-quality images 

of the seabed thousands of metres below the surface, such as Human-Occupied Vehicles (HOVs), 

Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehicles (AUVs) and towed camera 

systems3–6. These platforms, especially ROVs, currently represent the most common approach to the 

study of deep-sea benthic communities7, replacing classical and more intrusive techniques (e.g., 

epibenthic sledges, beam trawls and grabs). Although underwater camera systems have become 

essential tools for the study of deep-sea benthic habitats, deep-sea research using cutting-edge 

technology remains inaccessible to many research teams, notably in the Global South, largely because 

of the high costs associated with large oceanographic vessels and specialised crews8–10. 

The current commitments to protect marine biodiversity (e.g., UN 2030 Agenda for Sustainable 

Development and EU 2030 Biodiversity strategy) have highlighted the national and international 

responsibilities to collect large-scale scientific data on the distribution and conservation status of deep-

sea benthic species and habitats. Thus, the information obtained by video tools is of paramount 

importance to identify priority areas for management and conservation, essential to achieve national 

and/or international conservation targets (e.g., Convention on Biological Diversity Aichi Biodiversity 

Target 11 or UN Sustainable Development Goal 14). Therefore, there is a need for sampling tools that 

can generate new deep-sea scientific data at a reasonable cost, making deep-sea exploration easier, 

simpler, cheaper, and accessible to many. In recent years, several low-cost deep-sea camera 

systems11,12, sensors13 and video landers14 have been prototyped. However, few technological 

developments allow deep-sea exploration with low cost, readily accessible off-the-shelf products. 

The Azores region, located in the middle of the Atlantic Ocean at the crossroads of the American, 

African, and Eurasian tectonic plates, is very complex in terms of deep-sea geomorphology. Its EEZ 

spans for more than 1,300 kilometres, with over 130 seamounts with their summits shallower than 

1,000 m depth. For years, local scientists and policy makers had limited access to underwater imaging 

devices and deep-sea exploration mostly relied on international research vessels equipped with 

commercial ROVs and towed camera systems visiting the archipelago. Many these scientific cruises 

focused on the study of hydrothermal vents, common features along the Mid-Atlantic Ridge, and most 

of our knowledge on the biological diversity of the deep sea was based on the information collected 

by the few research cruises that targeted benthic habitats and from the study of organisms 

accidentally collected in fishing by-catch. Until a few years ago, the deep-sea area prospected in the 

Azores using visual methods was still relatively small, and comprehensive information regarding the 

diversity and composition of its benthic communities was only available for a limited number of 

seamounts. For this reason, and to speed up deep-sea exploration in the region and better inform 

policy makers, researchers at IMAR worked on the development of a prototype of an underwater 

imaging system to collect video images of the deep seabed at a reasonable cost, which lead to the 

design of the ‘Azor drift-cam’. 
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3.2 The ‘Azor drift-cam’ 

The ‘Azor drift-cam’ is an affordable and easy-to-use underwater video system designed for a rapid 

appraisal of benthic habitats down to 1,000 m (Figure 1). It is a modular, light, and easy-to-assemble 

video platform for the recording of underwater images of the deep seabed, with all its components 

currently available for purchase in the retail market (i.e., off-the-shelf). The system was designed to 

reflect the reality of the Azores, aiming to be cost-effective, cover large areas in short periods of time, 

perform well over rough seafloors, be operational from small vessels and have high chances of 

escaping lost long-lines, the most common fishing gear in the region. 

The development of the Azor drift-cam was driven by a set of guiding principles (GP) that determined 

the characteristics of the tool and the choices adopted, namely: 

o Effective, i.e., suitable for a rapid appraisal of deep-sea benthic habitats. 
o Affordable, i.e., total price to be kept low (10–15k €), including the necessary spare parts. 
o Simple, i.e., components should be off-the-shelf, light, and easy to assemble. 
o User-friendly, i.e., maintenance and operation without highly specialised staff. 
o Resilient, i.e., must be operational in most deep-sea areas, including complex topographies and 

heavily fished grounds. 
o Operable, i.e., deployable from small platforms (including local fishing vessels) to keep its 

operation costs low. 
o Portable, i.e., easily moved between sampling areas or countries. 

All electronic devices mounted on the system are battery operated, so no power is fed through the 

umbilical, further reducing the risks associated with its use. The umbilical is an off-the-shelf electrical 

cable, simple to manipulate and easy to repair in case of breakages occurring. The metallic frame 

creates an oval shape to protect its components, reducing the likelihood of entanglement in lost 

fishing gears or complex terrains. The system is relatively small and light (easily lifted by two people) 

to allow operations from small vessels. Since all pieces are not inter-related but function 

independently, the system is modular and thus adjustable and easy to reconfigure. More components, 

new versions or equipment improvements can be easily added without changing the original 

configuration. Also, the malfunctioning of one component does not affect the functioning of the 

remaining parts, allowing for a quick identification of the potential problem. The replacement of any 

damaged component is very straightforward, further reducing the time needed for repair. Most 

malfunctions can be repaired on board without needing specific tools and complex testing (e.g., cable 

damage and connections not working), which can be fixed while at sea. 

The present-day cost of the Azor drift-cam falls within the 10–15k € range set in guiding principle 

Affordability. This value is two orders of magnitude lower than a standard working-class ROV capable 

of reaching 1,000 m (600 k to 3.5 million €8) but falls within the price range of low-cost shallow-water 

ROVs15 and towed video systems16, and also other low-cost deep remote baited camera systems11. 

Keeping the Azor drift-cam affordable meant that some useful add-ons were left out (e.g., fibre-optic 

cable; ultra-short baseline (USBL) positioning system; conductivity, temperature, and depth (CTD) 

profiler; extra lighting), but these decisions did not compromise its general capabilities and goals.  
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Figure 1. Image of the Azor drift-cam on the deck of the vessel N/I Arquipélago ready to be deployed to obtain 
images of the deep sea. 

The development of the Azor drift-cam was published as an open access article in the journal Methods 

in Ecology and Evolution in 20211, with the objective of sharing the knowledge gathered and provide 

the tools to make deep-sea exploration more accessible to research groups currently excluded from 

this field due to monetary and/or offshore research vessel restrictions. A promotional video was also 

produced to explain in a simpler way the rationale behind the development of the Azor drift-cam, how 

it is constructed and show images of how it is operated at sea and the data that can be collected1. The 

system has also been promoted by iAtlantic and multiple meetings with a dedicated Capacity Building 

Training workshop planned 5-8 June 2023. 

3.3 Detailed description of the system 

The Azor drift-cam is composed of 3 parts: the main body, the umbilical, and the on-vessel 

components. The main body is made up of a stainless-steel structure where all electronic components 

are attached to, including the cameras, the lights, the sensors, the lasers and the deep-sea housings 

containing the live video system and the external batteries (Figure 2). A list with all items necessary to 

build a replica of the Azor drift-cam, together with potential manufacturers and indicative prices is 

provided in    Table 1. 

External stainless–steel structure 

The metallic structure of the Azor drift-cam is made of a 1.5–metre-long square stainless-steel bar 

(sides of 2.5x2.5 cm), with 4 curved 1.65–metre-long stainless-steel rods (8 mm in diameter) held 

together on both ends (Figure 3a). These curved bars are designed to protect all the electronic 

 
1 https://www.youtube.com/watch?v=agLckO_rnPM 

https://www.youtube.com/watch?v=agLckO_rnPM
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components and cable connections, from impact and entanglement. All system components are 

attached to the central bar through custom-made attachments: 

o Camera holders. Action camera housings are secured to the main structure using two small 
custom-made stainless-steel pieces, attached together using two screws. This configuration 
allows for an easy adjustment along the structure. The tilting of the camera housings can also 
be easily altered if necessary. 

o Light holders. Composed of two custom-made symmetrical Polyvinyl Chloride (PVC) pieces 
attached with screws. Both pieces have a semi-circular inner section to fit the cylindrical 
housing of the lights, which is secured simply by tightening the screws. These holders are then 
attached to a flat metallic piece that allows light angle adjustments. 

o Parallel lasers holder. This is a custom-made metal bracket with two adjustable metal rings on 
both ends to secure the cylindrical laser system. 

o Wing holder. Two small metallic flat pieces used to connect and secure the stabilising wing to 
the upper part of the central bar. 

Figure 2. The Azor drift-cam system. Lateral and front view of the main frame with all electronic components 
mounted on the stainless-steel structure. 

To maintain a forward-facing orientation when drifting over the seabed, the system uses a stabilising 

wing, strong enough so it does not bend through time. The best solution found so far is D-shaped 

methacrylate wing, 65 cm high and 36 cm wide (Figure 3b). It is advised to keep the wing contained 
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within the protective frame as much as possible to reduce potential entanglement with abandoned 

fishing lines. 

The central bar should come with rings on both ends, which are used to attach the deployment rope 

(at the top) and the weight (at the bottom). The 15–20 kg weight helps maintaining the umbilical in a 

vertical position with respect of the boat as much as possible. It is recommended that the weight used 

is of a tear or spherical shape (Figure 3c) in order to: (1) reduce its spin and drag during deployment 

and recovery, and (2) increase the likelihood of disentanglement from a fishing line/rope or seafloor 

structure in the case of getting caught. A thin piece of rope with a low breaking tension should be used 

as fuse between the weight and the structure (arrow in Figure 3c). This thinned rope should allow for 

an easy release of the weight in case of severe entanglement, facilitating the recovery of the main 

body. 

Figure 3. (a) Shape and dimensions of the stainless-steel frame of the Azor drift-cam, displaying the attachment 
and brackets used to secure and adjust all electronic components (e.g., camera housings, lights, external 
batteries, lasers, and sensors). All attachments and brackets can be adjusted along the frame to reach the best 
configuration. The housings used to hold the batteries and the live-view components are directly attached to 
the central bar using stainless steel duct clamps (see Figure 2). (b) Shape and measurements of the stabilising 
wing. (c) Example of a basalt boulder used as ballast. It is recommended to use a low breaking tension line 
between the weight and the structure (white arrow) to act as a fuse in case of entanglement. 
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Electronic components 

The Azor drift-cam is equipped with two action cameras contained on off-the-shelf deep-sea housings 

(GroupBinc, USA) rated to 2,500 m depth (Figure 4). The camera housings are mounted on a similar 

position on the lower part of the central bar, oriented in the same direction but with slightly different 

angles (see side view in Figure 2). The high-definition action camera used to provide the live-view 

signal is placed on a higher position to provide a wider view of the habitat explored and assist 

navigation. The 4k-resolution action camera is placed below the live-view camera and slightly more 

tilted towards the seabed, to increase the quality of the images recorded for data processing (i.e., 

taxonomic identification of the species, annotation of substrate and fauna for quantitative studies and 

size measurements). The use of the mode ‘Linear Field of View’ is recommended, which eliminates 

the barrel distortion of the action camera (fish-eye effect). 

The live-view camera is connected to the umbilical to send an analogue video feed to the surface and 

guide piloting the system (that is, avoiding obstacles or keeping a safe distance with the seafloor). The 

connections required to send the live-view video signal from the camera to the umbilical are shown 

in Figure 5. A 90-degree mini-USB plug (GroupB, USA) is connected to the camera for video output 

and energy input to power the camera (Figure 5). The camera is powered using a rechargeable LiPo 

battery (e.g., 7.4 V, 5300 mAh) placed inside the main housing, which is attached to the upper side of 

the central bar (Figure 2). Since the battery generates a higher voltage than that required by the action 

camera, a voltage regulator is required (Figure 5; see specifications on the camera used). The video 

signal is sent from the camera housing to the main cylinder (containing the video transmitter, TX) using 

a 4-pin female-female SubConn connector, which is also used to send the battery power from the 

cylinder to the camera (Figure 5). The video transmitter (TX) allows the video feed to be transmitted 

to the surface through a simple dual copper rubber coated wire cable. At surface, a video receiver (RX) 

and an analogue-to-digital converter (RCA to HDMI) are used to display the images on a PC monitor 

or a TV screen. 

Figure 4. Electronic components used in the Azor drift-cam. All components are mounted on the metallic 
structure with the exception of the reader for the depth/temperature sensor, which is kept on board to 
download the collected data after the dives. 

The 4k action camera works independently from the live-view feed, and the video images can only be 

view upon recovery. Images are stored on an internal micro-SD memory card (e.g., 128 Gb or 256 Gb), 
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which is generally sufficient to record 2.7k or 4k images during a 2-hour dive. This action camera is 

powered by its own internal battery, which should provide enough energy for these 2 hours. There 

are currently no off-the-shelf connectors available in the market that allow the latest action camera 

models to be fed using an external battery. 

Lighting system 

The Azor drift-cam is equipped with two different lighting systems designed to provide a powerful yet 

concentric beam of light and also a diffuse flood light (Figure 2). Both systems provide enough light 

for navigation purposes while at the same time generate a clean ambience light to obtain sharp 

footage, necessary for species identification and taxa annotation. The two powerful LED lights 

(GroupB, USA; Figure 4) generate 3,500 lumens of concentric neutral white light each and are powered 

by a 11.1 V external LiPo battery (rechargeable). To obtain better quality images, the two flashlights 

should be attached to the central bar at different angles (see side view in Figure 2), aiming to illuminate 

(1) the seabed being recorded by the 4k-resolution action camera, immediately in front of the system, 

and also (2) the seabed being recorded by the live-view camera, some meters away from the system, 

to facilitate navigation. The diffuse flood light is produced with an LED strip (a flexible circuit board 

with LEDs) housed inside a transparent polypropylene tube filled with liquid paraffin (Figure 4). The 

LED strip, measuring approximately 2 m, is attached to the two stainless-steel curved rods on the front 

side of the structure using plastic cable ties (Figure 2). This LED strip is powered with a rechargeable 

external LiPo battery (e.g., 7.4 V, 5,300 mAh) placed on an external cylinder, which provides enough 

power for up to 5–6 hours of bottom time. 

Figure 5. Live-view system connections. Layout of the connections placed on the main structure that allow the 
video signal to be sent from the live-view action camera to the umbilical and the powering of the camera using 
an external battery source. 

Data logger and lasers 

To have a size reference on the images recorded, a compact laser system (Outland Technology, USA) 

is used, which provides a 10 cm-wide laser reflection over the seabed (Figure 4). The parallel lasers 
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are powered with dedicated external 9V batteries, housed on a cylinder and connected with a 2-pin 

Subcon connector (Figure 4). The batteries should always be disconnected once the system is on 

board, and based on our experience, replaced every 10–15 dives (i.e., every 20 to 30 hours). The lasers 

are attached below the lower camera (Figure 2) and oriented in a way that their reflection over the 

seabed is contained in the view of both cameras. Finally, a small logger with depth and temperature 

sensors tested for 1,000 m depth (Aquatec Group, UK) is attached to the structure (Figure 4) to record 

data at short time intervals (e.g., 1 second). It should be noted that no underwater positioning system 

(e.g., ultra-short baseline, USBL) is used since it would violate the guiding principle of affordability due 

to its high commercial prices. Alternatively, a regular GPS device is used to track the vessel’s position. 

To generate more accurate data on the GPS position of the drift-cam system, depth values registered 

with the depth/temperature logger can be coupled with the GPS position of the vessel and the 

bathymetric chart to determine the lag existing between the system and the vessel’s registered 

position. 

Umbilical 

The distance of the Azor drift-cam with respect to the seafloor is controlled using a polypropylene 

rope (thickness of 10 mm; Figure 6a). Ideally, the rope selected should have some elasticity to absorb 

part of the oscillating movement produced by the vessel. Stretchy polypropylene ropes significantly 

reduce the up-and-down movement of the drift-cam over the seabed, which ultimately translates into 

a safer navigation and better image quality for annotation purposes. The live-view images are sent 

from the video transmitter to the vessel via a dual copper rubber coated wire cable (F2w 2x0.75mm) 

(Figure 6a). When designing the Azor drift-cam, one of the main commitments was that it could be 

operated over complex terrains, including heavily fished grounds. These areas have a high risk of 

entanglement due to the abundance of lost fishing gear and anchor lines. In the case of entanglement, 

some stress will be applied to the umbilical, especially during release attempts, which can damage the 

umbilical transmission cable. This is why this affordable cable was selected, in line with the guiding 

principles Affordability, Simplicity and User-friendly. The cable used has to be easy to find on the retail 

market, relatively light to be moved around, and at an affordable cost. At the same time, its repair has 

to be simple, not requiring specialised technicians on board or special tools. For these reasons, a dual 

core electric cable was chosen, which is believed to be the most suited solution given the guiding 

principles for development, instead of high-end communication cables (including fibre optic), which 

are more expensive and very difficult to repair at sea. 

Figure 6. The umbilical. (a) Image of the polypropylene rope (green) and electrical cable (black) used to control 
the Azor drift-cam and get the video feed to the surface when underwater. (b) Attachment of the rope and the 
umbilical every meter or so using duct tape. (c) One of the deep-sea floats employed to always keep the drift-
cam in an upright position. A thin cord is used to keep the floats in a fixed position on the rope. 

In order to operate the rope and umbilical as a single unit, both cables are kept together using duct 

tape, placed every meter or so (Figure 6b). When attaching the electrical cable to the polypropylene 

rope, it is recommended to have the polypropylene rope as stretched as possible, since it will prevent 



iAtlantic Deliverable 2.4 
 

Page 19 of 92  

its elasticity to umbilical stretching that damages the electrical cable once underwater. Further, when 

attaching the cable to the rope with tape, it is important to leave some slack on the electrical cable, 

in a way that all the force generated by the drift-cam is only supported by the polypropylene rope. To 

keep the main body of the drift-cam in an upright position when submerged, 3–5 cylindrical deep-sea 

floats are placed on the rope/umbilical (Figure 6c), generally 2–3 m above the metallic structure. It is 

recommended to use holed floats because they have no sharp edges or loops, which is essential to 

prevent entanglement. 

The end of the electric cable is connected to the 4-pin bulkhead placed on the main cylinder with a 

SubConn connector (MacArtney, Denmark). This connection is necessary to feed the live-view signal 

from the TX transmitter placed inside the cylinder to the copper cable of the umbilical. This is achieved 

by simply soldering together the cables of the SubConn connector to those of the umbilical and 

securing the connection with heat-shrink sleeves and vulcanising tape (process shown in Figure 7). 

After some attempts with different components and resins, it was concluded that this method is the 

fastest yet more secure way to join cables for the Azor drift-cam, providing excellent results at depths 

of up to 1,000 m. At present, none of the joints connected using this procedure have failed (loss of 

signal due to tension or infiltration of water). In the case of a breakage on any other part of the electric 

cable due excessive tension (which likely occurs during entanglements), lose ends of the electric cable 

can be re-joined following the same steps shown in Figure 7. 

Figure 7. Step-by-step illustration of the process for joining the end part of the electric cable of the umbilical to 
the SubConn connector or for re-joining a broken electric cable. (a) The inner cables on both ends are peeled 
and cleaned. (b) Using a soldering iron and solder wire, cables are welded together. (c-g) Through a process of 
iteratively applying several layers of heat-shrink sleeves and vulcanising tape, the joint cables are provided with 
a resistant coating that prevents water from leaking, even at 1,000 m depth. (h) Final result, with the area welded 
presenting a larger diameter resulting from the application of multiple protection layers. 
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On-vessel components 

Once the video signal reaches the surface, it needs to be converted to a digital feed for screen display. 

This is achieved by using RX receiver and an analogue-to-digital converter (RCA to HDMI; Figure 8), 

which transfers the image signal to a PC monitor or TV screen via an HDMI cable. The images displayed 

on board are shown at a lower quality than that produced by the camera due to signal degradation 

along the cable, with image quality inversely related to umbilical length. In any case, the signal that 

reaches the surface after going through a 1,200 m long electrical cable, although in black and white 

and with less sharpness than the original feed produced by the action camera, is of sufficient quality 

for a safe underwater navigation. The images displayed on the TV monitor do not need to be recorded 

on board but are retrieved after the dive from the micro-SD card placed inside the live-view camera. 

Figure 8. On-vessel components used to convert the live-view signal sent from the camera through 
the umbilical to a digital signal displayed on a TV screen. Both converters can be fed using 12V batteries 
if there is no 220V available on board. 
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Since all the electronic equipment mounted in the Azor drift-cam is battery fed, battery chargers are 

necessary to keep charging the batteries after they have been used, especially if spending more than 

one day at sea. If the vessel is of a small size and has no 220V available, sufficient batteries can be 

brought to keep replacing the ones being used. For some equipment (such as the LED lights), one 

battery fully charged should be enough for at least two dives. For other, less energy demanding 

equipment, such as the cameras and the lasers, one fully charged battery of 11.1V should last for a full 

day. It is advisable to have the batteries in protective bags when not being used or while charging to 

avoid any potential risks due to them catching on fire because of overheating or a short-circuit. To assist 

with the underwater dives, it is advisable to bring a computer with a Geographic Information System 

(GIS) software installed and connected to an external GPS antenna, which feeds the vessel’s position 

into the computer (Figure 9). This allows the position of the vessel, and hence the drift over the seabed, 

to be monitored continuously. It is also necessary to bring external hard drives to copy the data 

recorded by the cameras, with compatible card readers to connect them to the computer. 

Figure 9. PC mounted on board of the N/I Arquipélago used to centralise all the information collected with the 
Azor drift-cam, with the software ArcGIS used to monitor the position of the vessel using the best available 
bathymetry. 
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    Table 1. List of components that make up the Azor drift-cam and at least one potential manufacturer/supplier for each item. 

Main body    

Item nº Description Potential supplier 

Camera housing 1 (GoPro 5/6/7) 1 Deep-sea housing used to protect the action camera that records 4K images of 

the seabed (Figure 4) 

Group B inc., USA 
www.groupbinc.com 

Camera housing 2 (GitUp Git2P) 1 Deep-sea housing used to protect the action camera that provides live-view 

images of the seabed (Figure 4) 

Group B inc., USA 
www.groupbinc.com 

Mountings for camera housings 2 Metallic pieces screwed to the camera housings for support (Figure 4) Group B inc., USA 
www.groupbinc.com 

Mountings to attach camera hosing to 
structure 

2 Metallic cylindrical pieces to attach the camera housings to the frame (Figure 
4) 

Group B inc., USA 
www.groupbinc.com 

Housings for batteries and live-view 
elements 

3 Pressure-resistant cylinders that hold the live-view components, the external 
batteries and the voltage regulator for the live-view camera (x2; Figure 5) and 
the battery for the LED diffuse lights (x1; Figure 5) 

Group B inc., USA 
www.groupbinc.com 

Adjustable Voltage regulator 1 Voltage regulator used to provide the correct voltage from the external battery 
to the live-view camera (Figure 5) 

Group B inc., USA 
www.groupbinc.com 

USB connectors for GitUp camera 1 Mini-USB connector to get the video feed from the camera (Figure 5) Group B inc., USA 
www.groupbinc.com 

Video RX/TX kit 1 TX video transmitter to send the video feed through the umbilical to surface 
(Figure 5) and a RX receiver located on board (Figure 7) 

Group B inc., USA 
www.groupbinc.com 

LED lights, with batteries 2 Battery-powered lights used to illuminate the seabed to obtain good image 

quality and to allow a safe navigation (Figure 4) 

Group B inc., USA 
www.groupbinc.com 

LED strip (plus tube and resin) 1 Strip of LED lights that provide the diffuse lighting (Figure 4) Local supplier 

GoPro 5/6/7 action camera 1 Action camera to obtain high-quality images of the seabed (Figure 4) GoPro, USA 
www.gopro.com 

Extra GoPro batteries & charger 1 Spare batteries used for a quick replacement between dives GoPro, USA www.gopro.com 

GitUp Git2P action camera 1 Action camera to obtain live-view images of the seabed (Figure 4) GitUp, China www.gitup.com 

4-pin bulkhead connector 4 4-pin connectors used on the live-view camera housing and the cylinders that 
hold the batteries/live-view system (Figure 5) 

Group B inc., USA 
www.groupbinc.com; MacArtney, 
Denmark www.macartney.com 

4-pin female-female connector 2 Cables to connect (1) the camera housing to the live-view cylinder and (2) the 

LED strip to the cylinder with the battery Figure 4 – Figure 5) 

Group B inc., USA 
www.groupbinc.com 

  

http://www.groupbinc.com/
http://www.groupbinc.com/
http://www.groupbinc.com/
http://www.groupbinc.com/
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http://www.groupbinc.com/
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    Table 1: Continued 

Main body    

Item nº Description Potential supplier 

Parallel lasers 1 Used for image scaling. Should be of small size and powered using external 

batteries (Figure 4) 

Outland technology, USA 
www.outlandtech.com 

Depth/pressure logger 1 Should have its own internal batteries (Figure 4). Aquatech Group, UK 
www.aquatecgroup.com 

11.1V battery 4 For live-view camera and to power the strip of LED lights. Should fit into the 

deep-sea housing (Figure 4, Figure 5) 

Gens ace, Germany 
www.gensace.de 

Stabilising wing 1 Made of methacrylate to avoid bending through time (Figure 3) Local supplier 

Steel structure 1 Should be made of stainless steel (Figure 3). It contains several pieces to 

attach all the electronic components to the central bar. 

Local supplier 

Weight 1 Round shape. 15–20 kg (based on boat and sampling depth; Figure 3) n/a 

Umbilical    

Item nº  Potential supplier 

Polypropylene rope,  10 mm, 1,200 m 1 Three– or four-strand rope (Figure 6). Should have the least number of breaks 
as possible. If it does not come in a single piece, ropes should be joint using 
short splices to allow a better pass through the winch 

Local supplier 

Dual core electrical cable, 1,200 m 1 F2w 2x0.75 mm (Figure 6). Should come as one single cable to reduce signal 
loss due to cable joints  

Local supplier 

Deep-sea floats 3–4 Should have a central hole large enough to fit rope and cable. Maximum 
working depth of at least 1,000 m (Figure 6) 

Engel Netze, Germany 
www.engelnetze.com 

Swivel 1 Stainless-steel swivel large enough to fit the 10 mm rope (Figure 3) Local supplier 

Large bucket for umbilical storage 1 Large enough to fit the whole length of the umbilical (rope + cable). Should be 
holed at the bottom to avoid water accumulation 

Local supplier 

Live-view components    

Item nº  Potential supplier 

RCA to HDMI adapter 1 Converts video signal from analogic to digital (Figure 8) NeoTeck, www.neoteck.cn 

HDMI to HDMI cable 1 Standard HDMI cable (Figure 8) Local supplier 

TV screen 1 Any HD PC monitor/TV screen with an HDMI connection Local supplier 

  

http://www.outlandtech.com/
http://www.aquatecgroup.com/
http://www.gensace.de/
http://www.engelnetze.com/
http://www.neoteck.cn/
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    Table 1: Continued 

Consumables    

Item nº  Potential supplier 

2 Tb hard drive (can store up to 50 
dives each) 

2 External hard drive to store images and data produced. 2 Tb should be enough 
for 40–50 dives. A back-up disk is highly recommended 

Toshiba, WD, Seagate, Lacie 

GPS 1 A portable GPS to record position data at 1-sec intervals. Spare rechargeable 
batteries are highly recommended 

Garmin, USA www.garmin.com 

microSD card 2 Memory cards used for action cameras. 64 Gb should be enough for live-view 
camera and 128Gb for 4K camera. Spares are recommended to speed up 
intervals between dives 

SanDisk, USA 
www.westerndigital.com 

Batteries for parallel lasers, 9V 2 Any 9V batteries. Spares are highly recommended Local supplier 

Tool box 1 A box with the basic tools to be taken on board  Local supplier 

Other consumables n A set of general consumables that could be required on board (cable ties, 
electrical tape, duct tape, screws of different sizes, o-rings, heat-shrink 
sleeves, vulcanising tape, solder wire, etc.) 

Local supplier 

 

http://www.garmin.com/
http://www.westerndigital.com/
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3.4 Use at sea 

Equipment preparation 

The simplicity of the Azor drift-cam makes equipment preparation relatively easy and fast prior each 

deployment, with only a few electronic devices mounted on the structure that need to be prepared: data 

logger, cameras, and external batteries. The data logger used in the Azor drift-cam is a simple 

depth/pressure sensor, which has to be activated before the dives in order to start collecting data. It is 

important that the logger is synchronised with the time of the main PC and set to collect depth/pressure 

values every second, so data can then be easily merged with the positioning data. The Azor drift-cam uses 

two cameras, an HD action camera connected to live view (Git2 from GitUp) and a 4k action camera used 

to collect higher-resolution images (GoPro Hero 5, 6 or 7 models). Both cameras should have their 

internal microSD cards emptied (to maximise the amount of footage recorded) and formatted according 

to the model of the camera before the dive. It is important that the time on the cameras is set with the 

main PC to have all data collected synchronised to the same second. The settings of both cameras should 

be configured to maximise the quality of the images collected: 

o GitUp Git2 camera: HD resolution (1920x1080 pixels), fisheye for a wider field of view that helps 
during navigation, auto-start on, date/time displayed on the image. 

o GoPro Hero 5, 6 or 7 camera: 4k or 2.7k resolution, 25fps to increase the amount of light going in 
the sensor, linear field of view to avoid image distortion. 

Just a few minutes before the vessel is in position to start the deployment, the logger can be mounted 

on the steel structure and the cameras placed inside the camera housings (Figure 10a). The three external 

batteries can then be placed inside the cylinders to power feed the HD camera, the live-view system, the 

LED lights, the LED strip and the lasers. Once all items have been connected, the live-view images from 

the HD camera should start being displayed on the main screen used to assist during underwater 

navigation. 

Deployment, underwater image collection and recovery 

Due to its low overall size and weight, the Azor drift-cam can be deployed by hand from the side of a 

small vessel without the need of a crane, although its use is recommended (Figure 10b-c). Once the 

system is released from the crane, it freely descends through the water column towards the seabed at 

speeds of 1.4–1.5 m/s (that is, it reaches 500 m depth in about 5–6 mins). The images provided by live-

view system indicate when the system has reached the seabed but placing marks on the umbilical (in the 

form of colour bands every 50 or 100 m) are recommended to provide a rough estimate of how far the 

system is from the seabed at every moment. Once the system reaches the bottom, some cable must be 

recovered until the weight of the structure is lifted from the seabed. At this moment, the system is left 

to cruise over the seabed following the vessel's drift. The distance between the weight and the seafloor 

is controlled via a hydraulic winch, giving, or recovering umbilical as required. Indications to winch 

operators based on the live feed provided by the navigation camera are given by an observer watching 

the images on a screen placed on the vessel (Figure 11b). The live feed, although in black and white and 

with less sharpness than the original feed produced by the action camera, is of sufficient quality for a safe 

underwater navigation. A GPS device is used to record the vessel's position at short time intervals (1–2 

s), and data collected by the temperature/depth sensor can be later used to adjust the position of the 

system over the seabed. 

At the end of the dive, generally after 1 hour of cruising over the seabed, the system is recovered back 

to the vessel using the hydraulic winch, letting the umbilical accumulate inside a large bucket (Figure 

11b). Recovery time depends on winch capacity and speed, but a limit of 0.7–0.8 m/s is recommended 

to avoid damaging the electrical cable during the operation. At this pace, the system can reach the surface 

from 500 m depth in about 12–14 min. Once on deck, the time required to prepare the equipment for 
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the following deployment is short, since only SD cards and batteries for lights/cameras must be replaced. 

It is recommended to have at least one set of spare batteries for each electronic device, replaced every 

3–4 deployments. 

Figure 10. (a) Two members of the Azores deep-sea research group setting up the cameras and batteries of the 
Azor drift-cam prior to its deployment. (b–c) Deployment of the Azor drift-cam from the side of the vessel using a 

crane to lift the system. 
Figure 11. Simplicity in the use of the Azor drift-cam. (a) An observer providing indications to the winch operators 
based on the images provided by the live-view system. (b) Winch operators controlling the amount of cable required 
to keep a safe distance between the drift-cam and the seabed. The excess cable is stored in a large bucket below 
the winch. 

Image data produced 

Each dive will produce video imagery from two action cameras, depth and temperature data, and a GPS 

track with the ship's position. The 4k camera (in this case a GoPro Hero 5, 6 or 7) set to record at 2.7k 

and 25 fps generates 40 Gb of data per hour of bottom time, whilst the HD camera (in this case a GitUp 

Git2) set at 1920x1080i and 25 fps generates ~16 Gb of data per hour of bottom time. Due to the quality 

of the images recorded with the 4k action camera and its position with respect to the seabed (approx. 1–

2 m over the seafloor), the analysis of the video footage allows for the identification of megabenthic 

species (i.e., larger than a 2–3 centimetres) with a good degree of taxonomic accuracy. Examples of video 

frames extracted from the footage collected in the Azores with the Azor drift-cam are shown in 

 

Figure 12. More images can be viewed in the YouTube Channel of the Azores Deep-Sea Research group, 

which will be updated regularly to add new images collected in seamounts of the Azores2. The presence 

of parallel lasers on-screen allows for species counts to be transformed into density measures. This can 

 
2 https://www.youtube.com/channel/UCrUCCk9866Ym8voq7ZwwZoQ 

https://www.youtube.com/channel/UCrUCCk9866Ym8voq7ZwwZoQ
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be easily achieved by generating an estimate of the swept surface using the computed average field of 

view and the distance travelled over the seabed provided by the GPS track. 
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Figure 12. Screen captures obtained from the video footage recorded with the action camera mounted on the Azor 
drift-cam during the MapGES 2019 cruise, illustrating some of the different seafloor substrates that were surveyed. 
The small red stripes in the mid/low part of the image correspond to the reflection of the parallel lasers over the 
seabed, used for image scaling. The distance between the two marks on the left corresponds to 10 cm. Scale bars 
= 50 cm. (a) Sand ripples in Monte Alto seamount, 460 m depth. (b) Gravels and boulders in Cavala seamount, 650 
m depth. (c) Flat substrate in SE of Pico Island, 400 m depth. (d) Sloping substrate in Picoto seamount, 500 m depth. 
(e) Mixture of sand, gravels and scattered rocks in Gigante seamount, 470 m depth. (f) Large rocky outcrops in 
Voador seamount, 390 m. (g) Large boulders on a very steep terrain in A3 seamount, 560 m depth. (h) Vertical wall 
in A3 seamount, 500 m depth. 
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The oscillating movement of the vessel over the sea is generally transmitted throughout the umbilical to 

the Azor drift-cam, with the magnitude of the up-and-down movement observed in the images largely 

depend on wave height and position of the vessel against the waves. If the type of rope selected has 

some flexibility, some of the oscillation produced by the waves can be absorbed, improving image quality, 

and facilitating navigation. Due to the oscillating movement and differences in depth along the dive, the 

field of view (FOV) of the video image experiences certain variability. For any given dive, the FOV is 

generally smaller when the system is moving up the slope and will be much larger when going through 

flat terrains or downslope. Based on the analysis of 475 images randomly obtained from the footage 

recorded by the Azor drift-cam in 2019 with the 4k camera, the FOV of the images obtained ranged 

between 1.5 and over 6 meters, displaying an average value of 3.5 m ( 

Figure 13).  

 

Figure 13. Differences in the field of view (FOV) of the main camera depending on the distance between the system 
and the seabed. 

3.5 Performance assessment 

The performance of the Azor drift-cam was assessed at two different levels. First, the metadata obtained 

from the different surveys performed at sea during the past 4 years was analysed to determine whether 

the design of the Azor drift-cam is suited for the exploration of deep-sea benthic habitats, indicating its 

strengths and limitations. Second, the imagery data obtained in the MapGES 2019 cruise along the Mid-

Atlantic Ridge was analysed to determine whether it is of sufficient quality to successfully characterise 

deep-sea benthic habitats and their associated biological diversity. 

Four years of surveys in the Azores 

The capacity of the Azor drift-cam to collect underwater images of the seabed was assessed from the 

information collected during the MapGES cruises carried out in the Azores during the past 4 summers 
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(2019 to 2022). The surveys were performed on board of N/I Arquipélago, a 25 m-long research vessel 

from the Government of the Azores, as well as on board of 4 different local fishing vessels (lengths 

between 7 and 13 m). In general, smoother seafloors were easier to survey than rough terrains, especially 

if found on positive slopes. The type of substrate encountered did not seem to exert a strong influence 

on the quality of the images obtained, with sandy bottoms similarly surveyed to mixed substrates with 

rocks and boulders or areas dominated by large rocky outcrops. Very steep slopes and large vertical walls, 

however, were the exception since the Azor drift-cam had to be lifted at high speeds with the hydraulic 

winch to avoid entanglement, which significantly limits image quality.  

Effectiveness 

In the last 4 years (2019–2022), 535 successful dives have been performed with the Azor drift-cam in the 

Azores region, from a total of 557 dives attempted (Figure 14). The approximately 20 dives that had to 

be aborted before the system reached the seabed responded to several reasons, including the live-view 

system giving problems during the descent, the direction of the drift changing towards deeper areas or 

the surface current being too strong to keep the Azor drift-cam in a vertical position, hence limiting a safe 

navigation. Considering that the surveys with the Azor drift-cam were only done during daily hours (no 

night shifts), the 500+ successful dives performed in the Azores in 100 days of work at sea represented 

an average of 5.04±1.54 dives per day. As shown on Figure 14, these 500+ dives cover a very wide 

latitudinal (37.15 to 39.65 ºN) and longitudinal gradient (29.30 to 32 º W), with varying sampling efforts 

in the different areas surveyed, which was based on seamount size and ecological relevance. So far, 15 

seamount-like structures have currently been visually evaluated with the Azor drift-cam along the Mid-

Atlantic Ridge, as well as other 17 seamounts close to the islands of the western (e.g., Cachalote, Diogo 

de Teive), central (e.g., Baixo de São Mateus, Condor de Fora) and eastern groups (e.g., Margrette, 

Formigas). 303 dives have also been performed on the slopes of the islands of the western (48 dives), 

central (225) and eastern groups (30), except for the island of São Miguel, yet to be surveyed. 

More than 295 km of seafloor between 50 and 1,080 m depth have been surveyed in the past 4 years, 

adding up to approximately 450 hours of bottom time (Table 2). The time travelled over the seabed 

averaged 50.61 min per dive, totalling 4.55±1.42 hours of bottom time recorded on average each day at 

sea. This represents an average distance over the seabed of 562 m per dive, which adds up to an average 

of roughly 3 km of seafloor explored per day. The average deployment speed was 1.37±0.41 m/s, which 

represents descending 500 m along the water column in approximately 6 minutes. The recovery speed 

was much lower, averaging 0.70±0.38 m/s (that is, 500 m of cable recovered in 12 minutes). The average 

time at surface between dives was generally kept low, at around half an hour. The data collected for the 

different surveys (Table 2) show that the number of dives per day remained relatively stable through the 

years (around 5.5), with the average dive time increasing from 45 minutes in 2019 to almost 1 hour in 

2022. The time spent at surface preparing the equipment for the following deployment showed a 

significant decrease through the years, from 41 minutes in 2019 to just over 23 minutes in 2022. The 

maximum depth reached by the system also increased every year, mainly due to improvements in cable 

configuration and the confidence in underwater navigation. In 2019, the Azor drift-cam was deployed to 

a maximum depth of 850 m, and that depth increased to reach almost 1,100 m in 2022. Figure 15 shows 

the depth range of each of the 535 underwater dives performed with the Azor drift-cam in the past 4 

years, ordered by their average depth. Although the dives were planned to explore all depth ranges within 

each geomorphological structure to obtain a representative image of the different habitats present, a 

large proportion of the time spent underwater was allocated to depths between 400 and 700 m, with the 

shallower and deeper strata proportionately less explored. 
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Figure 14. Location of the 535 dives performed with the Azor drift-cam inside the Azores EEZ during the MapGES 
surveys of the past 4 years (2019 to 2022). The dives are colour coded according to the year of the survey. Green: 
2019; Yellow: 2020; Red: 2021; Pink: 2022. The map also includes the dives from 2018 (in orange) when the system 
was still a prototype in early development and was used as a drop-down camera. The blue and black dots 
correspond to the dives performed with ROVs and towed camera system before the development of the Azor drift-
cam and for which the ADSR group has access to the images. 

Table 2. Summary table with information on the dives performed with the Azor drift-cam inside the Azores EEZ 

during the MapGES cruises performed between 2019 and 2022. 

Year 
nº of 
dives 

Av. nº 
dives/day 

Av. bottom 
time (min) 

Total bottom 
time (h) 

Avg. dive 
length (m) 

Total dive 
length (km) 

Av. surface 
time (min) 

Depth 
range(m) 

2019 155 5.74±1.85 44.96 116.18 565.59 87.22 41.10 108–848 
2020 100 5.00±1.83 44.36 73.90 541.65 52.54 32.08 86–915 
2021 146 5.21±1.47 54.30 133.03 575.24 83.29 27.16 48–1022 

2022 134 5.58±1.02 57.83 128.18 559.19 72.13 23.66 
192–
1086 

Total 535 5.40±1.58 50.61 451.31 562.26 295.18 31.15 48–1086 

Figure 15. Depth range of the dives performed with the Azor drift-cam inside the Azores EEZ between 2019 and 
2022 part of the MapGES cruises. The bar plot on the right side indicates the amount of time spent by the Azor 
drift-cam (in %) surveying each depth range at 50–m intervals. 
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Affordability 

The cost to construct an Azor drift-cam, considering all the necessary spare parts, falls within the 

predefined 10–15k € price range that was set when starting to develop the first prototype. This value is 

two orders of magnitude lower than that of standard working-class ROVs capable of reaching 1,000 m 

depth (600 k to 3.5 million €8) but falls within the price range of low-cost shallow-water ROVs15 and towed 

video systems16, and also other low-cost deep remote baited camera systems. Keeping the Azor drift-cam 

affordable implied that some useful add-ons were left out, always without compromising its general 

capabilities and goals. Some of the add-ons that could be very useful to improve the functionality of the 

system, but that would significantly increase the final price, would be (a) the use of fibre optic in the 

umbilical for a better image quality received at surface, (b) the use of an ultra-short baseline acoustic 

positioning system (USBL) to generate accurate positioning data when the system is underwater, (c) the 

use of a high-end CTD profiler to better characterise the environmental conditions at the seabed, and (d) 

the use of extra LED lights for better image quality, among others. 

The Azor drift-cam can be deployed from small local vessels, including fishing boats equipped with a 

hydraulic winch. Not having to rely on large oceanographic vessels to carry out deep-sea exploration 

significantly reduces the operational costs associated to its use. Another advantage of employing a 

relatively low-cost imaging tool is that greater risks can be taken when exploring geomorphologically 

complex areas or heavily fished grounds, in opposition to other, more expensive imaging systems that 

generally take great precautions when moving underwater to avoid potential entanglements. 

Simplicity 

The Azor drift-cam resulted in a modular, simple, light, and easy-to-assemble video platform composed 

of ‘off-the-shelf’ components, all of which can be easily acquired locally or from online distributors. Since 

all pieces are not inter-related but function independently, the system has a series of advantages with 

respect to more complex devices. First, the Azor drift-cam is fully adjustable and easy to reconfigure. This 

means that it can be easily adapted to the specific needs of each survey, with more components being 

added if necessary. Also, the electronic equipment can be easily replaced for newer versions without 

changing the original configuration. Second, the malfunctioning of an electronic component does not 

affect the functioning of the remaining parts. This in turn allows for a quick identification of the potential 

problem by isolating each of the parts and testing their operability. Third, the replacement of any 

damaged component is very straightforward, further reducing the time needed for repair. And finally, 

most types of malfunctioning can be repaired on board of the vessel without the need of specific tools 

and complex testing. Most incidents that generally occur at sea (e.g., cable damage, connections not 

working) can generally be fixed while at sea without the need of coming back to shore, further reducing 

the economic costs associated to its use. 

User-friendly 

The Azor drift-cam has always been operated by researchers and technicians of the ADSR group without 

the assistance of highly qualified engineers. Since the design and development of the system was led by 

natural scientists rather than electronic engineers, all the decisions taken along the way searched for the 

simplest solution, reaching a prototype that can be mounted, operated, and repaired by any member of 

a research team with basic engineering expertise. Learning how to use the system is generally a fast 

process, and only requires the familiarisation with the different electronic components and the most 

common typed of incidences that can occur during the work at sea (e.g., cable breakages, bad 

connections, misconfigurations of the cameras). This approach makes the Azor drift-cam ideally suited 

for scientists without access to specialist engineering support. 

Resiliency 
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The main risk when operating deep-sea video platforms attached to the support vessel is the 

entanglement of the umbilical on large rocky outcrops, vertical walls or abandoned fishing gears, which 

could damage some of the equipment, or even lead to the loss of the device. Longlines are the most 

common type of abandoned fishing gear encountered in the Azores and were observed in a large 

percentage of the dives performed with the Azor drift-cam during the MapGES cruises, especially in 

shallow seamounts. Longlines lying flat over the seabed could be easily avoided by pulling the frame 

upwards through the water column, with visual navigation proving sufficient to detect such hazards. 

Longlines found suspended several meters over the ground are not detectable in the video feed and are 

almost impossible to avoid when cruising close to the seafloor. In these situations, the Azor drift-cam 

might temporarily get caught, in a situation like that found when encountering large vertical walls, since 

the recovery speed of the winch not always sufficiently fast to overcome the hazard. The oval shape of 

the metal frame, in conjunction with rapid recovery/release of the cable and manoeuvring the vessel 

away from the hazard, has proven the best practice to free the system from entanglements. During the 

MapGES cruises of the past 4 years, the system was successfully released from more than 15 

entanglements, most of which were longlines. In those cases, no loss of equipment was reported, with 

the only damage related to breakages in the umbilical (electrical cable). It should be noted, however, that 

three complete systems were lost due to entanglements in fishing lines or vertical walls during the 

MapGES cruises, one per year between 2019 and 2021. 

Operability 

The simplicity in the use of the Azor drift-cam represents one of its main advantages with respect to 

commercial ROVs or towed camera systems. The Azor drift-cam can be released manually from the side 

of the vessel and requires only a hydraulic winch to be operated. It can be used in weather conditions 

similar or worse to those required for ROV operations, incrementing the number of potential working 

days. Its fast deployment and recovery allow for a large number of dives to be performed per day, which 

can help increase the spatial coverage at a reduced cost. 

During the past 4 years, the Azor drift-cam has been successfully operated from a 25 m-long research 

vessel (N/I Arquipélago) and from four local fishing vessels (7 to 12 m in length) based in the islands of 

Faial, Graciosa and Corvo. Although the largest part of the dives (463, 86%) were performed on board of 

N/I Arquipélago, up to 72 (14%) have now been executed from small fishing vessels. The largest number 

of dives on board of a fishing vessel was achieved in the island of Graciosa (MapGES cruise 2020), with 

36 deployments in 8 days of work at sea. During this survey, over 25 hours of bottom time were recorded 

at depths between 298 and 771 m, exploring over 17 km of seabed from the slope and small seamounts 

around the island. 

Portability 

Most parts of the Azor drift-cam are easily packed and transported. The frame, the housings, the action 

cameras, the lights, the lasers and the sensors can be shipped to any part of the world either by land, air 

or sea. The International Air Transport Association (IATA) Dangerous Goods Regulations, however, 

restricts the shipment of certain types of lithium cells and batteries, which may have to be shipped in 

advance by sea or land. The umbilical, composed of polypropylene rope and electric cable, weighs over 

100 kg, making shipment by air expensive. These materials are found everywhere and therefore a new 

umbilical can be built upon arrival. During the surveys made in the Azores, the whole system has been 

moved twice, first using a regular passenger ferry from the island of Faial to Graciosa (2020), and then 

using a small cargo ship (2021) to be moved to the island of Corvo. In both surveys, the system was 

successfully operated from local fishing vessels to collect new images of the seabed down to depths 

below 950 m. 
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3.6 Geological and biological data obtained 

Several images recorded with the Azor drift-cam were evaluated in further detail in order to assess the 

potential use of the footage obtained with this system to characterise deep-sea benthic habitats and their 

associated biological communities. Information was extracted from the images at 3 different levels: the 

behaviour of the Azor drift-cam when cruising over the seabed, the composition of the dominant 

substrate and the number of benthic species identified. For this exercise, 112 dives performed in 15 

seamounts and ridges along the Mid-Atlantic Ridge performed during the MapGES cruise in 2019 were 

evaluated (Figure 16;   
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Table 3). The amount of underwater video footage analysed added up to 84 hours of bottom time. 

Sampling effort was unevenly distributed in the different areas. For instance, the two seamounts with 

the highest sampling effort were Cavala (15 dives) and Voador (16), both with more than 11 hours of 

video footage recorded. On the other hand, the seamounts least explored had less than 3 hours of bottom 

time each, and corresponded to Gigante Agulhas NE (2 dives), Gigante Agulhas S (3 dives) and Monte Alto 

(4 dives). The depth range explored was also variable across sites, although generally found between 400 

and 700 m, but reaching depths below 800 m during the deepest dives. 

Figure 16. Location of the sampling areas explored with the Azor drift-cam along the Mid-Atlantic Ridge during the 
MapGES cruise 2019 on board of N/I Arquipélago. 
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Table 3. Number of dives performed in each sampling area along the Mid-Atlantic Ridge during the MapGES 2019 
cruise, with information on the depth range, average length, average dive time and total footage recorded in each 
seamount. Area (km2) refers to the extent in km2 of the geomorphological feature above 1,000 m depth inside the 
sampling area. 

 
Surface 

 Depth (m) Av. dive Av. bottom 
Total bottom 

Seamount 
(km2) 

Dives min–max length (m) time (hh:mm:ss) 
time (h) 

127 Smt 75 7 235–563 525 0:41:30 4:50:28 
A3 104 6 504–687 624 0:40:22 4:02:15 
A6 152 7 484–848 519 0:38:45 4:31:17 
Alfa 107 6 509–672 398 0:41:38 4:09:50 
Beta 181 5 562–745 813 1:03:09 5:15:44 
Cavala 274 15 367–779 565 0:47:05 11:46:17 
Ferradura 191 7 521–816 692 0:57:55 6:45:25 
Gigante 324 7 187–797 608 0:34:20 4:00:19 
Gigante NE 82 2 588–700 431 0:58:49 1:57:38 
Gigante S 63 3 502–684 481 0:47:43 2:23:08 
Gigante SW 131 7 460–640 620 0:47:07 5:29:51 
Monte Alto 767 4 414–584 640 0:38:11 2:32:42 
Oscar 192 15 562–724 438 0:38:38 9:39:35 
Picoto 90 5 528–731 781 1:01:59 5:09:56 
Voador 1087 16 278–692 548 0:43:23 11:34:15 

Total 3820 112 187–848 567 0:45:05 84:08:40 

The first step to evaluate the utility of the images recorded to provide an accurate characterisation of the 

seabed corresponds to the analysis of the behaviour of the Azor drift-cam while surveying the seabed. 

This analysis identifies the sections of the video footage that can be used for annotation purposes, and 

were defined as follows: 

o Stopped over the seabed, when the Azor drift-cam is kept stationary in the same position. This 
generally occurs at the beginning of the dive or when the system gets caught on a fishing line. 

o Linear transect, when the camera of the Azor drift-cam moves on a forward-facing position over 
the seabed. 

o Moving sideways, when the Azor drift-cam has its camera turned towards its side (generally due 
to the effect of bottom currents), but the system keeps moving forward. 

o Erratic movement, when the Azor drift-cam does not follow a linear trajectory and the camera 
keeps moving erratically from one side to the other. 

o Off bottom, when the Azor drift-cam cruises too far from the seabed for any information to be 
collected from the images. 

The behaviour of the Azor drift-cam in the images recorded during the MapGES 2019 cruise is provided 

in   



iAtlantic Deliverable 2.4 
 

Page 37 of 92  

Table 4. The percentage of footage considered ‘off-bottom’ remained below 10% in almost all dives, with 

an average of 5%. This result indicates that a large percentage of the images collected by the Azor drift-

cam are useful for annotation, and that the system is suited to survey benthic habitats of the deep sea.  

In fact, most of the footage collected corresponded to ‘linear transect’, in some dives even reaching 90% 

of the time spent at bottom. This footage can be considered of the best quality for image annotation, and 

would allow for species occurrences to be converted into density values. The second category with the 

highest percentage (20%) was ‘erratic movement’, which consists in those situations where a clear path 

over the seabed cannot be determined. In those cases, the identification of benthic species to 

characterise the diversity of the area is still useful, although the data extracted have less potential to be 

converted into quantitative measures. 

  



iAtlantic Deliverable 2.4 
 

Page 38 of 92  

Table 4. The behaviour of the Azor drift-cam over the seabed given for each sampling area along the Mid-Atlantic 
Ridge during the MapGES 2019 cruise. Values are provided as percentage of time considering only the bottom time, 
which spans from the moment the system reaches the seabed until it starts the ascent back to the vessel. 

 Behaviour over the seabed (%) 

Seamount Stopped Erratic Linear Sideways Off bottom 

127 Smt 15.1 22.3 61.0 0.0 1.7 
A3 1.3 26.1 63.2 0.0 9.4 
A6 9.7 21.0 47.7 3.3 18.3 
Alfa 6.5 31.3 53.2 0.0 9.1 
Beta 2.4 23.4 69.6 0.0 4.6 
Cavala 12.0 25.4 57.2 0.0 5.5 
Ferradura 3.5 18.6 72.2 0.0 5.8 
Gigante 1.7 21.4 75.2 0.0 1.7 
Gigante NE 0.8 5.6 90.0 0.0 3.6 
Gigante S 3.3 18.3 71.8 0.0 6.6 
Gigante SW 1.1 14.1 79.0 0.0 5.8 
Monte Alto 2.3 12.9 79.8 0.0 5.0 
Oscar 1.5 11.1 84.6 0.4 2.3 
Picoto 8.2 4.7 83.1 0.0 4.1 
Voador 1.4 25.2 69.8 0.0 3.6 

Average 5.1 19.9 69.3 0.2 5.4 

The type of substrate was visually evaluated along the full length of the underwater dives, indicating 

those sections where each substrate category was dominant. The selected substrate types were based 

on bottom composition and sediment grain size and correspond to categories recurrently used in 

ecological studies of the deep sea: Mud, Sand, Gravel, Cobbles and pebbles, Boulders, Flat rock, 

Outcropping rock, Vertical walls, Coral rubble and Coral framework. Some examples of the main 

categories are provided in Figure 17. Considering that substrate type can vary at very small scales, and 

combinations of different substrate types are common in the deep sea, the annotation of the images 

focused only on identifying the primary substrate, understood as the category with the highest 

percentage cover at any given time. 

Figure 17. Examples of different substrate types observed in the images recorded with the Azor drift-cam. (a) Sand. 
(b) Gravels. (c) Coral rubble. (d) Flat rock. (e) Boulders. (f). Outcropping rock. 

The composition of the dominant substrate in the different areas surveyed during the MapGES 2019 

cruise, as identified from the images recorded with the Azor drift-cam, is provided in Table 5. 

‘Outcropping rock’ was the dominant category in all areas but Monte Alto, in some cases reaching values 

of around 80%. This result could be expected due to the complex geomorphology of the seamounts and 

ridges that make up the Mid-Atlantic Ridge, and also due to the sampling strategy followed by the ADSR 

team during the surveys, in which areas of positive slopes are targeted in order to perform dives moving 

up the slope towards the summit. Interestingly, four seamounts had more than 20% of the area surveyed 

characterised by large deposits of coral rubble, which likely derive from the breaking up of once alive 

coral framework that thrived in shallower areas of the seamount. The percentage of unconsolidated 

sediments (sand, gravels) showed high variability across the different geomorphological feature, being 

more common in flat areas of the seamounts, such as the summit. 
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Table 5. Composition of the main substrate types in the 15 sampling areas explored along the Mid-Atlantic Ridge 
during the MapGES cruise 2019. Values are provided as percentage of time considering only the bottom time, which 
spans from the moment the system reaches the seabed until it starts the ascent back to the vessel. 

Seamount Sand Gravels 
Coral 
rubble 

Pebbles & 
Cobbles Boulders 

Outcropping 
rock 

Flat 
rock 

Vertical 
rock 

127 Smt 11.6 33.7 0.0 0.5 0.0 54.1 0.0 0.0 
A3 8.2 4.7 15.0 0.2 0.0 63.6 0.0 8.4 
A6 9.3 13.0 35.3 0.0 0.0 42.4 0.0 0.0 
Alfa 5.5 10.4 20.8 0.0 0.0 63.3 0.0 0.0 
Beta 0.0 14.5 17.4 0.0 0.0 68.2 0.0 0.0 
Cavala 4.7 10.3 5.0 1.0 0.0 73.9 0.0 5.2 
Ferradura 0.9 23.9 26.1 0.0 0.0 49.1 0.0 0.0 
Gigante 2.7 25.7 2.7 2.4 1.8 64.6 0.0 0.0 
Gigante NE 0.0 0.5 18.6 0.0 0.0 79.4 0.0 1.6 
Gigante S 15.6 6.3 12.4 0.5 0.0 65.2 0.0 0.0 
Gigante SW 13.6 8.5 25.9 0.0 0.0 49.2 0.0 2.8 
Monte Alto 70.9 1.3 0.0 0.0 0.0 27.8 0.0 0.0 
Oscar 3.5 11.6 18.1 0.2 0.3 62.3 0.4 3.6 
Picoto 17.4 30.0 3.4 0.0 0.0 42.6 5.2 1.4 
Voador 4.9 5.7 6.1 0.0 0.0 83.1 0.0 0.1 

Total 8.3 13.6 13.2 0.3 0.1 62.3 0.4 1.9 

The assessment of the biological diversity that characterises each of the areas explored was accomplished 

through the annotation of the benthic megafauna observed in the images. Benthic megafauna is defined 

as those sessile (or low mobility) invertebrate species of a size greater than several centimetres that can 

be identified from underwater images. Each (morpho)species observed was classified and given an 

Operational Taxonomic Unit (OTU) number. Each OTU was registered for each dive, providing a rapid 

assessment of the observed diversity along large geographic areas. This rapid analysis generates a 

database of benthic megafauna occurrences at the scale of approx. 1,000 m that allows species 

distribution maps to be rapidly constructed, with data to be used in other large-scale studies, as for 

example, the development of predictive models of species distributions.  

A total of 171 morphospecies were identified from the images recorded by the Azor drift-cam, most of 

which belonging to the phylum Cnidaria (74) and Porifera (65). The most representative group of Cnidaria 

was Octocorallia with 36 morphospecies, followed by Scleractinia (13) and Antipatharia (10). The 

remaining phyla were proportionately less represented, with only 13 morphospecies belonging to the 

phylum Arthropoda, and 10 to Echinodermata. Images with some of the most conspicuous species of 

Cnidaria and Porifera observed in the images are provided in  

Figure 18, and include the octocorals Callogorgia verticillata, Dentomuricea aff. meteor, Viminella 

flagellum and Paragorgia johnsoni, and the sponges Characella pachastrelloides and Asconema sp. The 

number of morphospecies identified in each of the sampling areas surveyed along the Mid-Atlantic Ridge 

was highly variable (Table 6), ranging from 113 in Cavala seamount to just 39 in Monte Alto. Octocorals 

were always the most diverse group of Cnidaria, with areas hosting up to 22 different morphospecies 

(Beta and Cavala). The number of black corals as higher in Gigante seamount, with a total of 7 

morphospecies identified. Cavala was not only the most diverse seamount; it also hosted the largest 

number of Scleractinia and Hexactinellida morphospecies. Although differences in species composition 

and diversity across seamounts can be partly attributed to a series of methodological constraints, such 

as sampling effort and depth range explored, part of that variability should be attributed to differences 

in the environmental conditions found in each seamount. A more profound analysis of these results will 

provide better clues to understand differences in the composition of the benthic fauna in seamounts 

along the Mid-Atlantic Ridge. 
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Figure 18. Examples of the different megabenthic species observed in the images recorded with the Azor drift-cam 
in the Mid-Atlantic Ridge. (a) Large colonies of Callogorgia verticillata. (b) Aggregation of the yellow sea fan 
Dentomuricea aff. meteor. (c) The whip coral Viminella flagellum. (d) A large colony of the red morphology of the 
species Paragorgia johnsoni. (e) The giant sponge Characella pachastrelloides. (f) An aggregation of the hexactinellid 
sponge of the genus Asconema. 

Table 6. Number of morphospecies per phylum identified in each of the sampling areas surveyed along the Mid-
Atlantic Ridge during the MapGES 2019 cruise. Morphospecies are classified in the most representative groups of 
the phyla Cnidaria and Porifera. 
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Cnidaria                
 Actinaria   1    1 1 1  1 1 1  1 

 Antipatharia 4 4 2 2 4 4 4 7 2 2 5  3 3 4 

 Hydrozoa 3  2 1 1 2 1 1   2  3 1 4 

 Octocorallia 14 10 19 11 22 22 19 18 9 7 14 6 18 14 20 

 Scleractinia 5 4 2 2 3 8 3 5 3 3 3 1 5 1 5 

 Stylasteridae   2 1  2 2        3 
Porifera                
 Desmospongia 15 12 16 11 11 21 15 18 8 12 17 15 12 11 19 

 Hexactinellida 1 3 7 4 5 7 5 5 5 1 1  4 2 4 

 Indet. 24 19 19 17 19 26 19 26 14 10 22 13 19 19 26 
Bryozoa 2  1  1 2 1 1   1    2 
Mollusca 1 2  1 1 3 1 1  1 3  2 2 3 
Arthropoda 6 6 8 5 6 10 8 6 4 3 6 1 7 8 6 
Echinodermata 4 2 5 2 3 5 4 7 4 4 3 2 7 4 3 
Brachiopoda   1   1  1        
Total 79 62 85 57 76 113 83 97 50 43 78 39 81 65 100 

3.7 Limitations of the Azor drift-cam at the current state of development 

Although the Azor drift-cam has shown the capacity to offer a series of advantages with respect to other 

deep-sea imaging platforms, especially regarding its cost, simplicity and operability, there are still some 

drawbacks that should not be overlooked. One of the major limitations relates to the impossibility of 

collecting biological samples necessary for a correct taxonomic identification of the species observed, in 

opposition to the ability of ROVs and HUVs to collect specimens using their hydraulic arms. Furthermore, 

the inability of the Azor drift-cam to generate close ups of organisms of interest, or even targeted filming, 

can also be an important limitation when surveying areas not yet explored, for which limited information 

is available or where the composition of the benthic fauna has not been fully characterised. Another 

important limitation relates to the maximum operational depth that can be achieved by the Azor drift-

cam, currently constrained to 1,000 m depth. The low-cost standard electrical cable used as umbilical to 

send the video feed to the surface produces a loss of video signal that increases with cable length. The 

use of ~1,200 m of electrical cable implies that the image received on the vessel has lost its original colour 

(black and white image) and some of its sharpness, although it is still sufficient for navigation purposes. 

Further increases in cable length would continue reducing image quality to a point where maintaining a 

safe navigation over the seabed would become extremely difficult, hence putting the system at risk and 

being prone to potential entanglements with rocks or overhangs. 
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In terms of operability, since the Azor drift-cam primarily follows the direction taken by the vessel based 

on its drift, targeting specific areas, or following a predefined path over the seabed becomes very difficult, 

unless weather conditions allow. Targeting areas of interest can be partially achieved by evaluating the 

vessel's drift and the bathymetric chart prior to each dive, and adjusting the position of the vessel once 

the system is deployed. Another aspect that can limit the performance of the Azor drift-cam relates to 

cross-side currents over the seafloor. These water flows can turn the system sideways, leaving the camera 

at an angle from the path being followed. This situation not only limits image quality, but it can also 

constrain video-based navigation and increases entanglement risk. Surveying areas with a negative slope 

can also be a complex task since light is absorbed through the water column, limiting video quality for 

fauna annotation. The static position of the camera angle implies that it has to be fixed before the dive, 

and no adjustments can be made during the transect over the seabed to compensate for differences on 

the slope of the seabed. 

Finally, one of the main limitations of the Azor drift-cam in its current state of development relates to the 

lack of a real-time GPS positioning of the system underwater. Commercial acoustic positioning systems 

(such as those provided by the Ultra-Short Baseline method; USBL) are generally very expensive and 

would break the guiding principle on Affordability. The development of marine technology will eventually 

lead to affordable USBL positioning systems to be available in the market, allowing for a more accurate 

position of the Azor drift-cam over the seabed, which will further increase the accuracy of the data 

produced. 

3.8 Technology readiness level (TRL) 

Based on the information collected in the different surveys carried out at sea in the past years, the Azor 

drift-cam is now at Technology Readiness Level 7 (TRL 7), with the system fully verified in an operational 

environment. 

3.9 Conclusions 

There is a diverse range of state-of-the art underwater technology for different deep-sea applications. 

However, simple yet affordable systems that take advantage of the power of small commercial action 

cameras remain unavailable. The Azor drift-cam, built with off-the-shelf components, has proven cost-

effective, easy to operate and reliable to explore deep-sea habitats to 1,000 m depth. This system aims 

to provide a simple yet versatile tool to facilitate the access to deep-sea exploration, not intending to 

become a substitute for other, more sophisticated, video and photography platforms (ROVs, AUVs or 

manned submersibles). In fact, both systems could complement each other, with the Azor drift-cam 

providing rapid assessments of the seabed over large areas, allowing relevant locations to be identified 

and subsequently targeted for a more detailed examination. This could further optimise and reduce the 

costs of ROV operations. Hence, the Azor drift-cam could play an important role in the Deep-Ocean 

Observing Strategy17 and the measurement of Essential Ocean Variables for deep-sea monitoring and 

conservation strategies18. This technological development can contribute to open the doors to many 

researchers/countries currently excluded from this research field due to monetary and technological 

restrictions. 
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4. Underwater hyperspectral imaging 

Contributions from: Touria Baijouk, Maxime Ferrera, Tristan Petit & Aurélien Arnaubec 

4.1 Introduction 

While human eyes and conventional cameras sense colours through three broad red, green and blue 

(RGB) spectral bands in the visible range of light, hyperspectral imagers separate light into numerous 

narrow bands in the visible, near-infrared (NIR) or even mid-infrared (MIR) spectral regions19. This allows 

additional details and features to be captured, thereby potentially improving scientific characterisation 

of objects. 

Based on passive sensors installed either on aerial platforms or satellites, hyperspectral imaging has been 

successfully used to detect, characterise, and quantify a wide range of objects around the world. These 

sensors use the sun as the light source which limits their use to above-water applications with limited 

feasibility for shallow water use cases. In deeper waters, where sunlight is negligible or absent, specific 

underwater hyperspectral imaging (UHI) equipment is needed where the underwater scene is illuminated 

by artificial light. 

As part of the Life MarHa project and the imaging technologies showcases being developed in the 

iAtlantic project, UHI equipment was tested for different scenarios. The main objective was to evaluate 

the potential of this technology for deep-sea mapping and monitoring with a focus on assessing the 

maturity and reliability of the system for benthic habitat identification and to assess the ecological status 

of habitats. 

4.2 Overview of underwater hyperspectral imaging technology 

Sensors 

Represented as a 3-Dimensional data cube, hyperspectral images are characterised by both their two 

spatial dimensions and one spectral dimension. Sensors are thus characterised by the arrangement 

and/or the number of spectral bands involved in the instrumental architecture, as well as the employed 

image capturing method. Stuart et al. provides a review of current hyperspectral technologies and their 

integration into the environmental monitoring field19. The concept and main characteristics are 

summarised in Table 7. 
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Table 7. Current hyperspectral technologies concepts, summarised from Stuart et al.19. The main conclusion is that 
push broom spectral imaging is commonly used, thanks to its suitability for light-weight unmanned aerial vehicle 
(UAV) image acquisition20. Snapshot systems can record the spectral image data cube from a unique shot, which is 
suitable for moving targets, however, these devices are currently limited due to their larger size19. 
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Platforms 

Three main components are necessary for underwater hyperspectral imaging (UHI) deployment: a light 

source, the hyperspectral imager sensor and a platform for its deployment21. Thanks to mobile 

underwater robots, not only can snapshots of stationary objects be taken but there is a potential to map 

large areas of interest with hyperspectral sensors (Figure 19). 

Figure 19. Schematic diagram of a UHI system22 (A), an example of ROV used for the UHI-based survey in 
Trondheimsfjord23 (B) and the Ecotone UHI (first circular opening indicated by the white circle) mounted on AUV at 
the right of the lamps (four smaller squares inside the white rectangle)24 (C). 

As described by Johnsen et al., two types of marine robotic vehicles are mainly used to deploy UHI 

sensors25:  

• Remotely operated vehicles (ROVs) are tethered from a ship during the entire deployment to 
provide both power and communication to the vehicle. The main advantage of using a ROV as 
UHI platform is the on-line control of the instrument and collection of the data stream. Thus, 
dysfunctions are identified during data acquisition and controls can be sent to the platform to 
adjust the settings of the operated instrument. The use of ROVs has, however, some limitations. 
The spatial coverage is limited by the tether length (generally 500–1,000 m long).  On top of that, 
their external thruster motors may resuspend sediments and reduce image quality if the UHI is 
operated close to soft sediments. 

• Autonomous underwater vehicles (AUV) can either be a glider (not ideal platforms for UHI as they 
have very low power capacity and limited sampling capabilities near the seafloor) or, in contrast, 
propeller-driven systems that offer higher payloads and more sampling capabilities. A large AUV 
may be the best platform for UHI thanks to their high degree of speed/direction, altitude and 
pitch, roll, and yaw control. In addition, the ability of hover AUVs to map vertical walls and rough 
bottoms with a complex structure, can make seafloor mapping quite efficient.  

Navigation requirements 

As pointed out by Johnsen et al.25, the targeted accuracy for the acquired UHI images determines the 

navigation equipment and survey procedures. Navigation data for the underwater vehicle on which the 

UHI is mounted are thus required for georeferencing the image cube. There are two main tools to 

perform underwater navigation for UHI:  
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• Acoustic underwater navigation: a concept that includes Ultra-Short Base Line (USBL) and Long 
Base Line (LBL) systems, the most common methods used for diving robots to determine a 
geographical position. For highly accurate USBL navigation, a ship, a transceiver, and a 
transponder mounted on the robot are required, LBL positioning system relies on an array of 
transponders placed on the seabed and a transceiver mounted on the moving platform. 

• Dead reckoning: mainly used for AUVs, this method estimates locations from the initial position, 
heading, time, and velocity. Mathematically, speed and acceleration are integrated over time to 
establish position estimates. Common sensors used for dead reckoning are gyro, Doppler Velocity 
Log (DVL), Inertial Measurement Unit (IMU), and Inertial Navigation System (INS). 

Applications 

As highlighted in a recent review22, the number of articles in the field of UHI technology has increased in 

recent years (Figure 20). UHI seems to offer a new perspective for a variety of environmental monitoring 

researches and operations, with its focus on non-destructive data acquisition, often a key requirement 

for data acquisition in protected areas19. 

Figure 20. Annual number of articles published in the field of underwater spectral imaging22. 

The application of HS imagery, from which physical and ecological characteristics can be extracted, cover 

several fields (Figure 21). Johnsen et al. have applied supervised classifications to UHI data in the visible 

range with up to millimetre spatial resolution and 1 nm spectral resolution26. They were able to 

automatically identify and map several sea bottom types, including kelp forest, sponges, and deep-water 

coral reefs as well as man-made structures such as pipelines. More recently, vertical and horizontal 

distribution of sea-ice algae were estimated at fine scale using an in situ under-ice HS technology thanks 

to correlation of spectral indices with fluorometrically derived Chl a values27. Foglini et al.  have 

experimented for the first time with a UHI systems to characterise cold-water coral habitat and 

coralligenous habitat in the Southern Adriatic Sea (Mediterranean Sea)28. Even if this method provided 

inaccurate discrimination of some seabed types (probably due to spectral similarities or artifacts such as 

shadows and distortions), SAM (Spectral Angle Mapper) supervised classification was efficient for 

recognising colonial cnidarians and sponges. Coraline crust algae and associated organisms were also 

correctly classified despite habitat heterogeneity. 
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Figure 21. A1 and A2 respectively show a UHI RGB false-colour image and its corresponding classification of raw 
data (digital counts) denoting Hippasteria phrygiana seastar (Black), brown algae dominated by Laminaria digitata 
kelp (blue), denotes sand/soft bottom (red) and concrete pipeline and holdfast (green), B1 and B2 respectively show 
a UHI false-colour image and its supervised classification into sand (yellow), leafy red algae (green), red calcareous 
algae (red), old and dark brown tissue of kelp L. digitata (blue) and corresponding new tissue of L. digitata (winter 
growth from meristem). C1 and C2 respectively show a UHI photomosaic in false-colours (RGB) and its 
corresponding classification based of seafloor habitat dominated by red calcareous algae (red area), anemones 
dominated by Urticina (yellow) and sea urchins Strongylocentrotus spp. (blue) during a Polar night campaign at 15 
m depth (from Johnsen et al., 2016). D1 and D2 respectively show a high-resolution UHI data item and its 
corresponding quantitative mapping of Chl a by applying the LAUC index regression model on a per-pixel basis to 
the pseudo-transmittance image, E1 and E2 respectively show UHI geo-corrected, pseudo-reflectance data in 
pseudo-RGB and its SVM classification image, F1 and F2 respectively show an RGB UHI image of a coralligenous site 
and the corresponding SAM classification (from Foglini et al. 2019) and (G) Supervised SAM classification images of 
a wreck transect. From top to bottom: glass bottle, rust, and ceramics (from Ødegård et al., 2018). 

Based only on reflectance spectra, a machine learning models have been used to detect changes in the 

health status of both orange and white morphotypes of the cold-water coral Lophelia, achieved by 

exposing 60 coral samples to the toxic compound 2-methylnaphthalene (Letnes et al., 2019). Corals were 

successfully classified according to lethal concentration levels of 5% and 25% mortality, thus opening 

prospects for environmental impact assessment over larger areas. Likewise, as mentioned by (Stuart et 

al., 2019), underwater hyperspectral technology may also be suitable for extreme environment 

monitoring by enabling the acquisition of high spatial resolution where ground-based field surveys would 

be difficult to operate. The addition of field hyperspectral sensing to glacial settings can provide a 

significant improvement of knowledge related to identification of supraglacial debris composition (Di 

Mauro et al., 2017).  
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Main challenges 

Currently, push broom and whisk broom cameras need to be deployed from a mobile platform to 

complete the image stitching required for contiguous mapping. Hence, sensor stability is low and subject 

to limitations of georectification19. As highlighted in Ferrera et al., most studies using UHI cameras have 

relied on mosaicking techniques to exploit and analyse the gathered hyperspectral data29. Yet, the 

creation of such mosaics is performed by interpolating the UHI camera trajectory using drifting dead-

reckoning navigation systems, leading to approximate trajectory estimation. Furthermore, mosaicking 

techniques also use a flat surface assumption on the imaged scene, leading to distorted results when this 

assumption is no longer correct. With higher control of speed/direction, altitude and pitch, roll, and yaw 

(Figure 22), the UHI images must be previously geo-processed to provide accurate ortho-images and to 

recover an exploitable material for scientific analysis, more specifically for non-flat areas.  

Alongside the improvement of geometric processing, radiometric aspects are also challenging due to 

scene dependence of most of the underwater imaging techniques. Due to the attenuation effect caused 

by water, the spectral intensity of the underwater target is indeed different at different distances21. In 

addition, the scattering phenomenon caused by particles suspended in highly turbid water strongly 

affects the recorded hyperspectral signal. The recovery of reflectance data through careful 

measurement, calibration, and mitigation of light in the underwater environment, as indicated by 

Bongiorno et al., are required to ensure accurate information extraction, especially for spatio-temporal 

studies of process dynamics30. 

 
Figure 22. A schematic diagram showing the geometry of UHI acquisition deployed on ROV24. 

4.3 iAtlantic Experimentation 

Hyperspectral camera  

Johnsen, from the Norwegian University of Science and Technology (NTNU), invented the first 

underwater hyperspectral imagers before developing a push-broom system based on grating diffraction 

that was the only commercial one available at the time31. Later, NTNU researchers together with the 

Ecotone company developed several push-broom UHI systems with large field of view (~60°) and diving 

capacity down to 6,000 m.  

As part of the European MarHa 

 project, coordinated by the French Agency for Biodiversity, IFREMER was able to purchase a 

hyperspectral underwater camera (UHI) to extend the use of this technology to shallow and deep marine 
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habitats. The UHI push-broom sensor was chosen, as, unlike snapshot hyperspectral cameras which are 

quite limited in terms of spatial and spectral resolutions (typically ≤ 500 × 500 px and ≤ 25 spectral bands), 

push-broom cameras provide wide spatial and spectral resolutions (typically ≥ 960 px and > 100 spectral 

bands)22. 

The UHI is a scanner that continuously records intensities of reflected light in the 378–800 nm spectral 

range (Figure 23). The housing is made of titanium alloy. This push-broom scanner with beam widths of 

60° (transverse) and 0.4° (longitudinal) can be mounted looking vertically downwards to record lines of 

1,900 pixels perpendicular to the track direction. Intensities of reflected light are measured for spectral 

bands between 378 and 800 nm with a spectral resolution of 4 nm. 

 
Figure 23. Underwater Hyperspectral imaging acquired system (A) and a schematic diagram showing the principle 
of data acquisition (B). 

UHI integration 

Integration of the UHI into IFREMER’s ROVs was tested during two surveys. The first one was performed 

in the framework of the MarHa project in the Mer d’Iroise coastal area (Brest, France) by IFREMER and 

Ecotone. The integration of this camera was also performed on the HROV Ariane. This latest test was 

carried out as part of the European EU MarineRobots project in Mediterranean (Table 8). 

Table 8. Integration test survey summary 

 Brest (Atlantic) Cassidaigne (Mediterranean) 

Framework Life MarHa project European EU MarineRobots 

project 

Depth 10 to 30 m 200 to 500 m 

Survey date 2018-09-17-21  01/08/2019 to 08 

Vessel TSM Penzer  Antea 

ROV HROV Vortex  Ariane 
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 Brest (Atlantic) Cassidaigne (Mediterranean) 

UHI 4-3  4-3 

Illumination 2xLED  

DEEPSEA Sealite LSL-2000, 8,000 

lumen (5,000 K ~ 6,500 K)  

2xLED  

DEEPSEA Sealite LSL-2000, 8,000 

lumen (5,000 K ~ 6,500 K)  

Challenges First integration of the UHI to 

IFREMER HROV 

Improving UHI navigation estimate 

and data quality 

Survey 1: Brest 

The main objective was the integration of the Underwater hyperspectral imaging (UHI) to one of 

IFREMER’s ROVs, the Vortex Hybrid ROV. For this first test, the demonstration area was related to selected 

coastal seabed habitat areas in the Iroise Natural Marine Park (Figure 25).  

The survey was carried out by IFREMER and Ecotone, onboard the vessel TSM Penzer, using UHI 4-3 

mounted on HROV Vortex, on September 17th–21st2018. The data collection was carried out from the 

vessel TSM Penzer. The HROV Vortex operated by IFREMER was used as platform carrier (Figure 24). 

 

  
Figure 24. The Vortex IFREMER HROV with Underwater Hyperspectral imager (UHI) mounted in the rear end 
(Wright) carried out from the TSM Penzer vessel (Top left) by IFREMER and Ecotone team with the help of the crew 
and the PNMI divers (bottom left). 

The HROV had an umbilical to a surface buoy, and wi-fi signal from the buoy to control room onboard 

vessel. The UHI computer was on ROV side, and the UHI was remotely accessed from control room. 

Navigation data were recorded. Flight altitude was mainly 1 m throughout the survey. 

The integration was done before the cruise, while the vessel was docked in the harbour of Brest. For 

seafloor illumination, two LEDs were used (DEEPSEA Sealite LSL-2000, 8,000 lumen, 5,000-6,500 K). 

Calibration tests were carried out at several locations, either on deck or under water, aided by divers. 

Sites with different habitats (maerl, dead and live Crepidula gastropod mollusc bed, red algae, and sea 

grass) in the proximity of Brest were visited. At each site, a set of transect lines were carried out to 

determine adequate parametrisation. In addition, at the last part of the survey, the UHI was run in parallel 
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with one of IFREMER’s high resolution underwater cameras. In this case, only 1 LED lamp was allocated 

to the UHI. 

 

  

 
Figure 25. Left: study areas in the Brest harbour, right: hyperspectral images turned into RGB false-colour images 
of starfish (top) and brittle stars (bottom) at red algae covered seafloor. 

At the end of the survey, the integration of UHI into the HROV worked well, enabling acquisition of 

hyperspectral images. However, some issues arose when georeferencing the images. As the UHI 

sensor is a line sensor and the image data are created by moving the platform, imaging accuracy 

depends on the accuracy of the georeferencing data.  

By using the proprietary Ecotone software, a data processed pipeline assuming data collected by 

flying drones or planes were employed without including relative motion or attitude information. 

While the UHI data are recorded at a spatial resolution of millimetres per pixel, navigation data were 

only available in the order of tens of centimetres. It could be seen that this navigation accuracy is 

not sufficient to properly align UHI data for robust interpretation (Figure 26). 

Figure 26. Stitched and georeferenced UHI image transect (A), example of georeferencing issue (B) with UHI 
navigation in green, Corrected UHI navigation in pink and 3D point cloud from 3D reconstruction in white (C). 

To overcome the identified georeferencing issue, another optical sensor may be used to improve 

navigation accuracy. The idea is to use a traditional high-resolution RGB camera to create a 3D model 

of the illuminated scene that is seen by both the HD camera and the UHI sensor.  

By deploying a video camera, a sufficient image overlapping and corresponding high georeferencing 

accuracy can be created by using e.g., structure-from-motion techniques. From the reconstructed 

3D scene, a very accurate navigation at millimetre resolution can be back calculated to then project 
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the hyperspectral transect data as a drape onto the 3D scene with comparable navigation and 

resolution orders of magnitude. 

Survey 2: Cassidaigne 

This survey was an opportunity to test the Hyperspectral camera during deployments of the Ariane HROV. 

From the lessons learnt during the previous test survey, it was decided to couple the hyperspectral 

camera with an HD video camera looking at the exact same scene to enable optical navigation and 3D 

reconstruction. Hence, hyperspectral data can be projected on the 3D model to obtain 3D hyperspectral 

imaging data. To generate optical navigation data the Vortex camera of the Ariane HROV was used.  

  

Figure 27. Snapshot of the Ecotone RGB camera (left) and the high-resolution RGB imagery acquired by the Vortex 
HROV still camera (right) for 3D reconstruction for optical navigation. 

Ecotone participated in the survey organised by an IFREMER team from Toulon, France (August 3rd – 6th 

2019). The survey was part of the project ‘Hyperspectral Imaging – Scientific payload integration and 

evaluation on hybrid ROV’ within the program EU Marine Robots (EUMIR) program. The first part of the 

survey was used for technical integration of the hyperspectral imager into the ROV system (Figure 28). 

Data collection was carried out from the vessel Antea with scientists from IFREMER and one operator 

from Ecotone on board.  

The test survey was carried out near Toulon between Marseille and Saint Tropez within the Zonex 30 area 

(Figure 29). This area has been chosen for these tests because it is large enough to allow the planned 

dives to be adapted according to the authorisations, the weather and technical goals. 

The first part of the survey was dedicated to technological tests of the UHI camera prototype provided 

by Ecotone. After two days of tuning, it was integrated to be operated in parallel to Ariane's Vortex 

science camera, thus allowing for 3D reconstruction. Two full dives were made with this configuration on 

the head of the Cassidaigne canyon between 200 to 500 m in cold water coral habitats (Figure 29). 
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Figure 28. The Ariane HROV with Underwater Hyperspectral imager (UHI) mounted in the front (B) carried out from 
the Antea vessel (B) by IFREMER, Ecotone and Genavir team (C). 

These tests made it possible to produce more data sets with different camera settings to evaluate the 

impact on the quality of the data. Data were acquired at altitude ranges from 1 to 4 m, exposure times 

of 10 to 40 milliseconds and at varying survey speed, to define the protocols for future dives. The tests 

were carried out both in vertical and horizontal orientations in relatively flat areas and on 3D structures. 
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Figure 29. Overview map of the deployment sites during the survey campaign and one example high-resolution 
image depicting the kind of habitat that was imaged both by the RGB camera and the UHI sensor. 

3030314.4 Data processing 

Radiometric calibration 

UHI signatures are distorted due to absorption and scattering of light by the water present between the 

camera and the sea floor. The thickness of this water body, i.e., the bottom depth relative to the camera 

for each pixel, can be estimated from the radiative transfer-based method of Lee et al., developed for 

airborne HI, which implies prior calibration and conversion into reflectance of the UHI data32. 

The raw data accessible from the Ecotone UHI push broom camera are given in Digital Numbers (DN) 

recorded for each cell of the 2D complementary metal oxide semiconductor (CMOS) sensor as a function 

of time, leading to the so-called 3D hypercube. However, raw data recorded in units of DN cannot be 

used by any subsequent physics-based algorithm and first needs to be converted into a physical quantity: 

the spectral radiance. Omitting any artefacts linked to sensor imperfect design (e.g., vignetting, smile and 

keystone effects), derives the in-air spectral radiance Lair (in Wm-2sr-1nm-1) from a simple empirical 

relationship. It can be computed for each spectral band 𝜆𝑖 and spatial position (𝑥𝑗, 𝑦𝑘) using the following 

equation: 

 

 
𝐿𝑎𝑖𝑟(𝜆𝑖, 𝑥𝑗 , 𝑦𝑘) =

(𝐷𝑁(𝑖, 𝑗, 𝑘) − 𝑑𝑎𝑟𝑘(𝑖, 𝑗))

𝑡𝑖𝑛𝑡 ∙ 𝑔𝑎𝑖𝑛(𝑖, 𝑗)
 

(1) 

with (𝑖, 𝑗) the row and column index of the CMOS matrix, 𝑘 the temporal index of the current frame, 𝑡𝑖𝑛𝑡 

the integration time (in seconds), 𝑑𝑎𝑟𝑘 a matrix provided by the manufacturer representing the average 

of the dark current noise, and 𝑔𝑎𝑖𝑛 a matrix provided by the manufacturer taking into account the CMOS 

quantum efficiency, sensor electronic characteristics as well as the loss of photons within the camera. 

The specific calibration matrices of the Ecotone UHI are given in Figure 32, with rows corresponding to 

the spatial dimension and columns corresponding to the spectral dimension. The dark noise matrix has 
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very low variability (125–129 DN), while the gain matrix has values ranging between 20–160 µWcm-2nm-

1sr-1. The spectral variability of this matrix is mainly due to variations in the quantum efficiency of the 

CMOS sensor cells. 

  
Figure 32. Dark (left) and gain (right) calibration matrices of the Ecotone UHI Camera operated at IFREMER. The 
dark matrix is expressed in unit of DN while the gain matrix is given in µWcm-2nm-1sr-1. 

When the camera is immersed into a medium with refractive index different from the one of air, a second 

step must be performed, as the in-air calibration given in Equation 1 is no longer completely valid due to 

changes in the field-of-view, transmittance, and reflection at the medium-glass interface. For obtaining a 

valid in-water radiance 𝐿𝑤𝑎𝑡𝑒𝑟, it is thus necessary to account for these phenomena through a 

multiplicative factor 𝐼𝑓 called the immersion factor, to derive 𝐿𝑤𝑎𝑡𝑒𝑟 as follows: 

 

 𝐿𝑤𝑎𝑡𝑒𝑟(𝜆𝑖, 𝑥𝑗 , 𝑦𝑘) = 𝐼𝑓(𝜆𝑖) ∙ 𝐿𝑎𝑖𝑟(𝜆𝑖, 𝑥𝑗 , 𝑦𝑘) (2) 

 

The state-of-the-art theoretical method given in Equation 9 of (Zibordi, 2006) can be used for estimating 

𝐼𝑓. A visual comparison of a raw image in units of DN and a calibrated image in µWcm-2nm-1sr-1 is 

presented on the left and middle panels of Figure 33. The crucial role of the immersion factor correction 

can be seen from the right panel of Figure 33, where the corrected spectrum attains values about 1.8 

times higher than the uncorrected one. 
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Figure 33. Comparison between raw and calibrated UHI data acquired during the Chereef 2022 cruise (2022-08-06 
at 20:51) with, from left to right: RGB composition of the Raw image in DN, RGB composition of the calibrated image 
in radiance after immersion correction, spectral comparison of one hyperspectral pixel in DN and the radiance 
curves before (dashed) and after (solid) immersion correction. 

Vignetting correction assessment 

Figure 34 shows temporal statistics derived for each spatial pixel (i.e., the across-track dimension of UHI 

imaging) of a given spectral band on two datasets corresponding to two distinct cruises: Katchof (left) 

and Chereef (right). The top panels correspond to data in units of DN while the bottom ones correspond 

to data in radiance. The 5% quantile (green), median (blue) and mean (orange) curves were computed in 

each case considering the same 100 successive temporal images, corresponding to about 100,000 

temporal samples per spatial pixel. The manufacturer calibration data were added to these plots as the 

red curve for comparison. An expected decrease in brightness toward the edges of the camera can be 

seen in the data. Under homogeneous lighting conditions, it would have been expected that the green, 

orange and blue curves become flat once the data have been calibrated in radiance. However, this is not 

the case for the statistical curves in radiance (Figure 34, bottom) as they present opposite patterns as 

compared to the one in DN. In addition, it can be seen that a strong correlation exists between these 

patterns and the increase in the associated calibration (red) curve, especially for the Katchof cruise. This 

tends to show that the manufacturer calibration data are overcorrecting the vignetting phenomenon 

occurring within the camera. In addition, regarding the Chereef cruise, it can observed that an overall 

decrease exists of the statistical curves from the first pixel (index 0) to the last pixel (index 1920) across 

the track. It can thus be assumed that a decrease in the light source intensity along this direction exists. 
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Figure 34. Temporal statistics (5% quantile, median and mean) of cross-track pixel values for 200 successive images 
(197,400 temporal acquisitions) for the Katchof (left) and Chereef (right) cruises with data in DN (top) and radiance 
(bottom). The red curves are computed from the manufacturer-provided calibration spectrum data. 

Reflectance computation 

The upwelling radiance 𝐿𝑢𝑝 measured by the UHI camera not only reflects the optical properties of the 

natural environment but is also closely linked to the spectral characteristics of the artificial light source. 

Converting 𝐿𝑢𝑝 into sensor reflectance 𝑅𝑠𝑒𝑛𝑠𝑜𝑟 enables normalising the data with respect to the 

downwelling irradiance 𝐸𝑑𝑜𝑤𝑛 light source. The reflectance is obtained as follows: 

 

 
𝑅𝑠𝑒𝑛𝑠𝑜𝑟(𝜆𝑖) =

𝜋. 𝐿𝑢𝑝(𝜆𝑖)

𝐸𝑑𝑜𝑤𝑛(𝜆𝑖)
 

(3) 

 

Compared to passive remote sensing when the sun is used as a point-source, estimating 𝐸𝑑𝑜𝑤𝑛 in the 

context of underwater imagery is challenging due to the use of several artificial lamps. Here 𝐸𝑑𝑜𝑤𝑛 is 

estimated from the radiance spectrum of one of these light sources, as measured by the UHI in 

laboratory. In order to take the water attenuation into account, which is occurring between the light 

source and the sensor position, 𝐸𝑑𝑜𝑤𝑛 can be derived from the light source radiance 𝐿𝑙𝑎𝑏 as measured 

in a controlled environment using the following equation: 

 

 𝐸𝑑𝑜𝑤𝑛(𝜆) = 𝜋. 𝐿𝑑𝑜𝑤𝑛(𝜆). 𝑒
−𝑘(𝜆).ℎ (4) 

 

with 𝑘 the downwelling diffuse attenuation coefficient of water and ℎ the height difference between the 

light source and the camera positions. It can ben see in Error! Reference source not found. that the 

resulting value 𝐸𝑑𝑜𝑤𝑛 has two emission maxima, one located around 450 nm and a second one located 

around 600 nm. 
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Figure 35. Downwelling irradiance at sensor level estimated from a laboratory measurement of the ROV lights. 

Water body thickness estimation 

The reflectance at the sensor level 𝑅𝑠𝑒𝑛𝑠𝑜𝑟 is not only a function of seabed albedo but also of the optical 

properties of the water body, mainly depending on its thickness but also on its optically active 

constituents and their concentrations. In the current context of this benthic study the bottom reflectance 

𝑅𝑏𝑜𝑡𝑡𝑜𝑚 was estimated from 𝑅𝑠𝑒𝑛𝑠𝑜𝑟. Following the widely used approach of Lee et al.32, this implies 

modelling 𝑅𝑠𝑒𝑛𝑠𝑜𝑟 as a function of 𝑅𝑏𝑜𝑡𝑡𝑜𝑚, the water body thickness 𝑧, the water diffuse attenuation 

coefficient 𝑘 as well as the photon distribution functions 𝐷𝑢𝑐 and 𝐷𝑢𝑏, and the water reflectance 𝑅𝑤𝑎𝑡𝑒𝑟. 

This is achieved through the following Beer-Lambert-based relationship: 

 

 
𝑅𝑠𝑒𝑛𝑠𝑜𝑟(𝜆) = 𝑅𝑤𝑎𝑡𝑒𝑟(𝜆) (1 − 𝑒

−𝑘(𝜆)( 1
cos𝜃𝑠

+
𝐷𝑢𝑐(𝜆)
cos𝜃𝑣

)𝑧
)

+ 𝑅𝑏𝑜𝑡𝑡𝑜𝑚(𝜆)𝑒
−𝑘(𝜆)( 1

cos𝜃𝑠
+
𝐷𝑢𝑏(𝜆)
cos𝜃𝑣

)𝑧
 

(5) 

 

with 𝜃𝑠 and 𝜃𝑣 the zenithal angles of the source and the camera, respectively. The second step of the 

approach of Lee et al. is to co-estimate all the unknown parameters together by iterative minimisation of 

the distance between the modelled and measured sensor reflectance. However, this method was 

designed for aerial remote sensing of coastal waters, with highly varying optical properties due to 

variations in phytoplankton and terrestrial inputs concentrations. These concentrations may be set to 

constant values as only minor spatial variations are expected in deeper areas and this greatly simplifies 

the numerical problem to be solved, partly avoiding overfitting issues. Then the 𝑅𝑏𝑜𝑡𝑡𝑜𝑚 estimation can 

be conducted in two successive steps: (i) estimating the water layer thickness 𝑧 and the bottom 

reflectance amplitude with a neutral (sand) bottom reflectance spectral shape fixed within the model, 

and (ii) computing 𝑅𝑏𝑜𝑡𝑡𝑜𝑚 directly from Equation 4 using previously estimated values for the other 

parameters of this equation. 

Figure 36 shows an RGB composition of the sensor reflectance. The greenish aspect of this image is due 

to the spectral shapes of absorption and scattering occurring within the water layer present between the 

camera and the sea floor. The bottom reflectance is presented on the right panel of Figure 37. It can be 

noticed that the greenish aspect is no longer present which proves the effectiveness of the radiative 

transfer-based inversion. Two products derived by inversion are shown on Figure 37. The water layer 
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thickness (Figure 37, left) shows values between 1.5–2.8m, which is consistent with altitude data 

recorded by the robot vehicle. The high correlation observed between decrease in this thickness and the 

presence of objects on the sea floor provides additional support to the effectiveness of the inversion 

procedure. The seabed albedo at 550 nm shown on the right panel of Figure 37 has values ranging 

between 0.02–0.1. Its values gradually increase from the bottom to the top of the image, which may be 

linked to potential concomitant increase in the scene illumination by the artificial light source. 

  
Figure 36. RGB image of sensor (left) and bottom (right) reflectance of UHI data of the Chereef 2022 cruise. 

 

  
Figure 37. Water body thickness (left, with values ranging between 1.5–2.8 m from blue to red) and bottom albedo 
at 550 nm (right, with values ranging between 0.02–0.1) estimated through sensor reflectance inversion. 
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Geometric correction 

The push-broom technique used for the experimented UHI relies on the navigational data to provide an 

image data cube from recorded spectral lines. In the framework of the iAtlantic project, IFREMER 

designed and implemented a method for creating accurate underwater hyperspectral 3D reconstructions 

by fusing the measurements of a UHI camera, an RGB camera and an Inertial Navigation System (INS) 

embedded on an ROV29. 

The UHI sensor was coupled with a HD video camera and mounted on a tiltable mechanical support. This 

enabled acquiring data on any type of terrain, from flat to very steep areas. Furthermore, thanks to the 

accurate CAD model of the HROV, we obtained an approximate 3D transformation (extrinsic calibration) 

between the HD and UHI cameras. This method is based on the use the RGB camera to accurately 

estimate the trajectory followed by the ROV at the video’s frame-rate in conjunction with the INS 

predictions for scaling purposes. This allows us to interpolate the trajectory followed by the UHI camera. 

In addition, we produced a dense 3D reconstruction using the acquired RGB images that we then linked 

to the UHI images thanks to an approximately known transformation between both cameras. Doing so, 

we were able to map the 3D mesh with hyperspectral textures, thus producing accurate and reliable 3D 

hyperspectral reconstructions that can be used to produce non-distorted ortho-images for further 

scientific analysis. The proposed pipeline is illustrated in Figure 38. 

Figure 38. Pipeline of the method for computing hyperspectral 3D reconstructions, from (Ferrera et al., 2021). 

We used the RGB camera mounted on the ROV to estimate the trajectory followed by the 

UHI. More precisely, we employed a monocular visual Simultaneous Localisation and Mapping (SLAM) 

algorithm to get the estimate of the trajectory followed by the RGB camera. In addition, we fused the 

visual SLAM estimates with the prediction from the INS embedded on the ROV to recover scaled and geo-

referenced estimates. Using the scaled SLAM results, we then computed a dense 3D mesh of the surveyed 

environment. Finally, we used the approximately known extrinsic calibration between the RGB camera 

and the UHI to get an estimate of the UHI trajectory and then raycast the hyperspectral images on the 

dense 3D model. For more method description, see Ferrera et al. and Kumar et al.29,33. 

4.4 Benthic feature extraction use cases 

Seabed benthic habitat mapping (Catchoff Mediterranean site) 

The data for this use case were acquired at the Catchoff site in the Mediterranean Sea during a UHI 

integration test survey with HROV Ariane. This site is recognised to host a habitat of gorgonians. Indeed, 

coralligenous reefs, owing to their extent, species diversity, productivity, and carbonate production, are 

recognised to have a paramount role in the Mediterranean coastal system. 
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First, we extracted from the image recorded in DN, spectra on pixels corresponding to species or types 

of background recognised using video images acquired simultaneously with the hyperspectral images. To 

determine the discrimination potential of UHI, spectra were standardised by a homogeneous sand 

spectrum before applying a multivariate analysis based on PCA. Only the spectral responses in the visible 

were retained knowing the level of noise and absorption power in the PIR spectral range (Figure 39). 

Based only on the two first principal components, resulting PCA plots shows a great potential for 

discrimination except for Bonellia echiuran worm species that display a spectral characteristic 

overlapping that of hard substrate (Figure 39). 

 

Figure 39. Standardised spectral signatures of the main species and substrate types of the Catchoff Mediterranean 
site (A) and scatterplot of the first two principal components of a PCA (B). 

The first analysis of the suitability of underwater hyperspectral imagery for the automatic classification 

of habitats is still ongoing. It became obvious that pre-processing is essential to (i) remove noise from the 
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recorded signal (Figure 40) and (ii) to perform geometric and radiometric calibration before geospatial 

processing. 

  
Figure 40. Zoom-in to a selected part of a UHI recording showing noisy spectral bands along and across-track. 

Mapping the ecological status of cold-water corals (Lampaul Atlantic site) 

Regarding the exploitation of the acquired UHI data to evaluate the potential for detection and 

discrimination of bottom types, we used the Chereef campaign in the summer of 2021 to collect samples 

of coral species and substrate by the ROV Ariane that is equipped with a manipulator and sampling arm. 

It was then possible to carry out measurements of spectral signatures in the onboard laboratory by the 

UHI. Figure 41 shows the raw signal for live and dead coral compared to a sandy substrate. It can be seen 

that these signatures have spectral amplitudes and reflectance maxima at different wavelengths. This is 

promising for the potential for automatic discrimination of live and dead coral from substrate from UHI 

images. 

 
Figure 41. Spectral signatures recorded in the laboratory from samples collected during the 2021 Chereef cruise to 
Lampaul Canyon (France). 
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Figure 42. UHI RGB visualisation (A), RGB image from video recorded simultaneously (B), and regions of interest 
(ROIs) created for training and validating UHI image classifications. 

For this use case, we have chosen to process a long profile, which best represents the diversity of habitats 

found at the site. Figure 42 shows a snapshot of the UHI data, compared to the RGB footage from the 

same scene as well as manually annotated patches of the UHI data, used for training ML methods.  Figure 

43 shows a comparison of the classification results for the different algorithms tested for the selected 

subarea 1 of this profile. The black lines that appear on the hyperspectral images correspond to 

interrupted recordings due to a malfunction of the UHI. 

In general, as well as for the entire profile, the spectral angle mapper (SAM) with an overall accuracy of 

15% presents the worst performance. Most habitats are poorly detected and erroneously assigned to the 

category ‘Hard substrate’ by this classifier. Slightly better performance was achieved by the Support 

Vector Machine (SVM) and Minimum Distance (Min.Dist.) methods, which display accuracy values of 57% 

and 59% respectively. These two algorithms, if they detect the ‘Dead coral’ well, show inferior 

performance for the other habitat categories. SVMs are not able to discriminate ‘Living coral’ from other 

categories. With an overall accuracy of 98%, the Random Forest (RF) method is the algorithm that 

provides the best result of discriminating seabed types and cold-water coral (CWC). These observations 

are supported by the results of area 2 (Figure 44). While Min.Dist. and SAM overestimate the presence 

of the octocoral Narella and SVMs does not detect this category at all, the RF method correctly identified 

the only individual present in this area. 

In area 3, only soft sediments are present while other habitat categories are incorrectly detected by 

different algorithms, in particular the Min.Dist. and SAM methods. Once more, this result shows the best 

performance by the RF in this area for which this algorithm also shows few confusions between the 

‘Coarse sediment’ and the ‘Dead coral’ categories. 
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Figure 43. UHI RGB visualisation and comparison between supervised classifications obtained from Support Vector 
Machine (SVM), Minimum Distance (Min.Dist.), Random Forest (RF) and Spectral Angle Mapper (SAM) algorithms 
applied on area 1 of the entire track, delimited by the pink rectangle in the left-most part. The values in brackets 
correspond to the overall accuracies of the classifiers tested. 

 

Figure 44. UHI RGB visualisation and comparison between supervised classifications obtained from Support Vector 
Machine (SVM), Minimum Distance (Min.Dist.), Random Forest (RF) and Spectral Angle Mapper (SAM) algorithms 
applied on area 2 of the entire track, delimited by the pink rectangle in the left-most part. The values in brackets 
correspond to the overall accuracies of the classifiers tested. The area bounded by the black dotted rectangle within 
the RF classification shows the detection of an individual of category ‘Narella’, the only place where this species is 
present in this area. 
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Figure 45. UHI RGB visualisation and comparison between supervised classifications obtained from Support Vector 
Machine (SVM), Minimum Distance (Min.Dist.), Random Forest (RF) and Spectral Angle Mapper (SAM) algorithms 
applied to area 3 of the entire track, delimited by the pink rectangle in the left-most part. The values in brackets 
correspond to the overall accuracies of the evaluated classifiers. 

Table 9 shows the confusion matrix for the RF algorithm as applied to the entire track. The confusions 

are mainly seen between the categories ‘Hard substrate’ and ‘Fine sediment’ as well as between ‘Dead 

coral’ and ‘Coarse sediment’ with misclassification errors of the order of 11% and 3% respectively. It is 

the class of ‘Living coral’ which shows confusion with a greater number of habitat categories, but the 

misclassifications remain between 0.2% and 1.6%. 

Table 9. Confusion matrix for assessing the accuracy of the Random Forest algorithm applied to classify pixels along 

a UHI data transect acquired in Lampaul canyon. 

 

From the Random Forest classification, spatial statistics were computed for the entire track, which covers 

a total area of approximately 118 m². Within this track, CWCs represent only 16.9% of the total surveyed 

profile. The proportion of ‘Living coral’ is comparatively low, representing only about 2% of the coral 

fragments in this area. The present results are only the initial steps of the data planned interpretation for 

this UHI data set. Postponement of surveys due to the global COVID-19 pandemic led to substantial delays 

in data acquisition, but this work will be continued by the IFREMER team to enrich the acquired data with 

other metrics such as geomorphology, landscape ecology and functional traits. 

4.5 Recommendations towards a UHI data acquisition protocol 

Based on our experimentation from all carried out surveys, some best practices are summarised below 

for ensuring optimal quality of hyperspectral image data using an ROV. 

Survey preparation 

• Ensure that all research permits, safety plans and approvals have been created and obtained 
(General research preparation requirement, not specific to UHI). 
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• Define the required transect design: the decision to which transect design is most appropriate is 
driven by the question being addressed, as well as the environment, available time, and logistics 
of AUV deployment. 

• Ensure that all cameras to be used are correctly calibrated. 

• Ensure that required processing software is installed on onboard computers and that users have 
previously been trained to their use. 

• Ensure that sufficient data storage capacity is available onboard for on the planned acquisition. 

Deployment preparation 

• Ensure that the UHI camera and HD camera are correctly mounted and aligned (30). 

• Ensure that appropriate illumination is mounted in a way that the scene imaged by the hyper-
spectral imager (HSI), and other cameras is uniformly illuminated. 

• Ensure that enough free data storage capacity is available on the HSI storage in case of offline 
data recording. 

• Ensure that the power supply for the camera systems and illumination system is operational. 

• Ensure that all communication channels and the underwater navigation systems are operational. 

• Potentially ensure that additionally required equipment, e.g., for underwater image calibration, 
is available to the robotic platform. 

  
Figure 46. Stereo setup of the two cameras on Ariane HROV from IFREMER. The upper pressure housing contains 
the RGB camera. The bottom pressure housing contains the push-broom HSI camera from Ecotone. The Z axis of 
the camera coordinate system is in the view direction, the X-axis points to the right and the Y-axis is pointing 
downwards. The cameras are mounted vertically, thus are having the y-axis as known the baseline between them. 

UHI deployment 

• Monitor the ROV descent to the seabed and towards the start of transect location by using 
appropriate software. 

• Ensure accurate recording of image metadata to enable creating FAIR UHI data, e.g., based on 
the image FAIR Digital Object (iFDO) format described in the next chapter. 
Minimum metadata recorded for each transect should contain: 

o Survey name/identifier (iFDO field: image-project) 
o Station name/ID (iFDO field: image-event) 
o Platform (iFDO field: image-platform) 
o Geographical coordinate (iFDO fields: image-latitude, image-longitude, image-

coordinate-reference-system) 
It is recommended to use the WGS1984 system at a minimum of 7 decimal places to 
reach meter accuracy. 

o Altitude (iFDO field: image-altitude) 
o UTC date and time (iFDO field: image-datetime) 
o ROV orientation (iFDO fields: image-camera-yaw-degrees, image-camera-pitch-

degrees, image-camera-roll-degrees or image-camera-pose) 
o ROV speed 
o Navigation data quality such as type of navigation system used and its associated errors 

(iFDO fields: image-coordinate-uncertainty-meters, image-navigation) 



iAtlantic Deliverable 2.4 
 

Page 66 of 92  

o UHI acquisition parameter settings such as integration time, frame rate, gain, … (iFDO 
field: image-acquisition-settings) 

o Comments on the deployment (iFDO fields: image-abstract, image-objective, image-
target-environment, image-target-timescale, image-spatial-constraints, image-
temporal-constraints) 

• Acquisition of radiometric calibration data once for each new acquisition site by deploying a 
calibration grid marker that is imaged by the UHI system in-situ. For radiometric calibration, it is 
crucial to measure the spectral signature of the illumination system being used as well. 

• For data acquisition with the Ecotone system in a specific targeted area, the following steps are 
recommended: 
1. Positioning of the ROV at the planned distance from the bottom depending on the targeted 

spatial resolution. 
2. Recording the required acquisition metadata. 
3. Start the recording for the HD camera. 
4. Start the recording for the UHI sensor from the Immersion software interface. 
5. Turn the lights off, wait about 2 seconds, then turn the lights back on to synchronise the 

two cameras HD camera for 3D reconstruction and the UHI camera signals. 
6. As you acquire image data, continuously fill in a dive protocol to note modifications of 

acquisition parameters as well comments on the recorded habitats (see Figure 31).  

 
Figure 47. Screenshot of the Immersion software package provided by Ecotone for the operation of their UHI 
camera. 

Post-deployment 

• After the last deployment of the day, wash down the UHI with fresh water. 

• Download the recorded raw image data from the cameras. 

• Collect the associated navigation data. 

• Ensure accurate recording of metadata and finalise the deployment protocol. 

4.6 Conclusion  

Lessons learned from UHI experimentation in the context of iAtlantic 

The implementation of UHI technology has been deployed for the first time in France, thanks to the 

synergy between two European projects: MarHa and iAtlantic. The sensor used is the UHI (Underwater 

Hyperspectral Imager) marketed by ECOTONE. It was acquired as part of the MarHa project. 
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Several test surveys were necessary to be able to integrate the UHI into different ROVs, finally made 

possible thanks to the technical support of the ECOTONE teams. The surveys were carried out in the 

Atlantic Ocean and coastal areas of the Mediterranean Sea. 

The main difficulties we identified are related to the geometric and radiometric calibration of the 

acquired images. Targeted technology developments have thus been carried out by the IFREMER teams 

to improve the acquired UHI data for scientific exploitation. To date, it was not possible to process all the 

acquired data or test all the planned processing methods. First results presented above already show that 

the hyperspectral imaging technology has the potential to automatically extract relevant information on 

deep-sea environments, aiming at spatio-temporal ecosystem monitoring. 

Choice of UHI gear 

The first step when entering the field of UHI is to choose an appropriate sensor for the intended use 

case22. Two types of sensors received particular attention during this study (Table 10). 

Table 10. Comparison of underwater hyperspectral imaging system concepts. 

UHI sensor 

concepts 

Spectral 

Resolution 

Imaging 

Speed 

Geometric 

Correction 
Usability 

Push-broom High High Difficult 

Commonly used, very 

suitable for seabed 

mapping in relatively flat 

areas  

Snapshot Low High Easy 

Suitable for moving targets, 

may become a new trend in 

the future 

Although the push-broom and snapshot type sensors both have high acquisition costs to date, they 

nevertheless have technical characteristics that distinguish them, which can guide the choice in terms of 

spectral resolution and acquisition speed requirements as well as according to the difficulty of pre-

processing, especially for geometric corrections. 

While the commonly used push-broom sensors, with its high spectral resolution, is suitable for seabed 

mapping in relatively flat areas, the low spectral resolution snapshot architecture has the ability to 

acquire 2D images by a single exposure. This method might thus become the state-of-the-art in the 

future22. 

UHI Deployment 

Our experience with the UHI test deployments meets the recommendations of the literature and more 

specifically those summarised by Foglini et al. on the mapping of benthic habitats28. In addition to the 

protocol described above, three aspects should be considered, in particular, for a better quality of 

underwater hyperspectral data acquisition: 

- Platform behaviour: to ensure a rigorous UHI survey, an efficient positioning system and accurate 
and dense navigation data for the camera platform are necessary. High stability, constant speed and 
altitude above the seafloor are beneficial for creating robust UHI data. 

- Light source: currently, there is no standardised light source designed for the UHI22. Thus, an 
appropriate lamp system needs to be rigorously adapted to uniformly illuminate the surveyed area 
to ovoid spatial changes in light and presence of shade. Any deployed light source should have a 
sufficient intensity to illuminate targets depending on water depth, water body thickness and sunlight 
available. The spectrum of the light source needs to be measured in a controlled environment for 
qualitative and quantitative analysis. This is particularly important when planning radiometric 
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calibration. 
- Ancillary sensors and equipment: these can include (i) an HD RGB camera mounted with a similar 

view direction like the UHI camera to record concomitantly the seafloor for either target 
identification or to support geometric correction; and (ii) sensors to measure the optical properties 
of the water body through which the UHI is capturing images. (e.g., Chlorophyll a, ‘coloured dissolved 
organic matter’ (CDOM), or the total suspended matter (TSM) amount); and (iii) a radiometric 
calibration target for in-situ reflectance quantification. 

The importance of data pre-processing 

Achieving the goal of monitoring seafloor habitats spatio-temporally with UHI sensors requires both 

accurate and standardised data to be able to identify gradual changes as well as sudden changes without 

bias. It is therefore important to consider two types of UHI data pre-processing before conducting any 

extraction of semantic information from the images. 

The first pre-processing concerns radiometric calibration: UHI signatures are distorted due to absorption 

and scattering of light by the water layer present between the camera and the sea floor. This implies that 

a prior calibration for the conversion of raw UHI data into reflectance measurements is needed. So far, 

benthic UHI studies have either ignored this distortion or have used sophisticated robotic systems for 

deploying an optical reference plate during the UHI acquisition34. However, this solution is difficult to 

operate in practice and does not consider variations in the optical properties of the water layer due to 

varying bottom distance (e.g., in the presence of corals or rocks). The radiative transfer-based method of 

Lee et al.32, developed for airborne hyperspectral imaging, is one of the possibilities for estimating bottom 

reflectance. The radiometric corrections require information recorded by the UHI sensor alongside the 

raw data. It is recommended to apply the radiometric corrections before applying geometric corrections. 

The second pre-processing is relative to the geometrical correction: the comparison over time or the 

extraction of metrics on the surface require precise geographical positioning. These can be achieved by 

a precise navigation system, but the present study has shown that 3D reconstruction based on structure-

from-motion methods can significantly improve the geometric correction qualities of UHI data. 
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5. FAIR marine image metadata 

Contributions from: Timm Schoening and the co-authors of the peer-reviewed paper that contributed to 

this section35 

5.1 What is FAIR data? 

The vision behind FAIR data is to create a world where data are treated as a valuable and shared resource 

that is accessible to all, and where data are used in a way that is transparent and accountable36. FAIR data 

seeks to ensure that data are collected, stored, and used in a way that is transparent to all stakeholders, 

including individuals, communities, organisations, and society as a whole37. 

At its core, the idea of FAIR data is based on four guiding principles: 

1) Findable: Data should be easy to find and discover by those who need it. This means that data should 
be well-documented, with clear and consistent metadata that allows others to understand what the 
data are, how it was collected, and how it can be used. Additionally, data should be assigned a unique 
and persistent identifier, such as a Digital Object Identifier (DOI), that enables others to easily locate 
and reference the data. 

2) Accessible: Data should be available to all who have a legitimate interest in it. This means that data 
should be stored in an open format that is easily accessible, and that barriers to access should be 
minimised. 

3) Interoperable: Data should be able to be used together with other data, regardless of where it came 
from or how it was collected. This means that data should be standardised, with consistent formats 
and structures that allow different data sets to be combined and analysed together. 

4) Reusable: Data should be able to be used and reused by others. This means that data should be free 
to use, with clear licensing and copyright agreements, and that data should be preserved and curated 
to ensure that it remains useful over time. 

By adhering to these principles, the FAIR data idea seeks to create a world where data are used for the 

greater good, rather than for the benefit of a few38. At their core, the FAIR data principles aim to enable 

answering the scientific questions of the future. 

5.2 How does FAIR data lead to better science? 

By providing open and accessible data, FAIR data practices enable researchers to reproduce experiments 

and studies39. This promotes transparency and accountability, allowing others to validate research 

findings and ensuring that scientific results are reliable and trustworthy. FAIR data practices facilitate 

collaboration among researchers, as data can be easily shared and integrated across different research 

groups and disciplines40. This enables researchers to pool resources and expertise, leading to more 

comprehensive and impactful research outcomes37. 

FAIR data practices can spur innovation by enabling new types of analyses and discoveries. Access to 

large, diverse, and high-quality datasets can help researchers identify new patterns and connections, 

leading to new insights and discoveries. FAIR data practices can increase efficiency in the scientific 

research process40. Researchers can build on existing data and results, rather than starting from scratch, 

saving time and resources. FAIR data practices promote accountability by requiring researchers to clearly 

document and describe their methods and data37. This ensures that research findings are based on sound 

methodology and data that can be verified and validated. 

5.3 What are FAIR marine images? 

How to achieve FAIRness for different data types or data use communities is an ongoing research 

topic38,39,41. Organisations such as the European Open Science Cloud (EOSC) or the Research Data Alliance 

(RDA) publish recommendations on FAIRness, some of which are directly applicable to marine image data. 

These include human- and machine-readable standardised vocabularies or the use of persistent 

identifiers (PIDs). However, the massive data set sizes in marine imaging create additional requirements 
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for FAIRness such as the detachment of the image data from associated data (called metadata) to 

maintain efficient handling of data and facilitate accessibility and reuse. Finally, the inherent lack of 

semantic structure in image data, i.e., that information in images is encoded in millions of pixels that only 

together create a picture by means of interpretation by a brain or computer, requires standards for tools 

that create and use information derived from images such as annotations7. 

5.4 Image FAIR Digital Objects (iFDOs) 

As a solution, the concept of image FAIR Digital Objects (iFDOs) was developed in the context of the 

iAtlantic project as well as an infrastructure environment to create and exploit such iFDOs35,42. The iFDO 

format solves the issues of technical heterogeneity and semantic un-structuredness. The infrastructure 

environment solves the challenge of handling vast image data sets. But only in combination can the iFDOs 

and the FAIR marine image infrastructure environment that works with iFDOs achieve FAIRness of marine 

images35. iFDOs are designed to be applied to all marine image data: in-situ and ex-situ imagery, photos 

and videos and datasets consisting of single images to thousands of images. 

With the iFDO concept implemented and the required infrastructure environment in place, most 

recommendations on FAIRness can be addressed.   
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Table 11 provides an overview on the status for marine images using iFDOs and the infrastructure 

environment. Of the 41 RDA recommendations, 36 are achieved, 2 are not viable in the image data 

context and 3 are resolved by the currently developed iFDO update. All essential and important FAIR 

indicators are being addressed by iFDOs and the marine image infrastructure environment. 

5.5 iFDO description 

An iFDO file consists of two iFDO parts: the image-set-header part and the image-set-items part. The 

header part contains default values for all items. The image-items part contains all values that deviate 

from the default values for this specific image item. They supersede the default values. All metadata of 

an image item is provided in a list. For moving images, the first entry of the list contains an object of those 

metadata fields that are defaults for an entire video. All subsequent list entries correspond to 

specifications of the metadata for one given timepoint of a video. For still images this list may contain 

only one entry of its field values or it is rather a single object of field values for this particular photo. 

Making data FAIR requires that data are assigned a persistent identifier (PID). Many such PID systems 

exist, and usually they are based on the handle system (e.g., DOI, ORCID) and alpha-numerical IDs that 

are globally unique. For iFDOs, it was decided to choose Universally Unique Identifiers (UUIDs) as a base 

for the PID record There are ca. 5 × 10^36 possible UUID4s, making it almost impossible that the same 

UUID is created more than once. This UUID is the alphanumerical identifier that must be assigned to each 

image and to each image set. The UUID for the image file (a photo or video) must be written into the 

metadata header of the image file itself to be included into the file hash later (see below). How this step 

can be done depends on the image file format used. Mostly, software tools like exiftool or ffmpeg are 

used which is also the case in the MarIQT Python package. The image-set-uuid only needs to be part of 

the iFDO file and not written to any image file. Using UUIDs for persistent identification is essential to 

achieve FAIRness by making images uniquely identifiable. Those UUIDs need to be registered in a long-

term data repository and data portal to facilitate Findability of images. 

iFDOs use file hashes to monitor the integrity of images. A hash is a fingerprint of a file, computed from 

the file’s byte content. A file hash can be used to assert that a file is not broken or that a particular file is 

a specific version. Checking the integrity of a file with hashes requires that the byte content does not 

change. It is therefore essential, that the UUID is written to the image file’s metadata header before the 

hash for that file is computed!  

Figure 48. Setup of image FAIR Digital Objects. Key information and image data are stored in a dedicated 
infrastructure (yellow squares). iFDOs only contain persistent identifiers to those external information resources. 
Additionally, specific metadata for marine imaging use-cases is stored inside the iFDO files. iFDOs consist of three 
sections: (1) the required core part which includes the persistent identifiers as well as licensing information; (2) the 
recommended capture part that addresses the technical heterogeneity of image acquisition; and the (3) the 
optional content part that captures semantic information from within the images to address the heterogeneous 
nature of image data. Together, these three sections constitute one iFDO file. This file contains header information 
on the entire image data set as well as detailed information on each image item within a defined set of images. 

The standardised fields in iFDOs are grouped into three iFDO sections (see Figure 46). An entire image set 

is defined by project-specific metadata (e.g., deployment, station, dive, mission) and requires information 
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on the ownership and allowed usage of the collection. All these metadata fields are placed in the iFDO 

core section. Numerical metadata is required for each image do document its acquisition position. The 

image-set-header part of an iFDO must contain three fields that must not be superseded by values in the 

image-set-items part. These are image-set-name, image-set-uuid and image-set-handle. All other fields 

may be provided as default values in the image-set-header, potentially superseded by values in the 

image-set-items part. These correspond to imaging context (image-context, image-project, image-event, 

image-platform, image-sensor, image-abstract), the navigation data (image-datetime, image-latitude, 

image-longitude, image-altitude, image-coordinate-reference-system, image-coordinate-uncertainty-

meters), image identification (image-uuid, image-hash-sha256) and the reuse permissions (image-pi, 

image-creators, image-license, image-copyright). 

Information on how image data was captured can be crucial to understand the information subsequently 

extracted from images. It is thus highly recommended to provide this information as part of the iFDOs 

capture section. This section is expected to grow with time, as additional (marine) imaging domains make 

use of the iFDO concept and extend the standard with fields for their specific use case. Existing iFDO 

capture fields currently fall into four categories. First, iFDO capture fields with restricted values that 

characterise the image material (e.g., image-acquisition: photo, video, slide; image-deployment: 

mapping, stationary, survey, ...; image-illumination: sunlight, artificial-light, mixed-light; image-capture-

mode: timer, manual, mixed; etc.). Second, numerical information on image capture (e.g., image-area-

square-meter, image-meters-above-ground, image-overlap-fraction, etc.). Third, pose and calibration 

information (e.g., image-camera-housing-viewport, image-camera-calibration-model, etc.). Fourth, 

information on the scope and limitations of the image acquisition (e.g., image-objective, image-target-

environment, image-fauna-attraction, image-temporal-constraints, etc.). Not all iFDO capture fields have 

to be populated for each data set. But providing a more complete set of field values for a data set is 

expected to increase its value and reuse potential significantly, in particular for yet unknown uses. 

Investing into the iFDO capture section will generate the visibility and credit for imaging efforts. By 

limiting some fields to restricted values, it is possible to classify and filter image data sets in data portals 

and to rapidly visualise data characteristics. See the iFDO fixed term icons section below for details. 

The iFDO content section fields are a mechanism to encode the semantic content of image data. Some 

fields encode quantitative scalar data extracted from the image material (e.g., image-entropy, image-

particle-count, image-average-colour). Other fields encode higher-dimensional feature descriptors (e.g., 

image-mpeg7-colourstructure).  

Most relevant for marine science is the iFDO content section for annotations. These are semantic 

classifications of groups of pixels in the images assigned by humans or algorithms. By establishing iFDOs 

as the standard format for image annotations, exchange and reuse is facilitated of this derived data while 

in parallel also making annotation data FAIR. Annotations require a set of semantic labels in the image-

annotation-labels field and a set of identifiers of humans or machines in the image-annotation-creators 

field. The image annotations are then encoded in the image-annotations field as a list of objects. These 

objects consist of a set of pixel coordinates, one or many label IDs, one or many annotator IDs and an 

optional confidence value. The format of the pixel coordinates is flexible such that point annotations, 

bounding boxes, polygons or whole image annotations can be stored. 
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By standardising the format and schema by which image data is characterised together with the semantic 

annotations of objects visible in images allows to implement operational machine learning systems for 

efficiently and effectively. As the iFDO format now provides a clearly structured schema as an interface 

between tools in the ML pipeline (e.g., image annotation tools such as BIIGLE43 and deep learning 

frameworks such as YOLO44) data scientists can now focus on the key aspect of tuning AI parameters and 

optimising to a specific marine science use case (see Figure 47). The creation of iFDO files requires to 

include all relevant metadata that are collected during image acquisition and initial pre-processing for 

quality management. This may include information on equipment (cameras and platforms), mechanisms 

for sensor time synchronisation, pixel scale computation and more. All this information needs to be 

bundled by an iFDO factory mechanism such as the one provided by the MarIQT python library (see Figure 

48). 

Figure 49. Creation and progression of an iFDO (green circles) and its derived versions. The left part shows how an 
iFDO uses persistent identifiers to reference itself within the FAIR infrastructure. The middle part shows how iFDO 
files can be discovered, shared, advertised, and validated. The right part shows how implementing iFDO-compliant 
APIs to marine science tools facilitates reuse of image data for arbitrary purposes. 

 

Figure 50. Creating an iFDO. Marine image acquisition is guided by OceanBestPractices45 and creates raw image 
data and raw position data (for in-situ imaging). Multiple processing steps (blue boxes) create derived data products 
(green boxes) that are ultimately merged by an iFDO factory process to one iFDO file (green circle). 
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Table 11. Overview of FAIR recommendations by the RDA46 and their implementation for marine images. 
Recommendations are ranked by the RDA as ‘Essential’ (*), ‘Important’ (+) and ‘Useful’. 
Recommendation Description Implementation for 

marine images 

RDA-F1-01M* Metadata are identified by a persistent identifier image-set-handle 
RDA-F1-01D* Data is identified by a persistent identifier Image-set-handle 

RDA-F1-02M* Metadata are identified by a globally unique identifier Image-set-uuid 
RDA-F1-02D* Data are identified by a globally unique identifier image-set-uuid 

RDA-F2-01M* Rich metadata are provided to allow discovery iFDO format 
RDA-F3-01M* Metadata include the identifier for the data Image-set-uuid 
RDA-F4-01M* Metadata are offered in a way to be harvested and indexed  OAI-PMH catalogue 
RDA-A1-01M+ Metadata contain info to enable accessing the data Image-set-handle 
RDA-A1-02M* Metadata can be accessed manually Image-set-handle 
RDA-A1-02D* Data can be accessed manually  Image-set-handle 

RDA-A1-03M* Metadata identifier resolves to a metadata record Image-set-handle 

RDA-A1-03D* Data identifier resolves to a digital object Image-set-handle 

RDA-A1-04M* Metadata are accessed through standardised protocol https 

RDA-A1-04D* Data are accessible through standardised protocol https, nfs, … 

RDA-A1-05D+ Data can be accessed automatically Image Broker API 

RDA-A1.1-01M* Metadata are accessible through a free protocol https 

RDA-A1.1-01D+ Data are accessible through a free access protocol https 

RDA-A1.2-01D Data are accessible with authentication and authorisation https 

RDA-A2-01M* Metadata are guaranteed to remain available after data loss handle system 

RDA-I1-01M+ Metadata use knowledge representation in standard format iFDO 

RDA-I1-01D+ Data use knowledge representation in standard format  e.g. jpg, png, mov 

RDA-I1-02M+ Metadata use machine-understandable knowledge 
representation 

iFDO schema 

RDA-I1-02D+ Data use machine-understandable knowledge representation e.g. jpg, png, mov 

RDA-I2-01M+ Metadata use FAIR-compliant vocabularies iFDO schema 

RDA-I2-01D Data use FAIR-compliant vocabularies  

RDA-I3-01M+ Metadata include references to other metadata e.g. image-creators 

RDA-I3-01D Data include references to other data image-uuid 

RDA-I3-02M Metadata include references to other data image-related-
material 

RDA-I3-02D Data include qualified references to other data N/A for images 

RDA-I3-04M Metadata include qualified references to other data Image-related-
material 

RDA-I3-03M+ Metadata include qualified references to other metadata  e.g. image-creators 

RDA-R1-01M* Plurality of accurate and relevant attributes are provided for 
reuse 

iFDO fields 

RDA-R1.1-01M* Metadata include information about the reuse license Image-license 

RDA-R1.1-02M+ Metadata refer to a standard reuse license Image-license 

RDA-R1.1-03M+ Metadata refer to a machine-understandable reuse license  Image-license 

RDA-R1.2-02M Metadata include cross-community provenance info Image-provenance 

RDA-R1.2-01M+ Metadata include community-specific provenance info Image-provenance 

RDA-R1.3-01M* Metadata comply with a community standard iFDO 

RDA-R1.3-01D* Data comply with a community standard e.g. jpg, png, mov 

RDA-R1.3-03M* Metadata use a machine-understandable standard JSON 

RDA-R1.3-02D Data use a machine-understandable standard e.g. jpg, png, mov 
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6. Machine-learning for automated image analysis 

Contributions from: Timm Schoening, Pedro Juan Soto Vega, Marjolaine Matabos, and the co-authors of 

the peer-reviewed papers that contributed to this section35,47–52. 

6.1 Overview 

Automated image analysis refers to the process of extracting meaningful information from images. It can 

involve a wide range of techniques and methods, depending on the type of image and the information 

being sought. The goal of automated image analysis is to extract meaningful information from images to 

better understand and interpret the visual data7. 

Image analysis includes steps such as image pre-processing, feature extraction, sometimes learning, and 

data interpretation. Image pre-processing typically involves adjusting the image to correct for things like 

brightness, contrast, and noise – which is essential for many subsequent processing steps such as 

machine learning7. Feature extraction involves identifying and extracting specific information from the 

image, such as the shapes and sizes of objects, the texture of surfaces, and the distribution of colours. 

Modern machine learning applications automate this step in the first layers of deep neural networks53. 

By automating this task, human-induced subjectivity is reduced, at the cost of increased computational 

effort to also tune these parameters52. Modern environments provide pre-trained feature descriptors to 

the community which can be tuned to specific automated image analysis tasks54. Finally, data 

interpretation involves using statistical methods, image annotations, crowd-sourcing, or other 

techniques to analyse the extracted features and draw conclusions about the image, i.e., to add semantic 

meaning to the visual image content43,47. The order of steps is nowadays blurred or intertwined as often 

there are multiple processing and interpretation steps involved in an iterative and complex workflow for 

automated image analysis55. 

6.2 Automated underwater image analysis 

Automated underwater image analysis is a subset of automated image analysis that is specifically 

designed to address the unique challenges of analysing images captured in an underwater environment, 

such as low light levels, murky water, limited visibility and lens distortion56. 

Some common applications of automated underwater image analysis include monitoring and conserving 

marine ecosystems, detecting and mapping underwater pollutants, and studying the distribution and 

behaviour of marine organisms7,57,58. However, it is important to note that the application of automated 

underwater image analysis requires expert knowledge to extract robust and meaningful information for 

decision support. For example, the limited visibility and poor lighting conditions in the underwater 

environment can make it difficult for computer algorithms to accurately identify and extract objects from 

images59. Additionally, the presence of suspended particles, bubbles, and other underwater debris can 

also complicate the analysis process60,61. Despite these challenges, advances in computer vision and 

machine learning are helping to overcome these limitations and making automated underwater image 

analysis an increasingly powerful tool for understanding and conserving the underwater environment. 

6.3 Requirements 

To do machine learning with images, you will typically need several resources and capacities. First, a 

dataset of training images is needed that are relevant to the machine learning task62,63. The images should 

be annotated with labels or other metadata that indicate what is contained in the images43,64. For object 

detection, the dataset should include images with bounding boxes around the objects of interest51. 

Resolution of the images and imaged objects is strongly impacting the machine learning method quality50. 

The big breakthroughs discussed in the media such as ImageNet were obtained with objects consisting 

of millions of pixels62. In underwater imaging, though, the objects of interest often consist of as little as a 

few hundred pixels, constituting a much greater algorithmic challenge. 
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Before a machine learning model can be trained, it may be necessary to pre-process the images to 

standardise their format and size, adjust their brightness and contrast, or perform other operations to 

improve their quality59. Normalisation is particularly important when dealing with underwater imagery 

and a multitude of methods has been proposed to solve this challenge59. Future deep learning tools might 

be able to overcome this challenge as they may be capable to overlook the visual challenges based on a 

large and diverse enough training set. One project that aims in that direction is FathomNet44,63. 

To be able to operate machine learning methods it is then required to extract relevant features from the 

images. There are many traditional feature extraction techniques available, including colour histograms, 

texture analysis, edge detection, but recently deep learning has turned into the method of choice. Deep 

learning techniques such as convolutional neural networks (CNNs) have been very successful for image 

feature extraction as they learn the feature representation from the data without the need for tuning 

based on human expert knowledge44. Learning feature representations with deep learning is now the 

state-of-the-art in image-based machine learning47. 

Once features have been extracted from the images, a machine learning algorithm can be trained into a 

model that can classify, detect, or segment objects in the images. Some traditional machine learning 

algorithms for image-based tasks include decision trees, support vector machines (SVMs), random 

forests, but nowadays neural networks are the dominant state-of-the-art for this step as well. 

Training machine learning models with images can be computationally intensive, especially when tuning 

deep learning architectures. This may require a powerful computer with a fast and large Graphics 

Processing Unit (GPU) to train models efficiently52. Alternatively, cloud-based services such as Amazon 

Web Services (AWS) or Google Cloud Platform (GCP) provide pre-configured environments for training 

machine learning models. 

6.4 Deep Learning 

Deep learning, as a subfield of machine learning and the state-of-the-art in automated image analysis, 

has additional requirements to be implemented and used effectively. Firstly, large amounts of high-

quality data are necessary. The data must be representative of the problem being solved and must be 

labelled accurately so that the algorithm can learn from it. Several hundreds of robust annotations per 

category are often stated as the bare minimum to allow the complex neural networks to adapt to the 

given task (as stated in the YOLOv5 documentation). 

Choosing the appropriate deep learning architecture, such as a convolutional neural network or a 

recurrent neural network, is crucial for success. Expertise in deep learning architectures and frameworks 

is required, including a deep understanding of the underlying mathematics, algorithms, and programming 

frameworks. This is key to enable training robust models that are not just overfitting to the training data 

but are capable of generalising across data sets. 

By building on successful deep learning frameworks and tools, such as TensorFlow, PyTorch, or Keras, the 

implementation of machine learning workflows can be done efficiently. 

The diversity of methods and applications that fall under the umbrella term deep learning is growing and 

evolving rapidly. About two years back, e.g., the discussion about creative art works produced through 

so called Generative Adversarial Networks (GANs) showed that artificial intelligence (AI) is capable of 

further tasks that were thought to remain human-centred for a while65. Now even GANs are not state of 

the art anymore but tools like the currently hyped DALL-E are trained on diffusion-based methods66. 

These allow to create artificial images from text inputs. Variations of this concept have been developed 

by various AI research teams, e.g., DALL-E was created by OpenAI which is also behind ChatGPT. Others 

like Imagen by Google also use backwards diffusion whereas StabilityAI uses stable diffusion for their 

creative AI. All of these are trained on vast image data bases but are hence also restricted by the type of 
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training data that are available to them. Figure 51 shows, that deep-sea imagery was clearly not part of 

the training data. Efforts like FathomNet and standardisation of image data for publication, e.g., using 

iFDOs can help in the future to develop generative deep learning models that can also comprehend how 

deep-sea images look like35,63. 

   

Figure 51. AI-generated images from the input phrases: ‘a deep-sea seafloor image’ (left), ‘manganese nodule 
field in the deep sea’ (middle) and ‘a top down looking deep-sea seafloor image with a holothurian’ (right). All 
images were created by OpenAI’s DALL-E. 

The stronghold and deep learning with images came from the development of ImageNet by Google and 

the subsequent rapid evolution of methods62. This led to powerful networks for object detection and 

object classification (i.e., identifying which pixels in an image are interesting and identifying to which 

semantic / human category these pixels belong). Back bone examples are VGG16, ResNet, DarkNet67,68. 

These were used and extended in different scenarios for examples in two-stage architectures that are 

comparatively slower yet attain higher accuracy such as R-CNN, Faster R-CNN or SPP-Net as well as one 

stage architectures that are very fast such as YOLO up to its current version YOLO v844,69. Other examples 

are RetinaNet for pose estimation and instance segmentation or CenterNet70. 

In other deep learning tasks, where a complete segmentation (i.e., every pixel is assigned to a known or 

unknown group rather than extracting an area of interest) of image is targeted a different family of 

methods has been developed. These include encoder-decoder architectures such as UNet, Seg-Net, 

LinkNet or TernausNetV2. More information is included by architectures that concatenate the learned 

features from the backbone networks such as DeepMask, SharpMask or Frnet. Other architectures use 

Spatial Pyramid Pooling or Dilated Convolutions and the list of specialties and application scenarios 

evolves and evolves and it is most certainly impossible to keep track of the rapidly evolving field. It is also 

often impossible to properly reference the developments as research progress is usually published 

through pre-print or as posts in company blogs and social media. This makes it nearly impossible to 

compare qualities of AI methods and to calibrate across tuned architectures for a specific use case. More 

worryingly, the current state of the art requires that an AI system must be tuned for each and every new 

application in case one of the acquisition parameters changes. This can include a change in illumination, 

change in camera orientation, change in resolution, etc. 

6.5 Annotations 

Robust annotations are the key ingredient to make AI work. The breakthrough discoveries in the AI 

community are based on well-annotated data, rather than the network architectures or compute 

power62. The number of annotations needed to train a state-of-the-art object detection network such as 

YOLOv5, depends on several factors, including the complexity of the task, the quality and diversity of the 

data, and the size of the network44. As a general rule, the more complex the task, the more annotations 

are needed. For example, training a model to detect objects in cluttered scenes with many overlapping 

objects will require more annotations than training a model to detect objects in simple, clear scenes. 
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The quality and diversity of the data also play a role in the number of annotations needed. If the data are 

high-quality and diverse, with examples of the objects of interest from a variety of viewpoints, scales, and 

orientations, then fewer annotations may be needed. The size of the network can also impact the number 

of annotations needed. Larger networks typically require more annotations to achieve good 

performance, while smaller networks may be able to achieve good performance with fewer annotations. 

In general, it is difficult to give a specific number of annotations needed to train YOLOv5 or any other 

object detection model, as this will vary depending on the specific task and data44. However, it is common 

to use thousands or tens of thousands of annotations for object detection tasks, and the number may be 

even higher for complex or challenging tasks. 

To make AI widely applicable to underwater image data hence requires a step-change in sharing and 

publishing image annotations. The community needs open-sourced annotations that are provided in a 

standardised format for interoperability between annotation tools, AI training methods and for cross-

calibrating tuned models43. 

6.6 AI developments focussed on marine images 

Approaches to standardise marine image analysis 

A growing number of initiatives is currently aiming in this direction. The SMarTar-ID scheme can provide 

a catalogue of operational categories for annotation labels that is based on standardised fauna data bases 

and metadata formats such as the World Register of Marine Species, OBIS and DarwinCore71,72. 

The iFDO concept (see above) developed through iAtlantic provides a metadata schema and file format 

for the image data that needs to be openly shared for AI, as well as for the image annotations that need 

to be open-sourced35. This format is currently being picked up by several interested stakeholders and 

implemented into community tools such as BIIGLE43. 

The FathomNet initiative likely provides the unifying component to assemble the federated data sets that 

are hosted nationally or institutionally into one data base for underwater images63. The standardisation 

efforts such as SmarTarID or iFDOs can provide one efficient mechanism to widen the data contributions 

to FathomNet. 

How to acquire images 

The platforms and sensors used to acquire underwater image data are highly customisable. With 

cameras, illumination sources and deployment protocols changing rapidly, even during one survey cruise, 

image data of differing quality is creating that may serve different analysis needs7. The extraction of 

information from heterogeneous imagery requires particular attention. This affects automated 

approaches using AI, but similar attention is required during manual image annotation for non-automatic 

analysis or the generation of training data for machine learning applications50,51. 

The area of seafloor which may be imaged by an optical platform is determined by the lens parameters 

used in the camera system, distance and orientation to the seafloor, sensitivity of the system to motion 

and illumination, and a range of other factors73. Larger areas of the seafloor can be imaged with wide-

angle or ‘fisheye’ camera systems56, though there is an associated vignetting effect rendering the details 

collected from the extremities of an image less rich than areas of seafloor more directly located below 

the lens center74. The raw images collected by those camera systems can appear quite distorted, and 

manual labelling of fauna within these images is more difficult towards the edges of each image. Digital 

post-processing of these distorted images can be reasonably straightforward when the arrangement of 

optics for an imaging platform is known, and for larger fauna these processed images can be suitable for 

subsequent analysis 75,76. However, image processing cannot create ‘newly improved’ data, and therefore 

there will always be a loss of information at the image boundaries after lens correction. Image analysis – 

manual as well as automated – could therefore focus on central parts of the image, and the boundary 
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area of images could be used to display, for example, navigation metadata. Lenses of a more ‘telephoto’ 

or narrower angle will allow collection of less distorted images, though these collected images will 

capture a significantly smaller area of seafloor than may be achieved with wider-angle systems. 

The deep sea is a dark environment with no sunlight penetration. It is therefore essential that camera 

systems are supplemented by artificial illumination. To provide sufficient illumination for video and still-

camera systems, abundant power reserves must either be mounted on the platform or delivered via a 

cable from the support vessel. Positioning of the lights on an imaging platform can be difficult, and 

optimising the spread of light, i.e., maintaining an equal light balance across the imaged area, can be 

challenging. Illumination vignetting can be partially addressed prior to analysis by excluding the image 

edges from analysis 74. Additionally, when the lights and camera are mounted close to each other, a 

significant amount of light might be scattered by the water column into the camera, leading to a degraded 

‘foggy’ image, which is an issue for small platforms and/or high-altitude photography. Finally, the colour 

spectrum of the light also needs to be considered, as for instance the returned yellow, orange, and red 

components of the signal may be too weak to support taxonomic identification, depending on the type 

of light source. This spectrum change can affect human interpretation, reduce discriminability by 

automated systems due to a reduces contrast range available and is particularly relevant in UHI 

applications. Any illumination system needs to be set up to accommodate the target altitude of the 

camera platform above the seafloor as well as the expected altitude variation. 

Image resolution is derived from a combination of the camera optics and the deployment altitude and 

allows comparing image datasets numerically. The camera optics determine the pixel resolution (usually 

in the tens of megapixels for state-of-the-art camera systems). The field of view of the camera objective 

lens and the deployment altitude determine the image footprint, i.e., the area in square meters that is 

covered by a single image acquisition. These two values can be combined to a measure of megapixels per 

square meter (MP m−2) – or the numerically identical value given in pixels per square millimetre (P mm-2) 

– to e.g., analyse annotator performance or fauna density estimates consistently. 
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Figure 52. The effect of image resolution (given in megapixels per square meter images) on the horizontal axis on 
various aspects of underwater image analysis. Key metrics reported in scientific papers such as Fauna Density (a) 
and observed Fauna Size (b) are correlated with resolution. Effort in imaging the seafloor increases with resolution, 
for the effort in inspecting the images for annotation this increase is disproportionately large. Robustness of 
annotations (e.g., measured in observer agreement (g), Cohens kappa (i) or uncertainty in annotations (c) also 
increase with resolution). Figure from Schoening et al. 20203 

A study conducted within iAtlantic explored the effect of image resolution on manual fauna annotation. 

The study looked at the effect of using various camera systems of different resolution at different 

altitudes over ground. A group of trained annotators marked megafauna in the deep seafloor images 

which allowed to assess derived annotation statistics as well as to compare annotators’ performances. It 

showed an obvious is the increase in observed fauna density with imaging resolution (see Figure 52a). 

This trend was mirrored in the observation that the median size of the annotated fauna decreases with 

increasing resolution (see Figure 52b). Together, it was be reasoned that the increased resolution allows 

annotating smaller objects, increasing the total amount of individuals annotated. Nevertheless, it is also 

 
3 https://bg.copernicus.org/articles/17/3115/2020/ 
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obvious that the increased resolution comes with an increase in observer disagreement (see Figure 52c) 

shown by an increase in the standard deviation of fauna densities estimated the five annotation experts. 

This means that trained annotation experts tend to disagree more on image data of higher resolution. 

Figure 52(d–f) highlights the trade-off between image resolution and effort involved in inspecting the 

seafloor images. In Figure 52d the increase in resolution comes with a decrease in acquisition efficiency 

in terms of the area per hour (m2 h−1) that can be imaged. Figure 52f shows, that although higher densities 

of fauna are detected for high-resolution datasets, it still requires manually inspecting more megapixels 

per annotation compared to lower-resolution datasets. The annotation effort for such high-resolution 

datasets is thus disproportionately large. 

From the abovementioned observations result some general guidelines on the collection of good-quality 

image data.  

a) A well-documented camera system should be used: aperture, sensitivity, lens arrangement and 
mounting angle. 

b) For a given study location, a comparable survey deployment plan should be used at each time 
step of analysis: the same sensor payload, instrument platform altitude, deployment speed, 
seafloor area imaged and sample unit size. 

c) Illumination should be maintained across deployments: intensity, wavelength and mounting 
angle. 

d) The lowest feasible altitude above seabed using a given platform will always provide higher-
resolution data and higher taxonomical resolution in the faunal identification. 

e) Annotations by several observers need to be collected and thoroughly merged to create robust 
data for interpretation. 

Guideline a) was thoroughly supported by the work conducted in iAtlantic on making marine image data 

FAIR with iFDOs35. 

Guidelines b) – c) are recommendations that can potentially be overcome by developments in AI 

methodology that can circumvent aspects of heterogeneous image data. It was aspired to also address 

these during iAtlantic – unfortunately the global pandemic did not allow to acquire the necessary baseline 

data for this far-reaching goal. 

Guideline e) was a necessity for creating robust annotations: for manual scientific interpretation, for 

assimilating robust data into disruptive AI training data sets as well as for creating training data for AI 

applications. Despite the cost involved with this guideline, following it can lead to better publications and 

better automation of the image analysis challenge. 

How to annotate 

In any image annotation task, the results should be of a quality to allow including them in a scientific 

study or in a decision process50. In marine image annotation, the concept for a high or low annotation 

quality is often not clearly defined51. This section describes quality measures for image annotation as well 

as ways to create reference data sets for comparison, also referred to as gold standards and is based on 

a previously published paper51. 

In contrast to other scientific imaging domains, such as digital pathology, there are no protocols and 

reports available that guide users (often referred to as observers) in the non-trivial process of assigning 

semantic categories to whole images, regions of interest (ROI) in images, or objects of interest (OOI). 

These protocols are crucial to facilitate image analysis as a robust scientific method, particularly in case 

of annotations to be used as a basis for training machine learning methods. 

To assess annotation quality, a test set of images with a gold standard annotation result is required. The 

test set must represent the diversity of input signals and structures monitored, which means that each 

category considered in the study shall be represented with an appropriate number of examples. The gold 
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standard must be accepted by the scientific community to be an acceptable approximation of the ground 

truth. To acquire a gold standard for a test set of images three different strategies have been applied in 

the past: i) basing the gold standard on the annotations of one renowned expert; ii) creating a consensus 

expert that represents the joined expertise of a group of trained annotators; iii) ground truth data where 

e.g., sampling allows to robustly identify taxa visible in images. 

Once a gold standard has been created, annotations can be evaluated against this gold standard. Many 

studies report different quality metrics and mention terms like accuracy or precision to denote the quality 

of an annotation process, sometimes even using these metrics in a wrong way or without a concise 

definition. In general, two overarching quality metrics need to be considered for annotation. First, an 

accuracy metric that relates an annotation set to a gold standard, and second, a reproducibility metric 

that assesses how robust an annotation set is, i.e., how well it can be reproduced, e.g., by the same 

annotator. 

Accuracy thereby describes the ability of an observer to make decisions or classifications that can be 

considered as correct, condition to an available gold standard representing the state-of–art knowledge. 

To assess the accuracy of an annotation, a test set of image data must be provided together with a gold 

standard and the accuracy is usually described by statistics such as Precision, Recall, Positive Predictive 

Value, etc. 

The ability to reproduce results from an experiment is one cornerstone in good scientific practice and 

must be considered in the development and application of new scientific methods. In the context of 

marine image annotation this term describes the ability of one observer to either reproduce her/his 

results or the results of a second observer for the same data set. The reproducibility should be discussed 

separately from the accuracy since the significance of an accuracy assessment depends on the availability 

of an accepted gold standard. But even if such a gold standard is missing, the ability of one observer to 

reproduce her/his results or the results of a second observer must be shown to demonstrate the potential 

of an imaging-based approach to produce significant results. In fact, if the classification task is very 

complicated and difficult to perform by the observers due to the image quality, a reproducibility analysis 

should be carried out before collecting gold standard annotations or should be an integrated part of this 

procedure. 

In-situ computation capacity 

Marine imaging easily creates Terabyte-sized datasets for single camera deployments. Image processing 

both by humans and machines requires substantial compute capacity to extract information from such 

big data sets. Algorithms employed to automate the analysis commonly rely on large-scale compute 

infrastructure. So far, such an infrastructure has only been available on-shore. There is a clear trend 

towards bringing analysis capacity out to sea. For image data specialised GPU (Graphics Processing Unit) 

compute capacity is required. Within iAtlantic, the Sea-going High-Performance Compute Cluster 

(SHiPCC) units were completed, tested and deployed during months-long expeditions for image 

analysis52. They are mobile, robustly designed to operate with electrically impure ship-based power 

supplies and based on off-the-shelf computer hardware. Each unit comprises of up to eight compute 

nodes with graphics processing units for efficient image analysis and an internal storage to manage the 

big image data sets. Successful deployment of a SHiPCC unit at sea has allowed to extract semantic and 

quantitative information from a Terabyte-sized image data set within 1.5 h, representing a relative 

speedup of 97% compared to a single four-core CPU computer. Enabling such compute capability out at 

sea allows to include image-derived information into the cruise research plan, for example by 

determining promising sampling locations. The SHiPCC units are envisioned to generally improve the 

relevance and importance of marine imagery for marine science. 
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At present, this development is advanced further to bring the compute capacity – and thus intelligence – 

right into the diving camera system itself. With embedded GPU compute components such as the NVIDIA 

Jetson boards, image processing capacity can be deployed in-situ for edge computing scenarios. This 

innovation development was directly inspired by the results achieved during iAtlantic and the 

implementation of the standardised image processing methods for the AI applications. The goal is to bring 

automated image processing, image quality assurance and automated image information extraction (e.g., 

object detection and classification) to depths, enabling to adjust deployment missions live as well as to 

inform robotic platforms with an image-based backseat-driver capability. 

Examples of current machine learning for underwater imaging 

GEOMAR developed an automated and fully-integrated seafloor classification workflow in the context of 

iAtlantic, aimed at classifying the seafloor into habitat categories based on an automated analysis of 

optical underwater images with a minimal number of human annotations49. The workflow employs 

automated laser point detection for scale determination and colour normalisation as well as a semi-

automatic generation of a training data set for tuning a seafloor classifier. The global COVID-19 pandemic 

and technical gear failure of AUV Autosub6000 during the iMirabilis expedition led to the unavailability 

of a well-annotated image dataset from iAtlantic target areas, acquired by heterogeneous acquisition 

devices (camera platforms and cameras). The workflow was hence applied  to an image dataset from the 

Pacific Ocean. 

The proposed workflow operates on optical RGB still images recorded by any moving platform such as an 

ROV, AUV or towed camera system. The workflow starts with automatically detecting laser points and 

using these to infer the photo scale required for colour normalisation. This normalisation is implemented 

by matching the histogram of all other images to the respective reference image. The images are further 

rescaled to a defined resolution, and central parts of the image are cropped out to create data with equal 

spatial footprint in square meters. A labelled training set is then generated semi-automatically, and used 

to tune a convolutional neural network (CNN) classification model using the Inception V3 architecture77. 

Further, an empirical comparison of four sampling strategies is done to identify the optimal strategy to 

generate training data for tuning an unsupervised seafloor classification model.  

Although the workflow was tuned for the Pacific data set, the method is generally applicable to 

characterise other seafloor settings, given appropriate training data. This workflow will be modularised, 

and its components standardised according to the FAIR machine learning infrastructure described below. 

IFREMER implemented Deep Learning (DL) methods in the context of iAtlantic to assist in recognition 

procedures to produce local high-resolution maps of vent and non-vent habitats and communities at the 

Lucky Strike vent field along the mid-Atlantic Ridge. The DL was used due to its ability to learn and extract 

useful information from the images automatically. The development was carried out with 2D images to 

identify fauna, sea-bed substratum, and anthropogenic debris. Multiple DL architectures were evaluated 

in the substratum characterisation task with a focus on Convolutional Neural Networks (CNNs) such as 

VGG, ResNet and Xception. The model training was conducted in a multi-class and multi-label image 

classification scheme, generating models for the recognition of the substratum in all characterisation 

criteria. Following model training, an ensemble of classifiers was formed, optimising the robustness of 

the entire classification system. Results show the suitability of such techniques for correctly categorising 

the substratum, a fundamental driver of species distribution. A novel procedure based on uncertainty 

measures has been introduced in the substratum characterisation to reduce human annotators’ effort 

and increase confidence in the DL-based model predictions. The workflow helps in defining which images 

need to be audited after the models have predicted them in order to optimise image classification 

accuracy. 
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Another innovative contribution to automatically interpret underwater images with AI methods includes 

the development to characterise and visualise multi-hectare areas of seafloor by means of AUV imaging, 

automated image correction, and algorithms such as autoencoders that learn from visual and spatial 

information78.  This approach has shown robustness and applicability in multiple use case scenarios such 

as monitoring marine protected areas or detecting anthropogenic structures and biologically active 

sections around chemosynthetic habitats. 

Some AI methods have already found their way into selected community best-practice tools such as 

BIIGLE which implements methods to rapidly create and validate annotations provided by humans or AI-

based methods such as MAIA which supports automated classification47. In order to detect regions and 

objects of interest, other methods are implemented within BIIGLE such as the Unsupervised Knowledge 

Transfer method that can transfer knowledge learned from one image data set and its annotations to 

another dataset with comparable, yet different visual characteristics48. 

6.7 Recommendations towards a FAIR machine learning environment 

Developments in general machine learning methods for image analysis have been rapid and focussed on 

the effectiveness of the methods end the efficiency of their execution rather than efficiency of their use 

or re-use. Applications of those ML methods to specific marine image analysis by tuning to use case data 

sets has also rapidly increased in number, yet, a generalisation or standardisation of such adaptations is 

still lacking robustness towards data changes, development sustainability, reusability, and scientific 

reproducibility, i.e., FAIR-ness of machine learning for marine image analysis is lacking. Most important 

in reaching robustness and reproducibility is standardisation of components of the machine learning 

framework and open and FAIR publication of data items used in the data flow across the framework (e.g., 

image data, annotation data, processing instructions how to turn images and annotations into ML 

models). While for some components of a FAIR ML environment (see Figure 53) standardisation exist 

(e.g., DarwinCore metadata standard for fauna observation metadata required for annotation 

catalogues) others are still under development and yet to be adopted by the marine imaging community. 

The iFDO format, for example, is currently not a standard, as its widespread adoption by the marine 

science community is still needed. Once iFDOs becomes a standard for image metadata exchange, they 

will provide a standardised mechanism for the annotation data required for training a FAIR machine 

learning system. 

It is yet unclear which technology will become a common solution for developing ML training systems. A 

potential candidate is Docker that has become a de-facto standard in software development, DevOps, 

and for the orchestration of even complex IT infrastructure. It represents a powerful mechanism by being 

maintained internationally, being supported by many software tools and by representing a means to 

share procedural information in a compact format that allows for efficient sharing, documentation for 

reproduction, adaptation for re-use, etc. 

The second generalisation that could support a more widespread use of ML systems is the adoption of a 

standardised format for trained ML systems. A prominent solution that is yet underused in marine science 

is mlflow4. This platform is being developed with a comprehensive industry backing. It allows users to 

describe, save and load trained ML systems for distribution and re-use. Building an ML model for a marine 

imaging use case with this platform would thus give the opportunity to publish a re-usable product 

alongside a journal publication with its own data interpretation. Given the rapid evolution of foundational 

machine learning methods (see section Deep Learning) it cannot be expected that all these innovative 

products follow the mlflow paradigms. It is thus even more important to share adaptations of those 

foundational models for marine imaging use cases through the Docker mechanism. 

 
4 https://mlflow.org 

https://mlflow.org/
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To add operation ability to the standardised open and FAIR data components in the FAIR ML framework 

requires several software tools. Potential candidates for acquiring images are as diverse as the marine 

imaging community. One example would be the Azor drift-cam described above1. Storing the image data 

(i.e., photos and videos) requires substantial disk capacity, available through large, centralised data 

repositories such as Pangaea or Zenodo or through federating FAIR institutional media asset 

management systems. Creation of annotation data for training requires annotation software such as 

BIIGLE or Squidle+. The created annotation data needs to be made publicly available through data 

repositories such as Zenodo as well. Once these requirements are met, FAIR ML applications can be built. 

These can be tuned and operated on various computer hardware such as desktop computers, mobile 

GPU clusters (see SHiPCC section above) or on large-scale HPC (High-performance computing) 

environments in the cloud. Importantly the Docker instructions to build the models have to be published 

in repositories as well. As they represent code that is subject to evolving change it might be most efficient 

and effective to keep these instructions in code repositories such as Git (e.g., Gitlab). To make them 

sustainable and available to future FAIR use it would be required to publish them with a persistent 

identifier assigned (e.g., a DOI for a static Docker file publication, or a Handle URL pointing towards the 

current head of a code repository). The same consideration applies to the trained AI models that would 

likely be published through Git- and DOI-based AI model zoos. A simpler solution would be to publish 

Docker files and/or trained models in data repositories such as Zenodo as well. 

Only if all data items and processing steps are available FAIR and open in a reproducible fashion will the 

FAIR ML environment become reality. The benefits will lie in easier adoptability to new data sets and use 

cases; an efficient sharing of results and trained products and a general increase in robustness of methods 

and the interpretation results needed for researching the oceans and informing important decisions. 

Figure 53. Sketch of the proposed FAIR machine learning framework for marine image analysis. Green entities 
represent data items, e.g., images, annotations, or operation procedures. Blue squares represent examples of 
existing infrastructures that can facilitate operationalising parts of the framework. Red items denote 
standardisation formalism necessary to advance the TRL of machine learning for marine image analysis beyond 
demonstrator cases. Currently lacking in the community are published AI models and published operation 
procedures to reproduce scientific studies. 
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7. Future Perspectives 

Marine imaging will remain a key technology in exploring and monitoring the ocean and human activities 

within. Technological evolutions like the developments described in this report will contribute to the 

growing importance of imaging in creating ocean narratives and in the widespread application of marine 

imaging to answer scientific questions and to address scenarios in decision making processes. 

Developments, such as those described in this report will emerge around the world and contribute to 

building and enhancing human and technological capacities around marine imaging. 

Obvious future advances in imaging can be expected from ongoing technological developments. ChatGPT 

AI system was asked to predict the advances of marine imaging and it answered with the following main 

areas — high resolution imaging, 3D underwater imaging, the availability of autonomous vehicles and 

advances in AI and augmented reality using marine images. In additional to these AI predictions, we can 

expect technological advances such as low-light acquisition capacity, long-range/long-term camera 

platforms and integration of components of marine imaging into seamless workflows. 

Bridging gaps between solitary technology developments is one key challenge for future research and 

implementation. Making marine image data FAIR needs cameras, deployments and image workflows that 

build upon the added value of FAIR-ness. Low-cost camera systems need efficient interpretation 

workflows to cope with the increasing data amounts created by simplified data acquisition. Hyperspectral 

imaging systems need 3D reconstruction for robust scene understanding. And bridging the gaps towards 

non-imaging developments is essential for integrating image data into information transfer processes as 

well. Predictive habitat mapping, e.g., requires ground-truth observation data, often created from marine 

images. With more habitat information available from calibrated hyperspectral data and from wide-

spread observation capacity by reduced camera cost, habitat maps can be built with more data and more 

informative data, ideally leading to increased robustness. With FAIR and thus transparent and 

provenance-tracked data and data processing, habitat maps will gain more trustworthiness as 

interpretation and processing steps and decisions in creating ground-truth data become reproducible. Of 

course, the machine learning for habitat mapping itself should also become open and FAIR, comparable 

to the proposed FAIR machine learning infrastructure. By replacing image-based models in the 

infrastructure scheme with habitat mapping models, the same concept becomes applicable to the habitat 

mapping use case as well. 

With image-based observation data being available to the research community, with machine learning 

models becoming operational in many marine science domains and with standardised and interactive 

visualisation tools entering the research process, all components to build Digital Twins for image-based 

workflows are now available. Operational Digital Twins that allow stakeholder engagement and decision-

making support through exploring ‘What-if’-scenarios around image data are still missing, though. But 

demonstrators and larger visions can be expected within the next few years. Once technology 

developments, such as those described in this report, become inherently compatible with Digital Twin 

architectures, the uptake of image-derived information into scientific studies or monitoring can be 

substantially increased in volume and speed. Of course, this requires further investment in researching, 

developing, and implementing standards of data formats and interfaces between tools across image data 

workflows. By doing so, marine image data can contribute to Digital Twins in many ways. It will provide 

very high-resolution seafloor mapping (i.e., at sub-millimetre resolution) also in extreme environments 

for localised habitat predictions, e.g., around vents as demonstrated within iAtlantic WP2. It can enable 

marine organism tracking by turning traditional camera platforms such as AUVs and ROVs into smart 

monitoring robots that use camera data and automatically extracted information to implement a 

‘backseat-driver’ functionality that keeps objects of interest within the field of view of the camera. This 

requires a Digital Twin of the vehicle platform that models the robotic system state and uses image-
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derived observations to predict the required control commands to precisely manoeuvre the camera 

platform and illumination source. It further requires implementing edge computing capacity on camera 

platforms, i.e., bringing GPU computers down to the deep ocean. 

The Digital Twin concept also holds promise to open research processes, solving the demands of funders 

to communicate and transfer knowledge while simultaneously providing novel research capabilities to 

researchers. This appears to be a win-win-scenario within which researchers themselves become drivers 

of the cultural change towards digital science. 

The Digital Twin concept allows efficiently involving a wider group of stakeholders into information 

extraction and decision-making processes. Other aspects of marine imaging also require a more efficient 

and effective incorporation of human expertise, particularly in this time of a growing AI footprint in 

marine imaging. While it is simple to run a pre-tuned AI system and generate and publish impressive 

training results it remains yet to be seen whether a leap in generalisation capability can be achieved with 

marine images and AI. The same is true for habitat mapping. Solving this issue would require the AI 

technology for image interpretation to be made widely applicable across data sets and ocean basins. Key 

in that direction are large and robust training data sets that rely on quality-controlled annotations. To 

efficiently and effectively collect these, it is key that annotation protocols encourage the use of methods 

for automated assistance and the adherence of annotation best practices wherever possible. There is still 

room for improvement within the marine image analysis community to adopt modern image annotation 

tools and procedures. 

To further align and standardise ocean observing across geographical regions, marine science domains, 

research institutes and marine sectors, marine imaging needs to expand on concepts such as the FAIR 

Digital Objects for images. Standardisation of protocols, interfaces and formats is essential to increase 

the efficiency and effectiveness of marine image analysis. Further research and implementation efforts 

are needed to turn these concepts into operable reality for researchers and the public. 

Imaging will further contribute to map deep and open-ocean ecosystems at local, regional and global 

scale. With more cameras available, simplified deployment strategies and citizen science applications 

entering deeper waters, the footprint of marine imaging will rise across space, time, resolution, and 

wavelength. A particular focus for future mapping applications is the open pelagic ocean that promises 

to hold unexplored aspects of oceanic life and processes. With dark imaging and low-noise and low-

electromagnetic emission platforms, pioneering research can be expected. 

To fully understand oceanic processes across compartments and domains, such new insights are required 

and can partly be provided by marine imaging. By linking research domains and methodologies, such as 

in habitat mapping for the 3D pelagic environment, society can advance its capacity to assess the stability, 

vulnerability and tipping points of ecosystems. 

Alongside these research and curiosity-driven developments and the formalisation and standardisation 

will come a transfer of methods, gear, and capacities for a sustainable blue economy. Digital 

developments that make marine image data FAIR and open already contribute to international platforms 

such as EMODnet for data sharing, access, and interoperability. With ongoing efforts to build a digital 

marketspace within GAIA-X, these FAIR and open contributions of image data – as well as image analysis 

methods – can also create a financially relevant value chain, for researchers and research institutes, to 

sustainably support future mapping, observing, monitoring, and automating projects. 
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