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A B S T R A C T

Accurate nearshore bathymetry estimation remains a critical challenge, impacting coastal forecasting evolution
assessments through the inaccuracies in both in-situ and remote sensing surveys. This article introduces the
Satellite Derived Bathymetry (SDB) temporal correlation method, showcasing its ability in deriving accurate
nearshore bathymetry from one minute spaceborne videos. The approach utilises correlation of pixel intensity
time series, shifted in time and space, extracted from a frame stack within a defined correlation window.
The resulting correlation is then projected using the Radon Transform to infer wave characteristics (celerity
and wavelength) for the estimation of depth through wave linear dispersion. Moreover, the adaptation of
the correlation window based on a first wavelength estimation provided a more focused assessment of the
wavefield that reveals morphological features such as sandbars in the bathymetric estimation. The method’s
capabilities using adapted correlation window is illustrated through its application to a metric resolution Jilin
satellite video (57 s at 5 Hz) along the Saint-Louis coast in Senegal. Through this demonstration, the temporal
correlation method is among the first SDB methods to successfully capture the submerged sandbar along a
beach. Comparison against in-situ measurements conducted three years prior to the video acquisition shows
a good agreement with a bias of 0.97 m within the initial 2 km of the cross-shore profile. Furthermore, the
application of previously developed sky-glint surface elevation analysis on video pixel intensity, prior to the
bathymetry estimation, significantly reduces the bias to 0.44 m in the Saint-Louis estimation. This article
highlights the potential applications of future Earth observation satellite missions that will capture image
sequences (or videos) such as CO3D (CNES/Airbus).
1. Introduction

Nearshore morphological change, notably concerning the
bathymetry, dictates most of nearshore hydrodynamics that then in-
fluences patterns of coastline erosion/accretion. Sandy beaches often
exhibit a complex arrangement of sub- and/or inter-tidal sandbars,
influenced by the specific local environmental conditions, hence par-
ticular for each beach (Wijnberg and Kroon, 2002). Coastal zone
evolution ranges across a broad spectrum of temporal scales, ranging
from short-term due to storm events to longer-term change related to
climate modes or for example the sea-level rise (Anfuso et al., 2021).
These multiple temporal evolutions require long-term monitoring of
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the coastal zone through short and regular sampling. In addition,
considering that the bathymetry is a key boundary condition of the
nearshore hydrodynamic and morphodynamic process modelling, the
accuracy of these models is highly dependent on the accuracy of the
initial bottom boundary conditions (Sherwood et al., 2022).

In-situ nearshore bathymetry is traditionally sensed using an echo-
sounder (single or multi beam) on boats, often with differential or
Real Time Kinematic Global Positioning System (RTK-GPS) correc-
tions. However, the substantial human and financial resources required
to execute these surveys results in only a few coastal sites being
regularly monitored. To address this limitation, coastal monitoring
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cameras and drones offer a cost-effective and flexible solution for
sensing coastal environments. Unlike most in-situ measurements, the
retrieval of a geophysical variable of interest requires the applica-
tion of algorithms to the remotely sensed data (Holman and Haller,
2013). Over the past decades, this shift towards cost-effective solu-
tions has accelerated the development of inversion algorithms capable
of deriving bathymetry from shore-mounted cameras and Unmanned
Aerial Vehicles (UAVs) offering a practical means to conduct less
expensive long-term studies (Stockdon and Holman, 2000; Plant et al.,
2008; Holman et al., 2013; Radermacher et al., 2014; Bergsma et al.,
2016; Holman et al., 2017; Matsuba and Sato, 2018; Brodie et al.,
2019; Bergsma et al., 2019c; Holman and Bergsma, 2021; Palmsten
and Brodie, 2022; Rodríguez-Padilla et al., 2022; Lange et al., 2023).
Also airborne LiDAR (Light Detection and Ranging) applications are
being used for bathymetric surveys but require powerful computa-
tional resources (Zhou et al., 2021; Saylam et al., 2018). Although,
these remote sensing approaches have emerged as effective alterna-
tives by demonstrating their capability to derive accurate nearshore
bathymetry (Wilson et al., 2014; Angnuureng et al., 2020), these solu-
tions remain limited by their spatial coverage. Additionally, while this
is slowly changing, these solutions are deployed in places where coastal
communities have enough resources, leaving less developed areas with-
out the means to protect against erosion and flooding risks (Ndour
et al., 2018).

Vitousek et al. (2023) state that satellite remote sensing is trans-
forming coastal science from a ‘‘data-poor’’ field into a ‘‘data-rich’’ field.
This holds particularly true for shoreline and nearshore bathymetry
measurements, as satellite-derived bathymetry (SDB) achieves unprece-
dented spatio-temporal coverage, enabling capturing multi-scale be-
haviour in coastal processes. Two separated approaches allow measure-
ment of SDB. The first approach uses the way that light diminishes
with depth in water on optical satellite acquisitions, determined by
radiative transfer in the water column (Stumpf et al., 2003). This
technique works well in clear non-turbid waters. The present study
approach uses the wave kinematics to estimate nearshore bathymetry:
it relies on how bathymetry affects waves in shallow water as wave
motion is modulated in response to the water depth. Consequently,
deriving the inherent characteristics of the wavefield provides a direct
means of estimating the depth of the seafloor over which it propagates.
This approach is developed in SDB estimation methods for optical
satellite acquisitions (Abileah, 2006; Danilo and Binet, 2013; Holman
et al., 2014; Poupardin et al., 2016; Bergsma et al., 2019a; de Michele
et al., 2021; Bergsma et al., 2021) and Synthetic Aperture Radar (SAR)
satellite acquisitions (Wiehle et al., 2019; Bian et al., 2020; Pereira
et al., 2019; Mudiyanselage et al., 2024). This approach is significantly
less, to hardly, affected by turbidity contrarily to the radiative ap-
proach. Such wave-based techniques obviously require waves in the
observed scene (Cesbron et al., 2021). For example, Daly et al. (2022)
use the wave-based S2Shores SDB algorithm (Almar et al., 2024) to
estimate bathymetry using the 10 m resolution Sentinel-2 colour bands
to estimate depths spanning over 4000 km along the West African coast.
It presents a more accurate and more detailed bathymetry compared to
the General Bathymetric Chart of the Oceans (GEBCO). High resolution
satellites like Pléiades (CNES/Airbus) provide the possibility to capture
sequences of images, up to 25 sequential images. Almar et al. (2019)
estimate a SDB using the wave kinematics using 12 sequential Pléiades
images by exploiting the temporal information of the acquisition us-
ing a spatio-temporal correlation technique. These Pléiades sequences
presents a major challenge for spatio-temporal correlation techniques;
due to the reorientation of the satellite and collection of the scene, the
delay between the images is relatively long in the order of 8 s between
each images. Jilin-1 Gaofen-03C satellites constellation acquire raster
images (such as mobile phone cameras), referred to as frames, with a
sampling period of 0.1 or 0.2 s (depending on the operator’s choice).
This is why their acquisitions can be qualified as spaceborne videos,

even though no clear definition distinguishing sequence and video has
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been established so far. Recently, Almar et al. (2022) utilised a 20-
second video acquisition from a Jilin-01-07 (92 cm resolution) to derive
a topo-bathymetric continuum of Duck Beach, NC, USA, using spatio-
temporal correlation techniques. This first encouraging demonstration
of the spatio-temporal correlation approach needed to be tested and
replicated for different sites and conditions.

Quantifying the relationship between remotely sensed signals and
the geophysical variable of interest is a complex process. For wave
observations, the optical signal captured by sensors is a proxy for
the free surface slope, not the free surface itself. The optical sensors,
such as cameras sense this proxy of the free surface slope through
pixel intensity variations. Pixel intensity variations are related to water
surface elevation through a modulation transfer function (MTF), which
governs the relationship between the phases and amplitudes of the
observed optical intensity variations and the true waveform. Catálan
and Haller (2008) identified two distinct mechanisms governing the
MTF, depending on the wave position relative to the breaking point.
Before the breaking point, the MTF is primarily influenced by the
specular reflection of incident light on the free surface. The main factors
contributing to the MTF include: (1) The instantaneous angle defined
by the light source (e.g., the sun), wave propagation direction, and sen-
sor. Optical intensity variations decrease when the wave propagation
direction is perpendicular to the bisector formed by the sun and the
sensor (Catálan and Haller, 2008). (2) The relative angle between the
wave propagation direction and the sensor. Optical intensity variations
exhibit greater amplitude when waves propagate in the direction of
the sensor’s view angle and tend to diminish when waves propagate
perpendicularly to the sensor’s view angle (Catálan and Haller, 2008;
Holman et al., 2017; Almar et al., 2019; Perugini et al., 2019). (3)
Sun-glint, which occurs when sunlight is reflected directly off the
sea surface (Kudryavtsev et al., 2017). (4) Sky-glint, caused by the
reflection of the sky on the water surface. This reflection varies because
the sky appears darker at the zenith than at the horizon, creating an
intensity gradient on the water surface (Almar et al., 2021a). Glints
carry information to derive wave characteristics from optical signals.
For instance, Kudryavtsev et al. (2017) use sun-glint to derive wave
directional spectra from Sentinel-2 data. Almar et al. (2021a) use
sky-glint to derive an MTF from UAV video, enabling free surface
reconstruction and significant wave height (Hs) estimation after cor-
recting for the relative angle effect. After the breaking point, the MTF is
governed by isotropic scattering from the aerated and turbulent wave
roller region, commonly referred to as white foam. In this zone, the
MTF is less dependent on viewing geometry (Catálan and Haller, 2008).
Since the sky is not reflected in this zone, the sky-glint method used
by Almar et al. (2021a) cannot be applied to reconstruct the free surface
of broken waves. The breaking point marks a shift in the MTF governing
mechanism due to a sudden phase shift between minimal and maximal
pixel intensities (Bergsma et al., 2019b). Consequently, video-based
algorithms that derive wave characteristics from the spectral domain
face challenges near the surf zone as waves begin to break (Brodie et al.,
2018; Oades et al., 2023; Lange et al., 2023). Capturing the sandbar
lying under wave breaking with remote sensing methods remains a
challenge.

In this work, we describe the temporal correlation method used
to estimate a bathymetry from spaceborne videos. We also discuss
latest enhancements to improve the estimation accuracy of the method.
First improvement involves the introduction of a wavelength-based
adaptive correlation. Notably, we applied the spatio-temporal method
to a one-minute Jilin-1 video capturing the Saint-Louis coast in Senegal,
demonstrating its effectiveness in identifying beach features such as
the submerged sandbar. Second improvement comes from the use of
surface elevation anomaly derived using the sky-glint surface elevation
analysis in place of pixel intensity as input of the method where esti-
mated bathymetry from surface elevation anomalies present a smaller

bias and a more stable estimation in the zone before the breaking point.
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Fig. 1. (a) Frame 166 of the 288 orthorectified frames constituting the ST-LOUIS video acquisition. The light grey rectangle indicates the area analysed to derived the SDB. (b)
Skyplot of Jilin-1GF03C02 Satellite trajectory during the Saint-Louis, Sénégal, 7 April 2022 video acquisition. This skyplot is centered on the Jilin image center. The angular axis
(measured clockwise) represents the azimuth degrees, ranging from 0◦ to 359◦, and the radial axis represents the zenith degrees, ranging from 0◦ at the zenith to 90◦ at the
horizon. Here for clarity, the zenith degrees are limited to a range of 0◦ to 60◦. The sun position is represented by the star. (c) Pixel intensity time-series extracted from the video.
The wave signal is noticeable but it is combined with a strong ‘‘bell shape’’ sun glitter effect.
2. Optical video acquisitions from Jilin satellite

On April 7 2022, Jilin-1GF03C02 satellite acquired a 57 s video
with an average frame rate of 5 Hz of the coast of Saint-Louis, Senegal.
The video represent a total of 288 images with near metric (1.4 m)
ground sampling resolution, covering an area of 130 km2. A geometric
correction and co-registration technique, currently developed by the
French Space Agency CNES, employing very high-resolution Pleiades
acquisitions as an on-ground reference, is employed to orthorectify
the Jilin video. In Fig. 1a a geometrically corrected and orthorectified
frame from the satellite video is depicted, projected on a map. At
the time of the acquisition, 7 April 2022 at 10h30, sea state was
characterised by a swell of peak period 𝑇𝑝 = 7.4 s, with a significant
wave height 𝐻𝑠 = 1.4 m, coming from northwest directions at 333◦,
according to ERA5 climate reanalysis (Hersbach et al., 2020). These
hydrodynamic conditions are close to the yearly average swell wave
conditions found at Saint-Louis, Sénégal coast, namely 𝐻𝑠 = 1.52 m,
𝑇𝑝 = 9.23 s, northwest directions around 325◦ (Sadio et al., 2017). Tide
elevation at the time of acquisition was −0.48 m according to FES2014
model (Lyard et al., 2021). Because the sun’s position is symmetrically
opposite to that of the satellite at the time of acquisition a pronounced
sun glitter is observable in the satellite video (see Fig. 1b). As a
3 
consequence, at first order, the water surfaces on the video exhibit a
strong rise and fall in intensity, although a wave signal remains visible
(see Fig. 1c). For the purpose of this study, only a small region of
the acquisition in front of the Saint-Louis village is used to derive a
bathymetry and validate the proposed methodology described in the
next section. This region is highlighted by the light grey rectangle in
Fig. 1a.

The beach in front of Saint-Louis city is an intermediate barred
microtidal beach, located in a storm-free intertropical environment.
The tidal regime is semi-diurnal and the microtidal amplitude ranges
from 0.5 m at neap tides to 1.6 m at spring tides. Depth-induced wave
breaking over the submerged sandbar, distant of around 200 to 300
m cross-shore from the shoreline, is active at low tide. The surf zone
is then defined as the region starting from the breaking point over
the sandbar to the shoreline, corresponding to water depths from 0 m
to 5 m (Ndour et al., 2020). In-situ bathymetric measurements were
acquired in 2019 by the Shore Monitoring and Research team as part
of a project coordinated by the Agence de Développement Municipal
(ADM) along Saint-Louis coastline from the Mauritanian border to the
far South of the Sénégal estuary. A total 264 of individual measure-
ments inside the region of the interest in front of the Saint-Louis village
were averaged alongshore to be used as a validation dataset.
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Fig. 2. Temporal correlation method’s flow chart.

3. Methodology

3.1. Bathymetry inversion using temporal correlation method

In this section we describe more in detail the method presented for
satellite-derived bathymetry (SDB) applications in Almar et al. (2019),
along with some enhancements. The different steps involved in the
temporal correlation method are shown in the flow chart in Fig. 2.
Within the area of our study we arbitrarily define a regularly spaced
grid where SDB is derived. To illustrate, we will walk through the
process of estimating depth from a video acquisition, using one point
from this grid as an example. The temporal correlation method takes
4 
the advantage of long and high temporal resolution acquisition like
videos. Practically speaking, a video is seen as a dataset composed of
several images, referred to as frames, captured over a specific time
period. For a chosen point in the output grid, we define it as the
center of a square window, hereafter called the correlation window.
Within this defined window, we extract a three-dimensional spatio-
temporal frame stack by cropping and stacking all frames from the
video acquisition. This stack is represented by two spatial dimensions,
the 𝑥 and 𝑦 directions, with time representing the third dimension. (See
Fig. 3a.)

3.1.1. Time-series selection and pre-processing
The satellite video is a sequence of 2-dimensional optical acquisi-

tions where discernible wave patterns are observable. Consequently, it
is possible to analyse wave signals from a dataset of substantial time-
series with high temporal resolution, acquired at various pixel positions
within the correlation window. Each time-series is constructed along
the time dimension of the frame stack by extracting values from a fixed
𝑥 and 𝑦 pixel position. Before stacking and extracting time-series, a
normalisation is applied to each frame within the frame stack. Each
pixel in the frame at position 𝑥 and 𝑦 the normalisation is following
the equation:

𝑛𝑜𝑟𝑚𝑃 𝑖𝑥𝑒𝑙(𝑥, 𝑦) =
𝑃 𝑖𝑥𝑒𝑙(𝑥, 𝑦) − 𝜇𝑓𝑟𝑎𝑚𝑒

𝑠𝑡𝑑𝑓𝑟𝑎𝑚𝑒
(1)

where 𝑛𝑜𝑟𝑚𝑃 𝑖𝑥𝑒𝑙(𝑥, 𝑦) is the normalised pixel value at position 𝑥 and
𝑦, 𝑃 𝑖𝑥(𝑥, 𝑦) is the original pixel value at position 𝑥 and 𝑦, 𝜇𝑓𝑟𝑎𝑚𝑒 is the
mean pixel value of the frame and 𝑠𝑡𝑑𝑓𝑟𝑎𝑚𝑒 is the standard deviation
pixel value of the frame.

As presented in Fig. 3, the normalisation has removed the sun-glint
from the extracted pixel intensity time-series. The sun-glint component
is considered to be the mean value of the background of each frame,
which varies slowly over time compared to the variation induced by the
wave patterns. Frame normalisation removes this mean background,
leaving only the waves in the frame. Thanks to this process, it is
possible to remove the sun-glint component from the time series be-
fore applying filtering to it. Actually, not all time-series are extracted
within the correlation window for computational time efficiency. A
random process select the pixel positions where time-series are ex-
tracted. Although a regularly spaced grid could be utilised to select
evenly distributed pixel positions within the correlation window, the
randomness of the selection is crucial. This randomness is necessary to
compute a spatio-temporal correlation covering a wide range of posi-
tions and, consequently, to obtain a diverse range of differential spacing
between selected pixels. The correlation process is presented in the next
section. In practice, although it depends on the size of the correlation
window, taking into account only 15 percent of random pixel time-
series is generally a good trade-off between saving computing time
without altering the results compared with using all the pixel time
series. Selection process is presented in Fig. 4a, 15 percent of pixels
within a 100 m side-length correlation window are chosen, the chosen
positions are highlighted by the red dots. The selection constructs a
dataset of normalised pixel intensity time-series 𝐼(𝑋𝑌0∶𝑃 , 𝑡) where 𝑋𝑌
is the pixel position coordinates ranging from 0 to 𝑃 , where 𝑃 the
number of selected pixel positions. Then, the time-series are band-pass
filtered in the range 8 s to 25 s wave period to remove most of the
noise that could be detrimental for the correlation process. The choice
of the cut-off period values to limit the estimation error is discussed in
Section 5.3.

3.1.2. Deriving wave characteristics and bathymetric inversion
Extracting wave characteristics from the time-series necessitates

a combined spatial and temporal analysis. This is achieved through
a correlation, where spatial and temporal information are integrated
(Abessolo et al., 2020; Thuan et al., 2019; Almar et al., 2009; Bergsma
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Fig. 3. (a) Frame stack example, only 4 frames of the video acquisition are displayed. The red dashed line represents a time-series extracted along the time dimension. (b)
Normalised pixel intensity time-series extracted from the frame stack. The 4 red dots correspond to the time series intensity value relative to the 4 frames in the stack.
and Almar, 2018). We calculate the correlation coefficient 𝑟 individu-
ally for each time-series within the dataset.

𝑟(𝛥𝑋, 𝛥𝑌 ) = 𝑐𝑜𝑟(𝐼(𝑋𝑌𝑖, 𝑡), 𝐼(𝑋𝑌𝑗 , 𝑡 + 𝛥𝑡)) (2)

where 𝑖 and 𝑗 are ranging from 0 to 𝑃 . This involves a systematic
process where we compare each individual time-series (indexed 𝑖 from
0 to P) with all time-series (indexed 𝑗 from 0 to P) delayed by 𝛥𝑡. For
every pixel pair 𝑋𝑌𝑖 and 𝑋𝑌𝑗 , the spatial distances along 𝑥 and 𝑦 axis
are computed, respectively corresponding to 𝛥𝑋 and 𝛥𝑌 coordinates
into the correlation matrix. If multiple pairs of 𝑋𝑌𝑖 and 𝑋𝑌𝑗 share the
same 𝛥𝑋 and 𝛥𝑌 coordinates, the result is computed as the average
correlation at that specific position. As a result, this correlation explores
the spatio-temporal relationships among all time series in the dataset,
accounting for the influence of a time lag. The correlation the aver-
age distance covered by the waves within 𝛥𝑡. The value of 𝛥𝑡 must
be selected to be less than or equal to the minimum tracked wave
period (Bergsma and Almar, 2018).

The correlation matrix is masked combining both a Gaussian mask,
which assigns greater weight to values near the (0, 0) coordinates,
and a circular mask, which is essential for the Radon Transform (RT)
computation. The masked correlation matrix is transposed in the Radon
(polar) space following:

𝑅𝑟(𝜃, 𝜌) = ∯𝐷
𝑟(𝛥𝑋, 𝛥𝑌 )𝛿(𝜌 − 𝛥𝑋 cos (𝜃) − 𝛥𝑌 sin (𝜃)) 𝑑𝛥𝑋𝑑𝛥𝑌 (3)

where 𝜃, the rotational angle, is ranging from 0 to 180 degrees, 𝛿 is
the Dirac delta function and 𝜌 is the radius from the center of the
correlation matrix. The wave propagation direction is derived as the
maximum variance angle of the RT. Other (spectral or correlation) SDB
methods make use of Radon Transform (RT) to infer wave propagation
direction (Bergsma et al., 2019a, 2021; Almar et al., 2022).

The final step in deriving wave characteristics involves projecting
and analysing the sinogram along the wave’s propagation direction. The
sinogram is expected to exhibit a damped sinusoidal pattern, with the
highest peaks near 𝑟ℎ𝑜 = 0. The wavelength 𝜆 is calculated by averaging
the distances between zero crossings and then multiplying this average
by 2. The maximum peak of the sinogram allows us to quantify the
wave displacement, 𝜌𝑖, over the time lag 𝛥𝑡, and thereby determine
its celerity. However, we observe a consistent underestimation of the
wave displacement, which in turn leads to an underestimation of the
bathymetry. This underestimation may be due to the sensor’s changing
view angle during its acquisition, although further studies are necessary
to confirm this hypothesis. To compensate for this underestimation, we
refine 𝜌 by associating a corrected wave displacement, 𝜌 , with the
𝑖 𝑐

5 
wavelength. Specifically, 𝜌𝑐 is chosen as the multiple of one-quarter of
the wavelength that is closest to 𝜌𝑖. This corrected wave displacement
𝜌𝑐 is used to derive the wave’s phase celerity:

𝑐 =
𝜌𝑐
𝛥𝑡

(4)

Now, wave characteristics 𝜆, its wavelength, and 𝑐, its celerity are
derived we can estimate the water depth, ℎ, applying the linear wave
dispersion relation:

𝑐2 =
𝑔
𝑘
tanh (𝑘ℎ) ⇔ ℎ = 𝜆

2𝜋
tanh−1

(

2𝜋𝑐2
𝜆𝑔

)

(5)

where 𝑘 = 2𝜋
𝜆 and 𝑔 is the gravitational acceleration.

3.1.3. Wavelength adapted recursion
The method presented in this study integrates both spatial and

temporal information from all time series within the dataset. The depth
estimation at a specific point depends on the size of the correlation
window used. A wider correlation window yields a smoother final
bathymetry, reducing noise, but it might miss smaller-scale morpho-
logical features. Conversely, the correlation window should include at
least one complete wavelength of the wavefield. In other words, it is not
possible to extract wavelengths larger than the size of the correlation
window itself. To address this limitation, the depth estimation process
is performed twice to optimise the capture of small-scale morphologies
without being constrained by wavelength limitations. In the first iter-
ation, a wide correlation window is used to estimate the wavelength
at each point. Then, in the second iteration, the correlation window is
adapted to be 2 times the previously estimated wavelength, enabling a
more precise extraction of small-scale morphological features.

3.2. Sky-glint surface elevation analysis

3.2.1. Deriving the surface elevation anomaly
Almar et al. (2021a) propose that the optical signal detected by the

satellite serves as a proxy for the slope of the free surface elevation.
Based on this hypothesis, they developed a methodology called sur-
face elevation analysis, which is designed to extract surface elevation
anomalies from UAV videos. The different steps involved in the surface
elevation analysis are summarised in this section. After gathering of
all the required geometrical information of the acquisition, a linear
regression model generates the transfer function linking the pixel in-
tensity to the surface slope. In the case of the Saint-Louis acquisition,
the required geometrical information are azimuth and zenith angles,
satellite and pixel positions. Azimuth and zenith angles are extracted
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Fig. 4. (a) Random selection of 15 percents of the pixels within the correlation window and extraction of the resulting pixel time-series dataset. (b) Correlation matrix computed
from the time-series dataset after application of a Gaussian mask. (c) Resulting sinogram from the Radon Transform of the correlation matrix. The solid red line refers to the
variance of the sinogram with respect to the rotational angle. The maximum variance indicate the wave propagation direction. In this case, highlighted by the solid orange line,
the wavefield propagates in the direction 113 ◦ from North. (d) Sinogram projected in the wave propagation direction. Wavelength is computed based on the 0 crossings of the
projected sinogram. The maximum peak gives an initial wave displacement 𝜌𝑖 which is linked to the wavelength as a refinement 𝜌𝑐 .
directly from the metadata associated to the video (see Fig. 1b). Roll
angle is considered negligible. The location (𝑥0, 𝑦0, 𝑧0,) of the satellite
is computed assuming an altitude of 535 km as it is the only altitude
value available on the official Jilin website (Jilin-1GF03C, 2024). The
pixel locations are determined through georeferencing, achieved after
correction and co-registration of each frame. A 2D FFT band-pass filter
with high cut off period set at 40 m and low cut off period set to 300 m
is applied to the surface slope derived from the transfer function. Slopes
are ten projected into polar coordinates with the satellite as origin. The
polar grid is chosen with a radial resolution equal to the acquisition’s
spatial resolution of 1.41 m. We set the polar beams to be equally
spaced in angle, originating from the satellite’s position and covering
all the pixels of the acquisition, ensuring that each pixel is covered by
nearly one beam. The slopes are then integrated along the polar beams
to derive the surface elevation. Non pertinent signal is removed by a
band-pass filter in the polar beam axis over the wavelength range of
10 m to 200 m to remove most of the remaining noise after visual
inspection.
6 
3.2.2. Relative Azimuth MTF modulation correction
In this section we consider only the correction of the MTF modu-

lation assuming an observed radiance generated by the sky-glint. We
apply a correction proportional to cos(𝛼), where 𝛼, the view angle,
represents the relative azimuth angle formed between the sensor az-
imuth view angle (see Fig. 1b) and a wave propagation direction.
We intend to correct for every possible wave propagation direction,
then 𝛼 ∈ [0◦; 90◦]. A wave field propagating perpendicular to the
view angle (𝛼 = 90◦) is not observable (Perugini et al., 2019). In
contrast, the observed wave field exhibits the highest contrast when
propagating in the direction of the sensor view, specifically from the
rear or front of the wave (𝛼 = 0◦) (Kudryavtsev et al., 2017; Almar
et al., 2019, 2021a). The Radon transform (RT) sinogram of the surface
elevation anomaly is divided by the coefficient cos(𝜃), where 𝜃 is the
angular axis of the RT space ranging from 0◦ to 180◦. In the case of
a surface elevation anomaly projected in a polar projection centered
on the satellite position, we denote 𝛼 ≡ 𝜃. However, RT is set to 0
for 𝜃 = [75◦; 105◦] as around 𝜃 = 90◦ only noise is retrieved by the
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sensor (Perugini et al., 2019). After applying the coefficient to the RT,
the surface elevation anomaly is inverted back to the satellite-centered
polar space and then projected onto the original Cartesian grid.

3.3. Application of the temporal correlation method to Jilin spaceborne
videos

We used the temporal correlation method to estimate bathymetry
along the coast of Saint-Louis, Sénégal, using video data from the Jilin
satellite captured on April 7, 2022. Firstly, we applied the method to
frame stacks derived from the Jilin video, using a fixed correlation win-
dow size of 250 m to calculate each bathymetric point on the resulting
grid. Secondly, bathymetry was computed from the same video using
frame stacks where the correlation window size was dynamically ad-
justed, set at 2 times the previously computed wavelength for each grid
point. Thirdly, we constructed the frame stack using outcomes from
the Surface Elevation Analysis of the Jilin satellite video, maintaining a
fixed correlation window size of 250 m. All three tests were conducted
on an output grid with a resolution of 5 m. The analysis utilised all
288 frames of the dataset, with pixel extraction limited to 1% of the
pixels within each frame stack. We applied a band-pass filter to filter
out waves with periods outside of the range from 8 to 25 s We imposed
a time lag (𝛥𝑡) of 3 s for the time-series correlation.
7 
4. Results

4.1. Bathymetric estimations from satellite video acquisitions

Qualitatively, the fixed correlation window SDB in Fig. 5a shows
a globally good agreement in the water depth transition between the
inner shelf and the surf zone. The alongshore averaged first order
nearshore slope is recovered, but two problems remain - (1) small scale
morphological features such as nearshore sandbars are missing from
this estimate - (2) a constant underestimation of water depth remains
throughout the cross-shore profile. On the other hand, the wavelength
based adapted correlation window SDB is able to capture the nearshore
sandbar and present the zero water depth closer to the real water
level of −0.48m on the waterline (see Fig. 5b). There are few in-situ
measurements available at the Saint-Louis site, the closest recent beach
survey was made 3 years before the Jilin acquisition. Then the position
of the sandbar is likely to have moved over time, making it difficult
to validate the results quantitatively. However, the inner shelf is less
prone to the present large depth variation in time. Taking that situation
in consideration, we are more interested by minimising the bias of the
estimation then other statistical indicator like the RMSE that are more
affected by morphology’s evolution. Quantitatively both estimates have
a bias of less than 1 m, which is in the range of the 1 m vertical
resolution of the survey. The bias for the fixed correlation window SDB
is 0.96 m, while the bias for the wavelength adapted SDB is 0.98 m.
Fig. 5. Satellite Derived Bathymetry (SDB) derived from the Jilin Video (dated 2022-04-07) in Saint-Louis, Sénégal. (a) SDB estimations using a fixed correlation window of 250 m
compared to the 2019 in-situ survey. The cross-shore origin is set at the coordinates 338500 on the UTM zone 28N 𝑥-axis. b and (c) SDB estimations using a wavelength-adapted
correlation window compared to the 2019 in-situ survey. The solid red line depicts the alongshore averaged profile in (b), while (c) displays the resulting grid of the estimation.
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Fig. 6. Comparison of SDB derived from the pixel intensity (in red) and the surface elevation analysis (in green), the 2019 in-situ survey is shown in black. These SDB estimations
use a fixed calculation correlation window of 250 m. The solid line represents the alongshore averaged profile of the estimation. The cross-shore origin is set at the coordinates
338500 on the UTM zone 28N 𝑥-axis.
4.2. Bathymetric estimations using surface elevation analysis

We computed the SDB from the surface elevation analysis obtained
from the Saint-Louis video. To ensure a fair comparison, we maintained
consistent parameters and a fixed window size of 250 m for computing
SDB from both pixel intensity and surface elevation anomaly. Fig. 6
presents a comparative analysis juxtaposing the resulting SDBs with the
in-situ survey conducted three years earlier. As previously mentioned,
the pixel intensity-derived SDB exhibits a bias of 0.96 m, while the sur-
face elevation anomaly estimate displays a smaller bias of 0.44 m. It is
worth noting that the SDB obtained from the surface elevation anomaly
significantly reduces the number of rejected points in the estimation.
According to (5), a point cannot be computed if the argument of the
inverse hyperbolic tangent function lies outside the domain [0, 1], which
is the domain of definition for the inverse hyperbolic tangent function.
This situation occurs when 𝑐, the celerity or 𝜆, the wavelength are
poorly computed due to the presence of a high level of noise in the time
series. In total, the pixel intensity-base SDB estimation process discards
428 points, corresponding to 0.3% of the output grid. In contrast, only
2 points are rejected in the surface elevation anomaly-based estimation
process, corresponding to 0.0015% of the output grid. Compared to
the adapted correlation window SDB, the surface elevation anomaly
estimation struggles to fully capture the sandbar, even when an adapted
window process is used. This point is discussed in more detail in the
Discussion section.

5. Discussion

The temporal correlation method can potentially estimate
bathymetry from any video – spaceborne or airborne – or any closely
spaced wave time series, extending its use beyond satellite alone. As
with other common SDB methods, a few assumptions discussed in this
section impose some limitations on this method.

5.1. Temporal correlation method limitations

Depth inversion is primarily dependent on the wave period/length
and image resolution, while the wave is observably strongly dependent
on the relative angles between the incident waves, the satellite viewing
angle and the position of the sun (Bergsma et al., 2019a). Almar et al.
(2022) compared spatial and spectral methods with temporal methods
for estimating SDB. They concluded that the dimension offering the
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most information, whether spatial or temporal, should be utilised. For
long video sequences with duration longer than one wave period,
temporal methods proved to be more accurate. Also the temporal
correlation method assumes that a one predominant swell wave is
present on the acquisition. The method is only able to determine a
single peak wavelength, peak direction and phase celerity of the wave.
Multiple swells may lead to a confused correlation matrix, that could be
detrimental to discriminate the wave characteristics of only one swell.

According to linear theory limitations, the deep water domain is
found when 𝑑 > 𝜆

2 . In the deep water domain the linear dispersion rela-
tion does not hold as the waves do not interact with the bottom. Taking
a reasonable limit, the linear dispersion domain is assumed valid for
𝑑 < 𝜆

5 (Thuan et al., 2019). Given the offshore conditions at the time of
acquisition, where the peak period 𝑇𝑝 is 7.4 s, the offshore wavelength
is 𝐿 = 𝑔𝑇 2

2𝜋 ∼ 85 m. Thus, the deep water limit is approximately at 17
m water depth. On the other hand, the validity of the linear dispersion
relation decreases as the wave nonlinearity increases closer to shore,
leading to an overestimation of the water depth in the shallow water
domain (Bergsma and Almar, 2018). In our study, with an offshore
wavelength of 85 m, the shallow water domain begins at a depth of
4.25 m, where the sandbar is located. The SDB presented in this study
range from 2 m to 20 m water depth (see Fig. 5c), that is in the
range of the theoretical domain of validity of the linear wave-bottom
interaction calculated previously. Improvements in depth estimation
using non-linear depth inversion methods are expected to lead to
improved detection of the sandbar. However, non-linear approaches
often require information on incident wave properties, such as wave
height and period, which are not available for SDB estimation at sites
where in-situ sensors are not deployed.

5.2. Surface elevation analysis contribution and limitation

Throughout this study we have seen the advantage of working with
a surface elevation anomaly over working with direct pixel intensity for
bathymetry estimation. With the surface elevation anomaly we reduce
the noise through filters and resolve the surface elevation by integrating
the slope signal. The slope proxy acquired by the sensor is converted
thanks to the calculation of the MTF using the sky-glint methodology
from Almar et al. (2021a). Also, the relative angle correction stabilise
the wavefield acquired through a changing view angle during the
acquisition. An illustration of the signal stabilisation can be seen in
Fig. 7. It presents a comparative spectral analysis of a 1 km by 1 km
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Fig. 7. Pixel intensity and surface elevation anomaly normalised spectrum evolution
through the St-Louis Jilin video acquisition. On the normalised spectrum, the radius
represent the wave peak period while the angle represents the incident wave direction.

offshore area from the St-Louis video in both pixel intensity (upper
line) and surface elevation anomaly (lower line). Examining the pixel
intensity spectrum reveals a quick vanishing of a small period (5 s)
swell from the South West (230◦) due to MTF changes induced by
varying view angles. Additionally, the 8s period swell originating from
the North West (300◦) exhibits energy dispersion over a 50◦ range
from 270◦ to 320◦ at the beginning of the acquisition (frame 15). The
surface elevation anomaly spectrum demonstrates a more distinct signal
separation between the two swell systems, with reduced energy spread.
Thanks to the sky-glint related relative azimuth angle correction the
South West swell persists for a more extended duration.

Still in the surface elevation anomaly, we observe a fading of
the South West swell towards the end of the acquisition, attributed
to the MTF causing brightness fluctuations induced by sun glitter. A
similar modulation effect occurs at the beginning of the acquisition
with the North West swell. In this study, our surface elevation anal-
ysis is conducted using the sky-glint methodology. However, given
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the acquisition configuration featuring intense sun glitter, an analysis
incorporating a sun-glint methodology could be applied as well and
might correct these modulations. When the sky-glint is the main con-
tribution to the observed radiance, the relative satellite azimuth view
angle is the important geometric parameter, as assumed in our study.
Its relative orientation to the wave crest modulates the brightness
response, with the wave perpendicular to the view angle exhibiting
less brightness modulation. On the other hand, when the sun-glint is
the main contribution to the observed radiance, the important azimuth
angle is that of the bisector between the sun and the satellite. In such
situation, the sun and satellite emitter-receptor bi-static configuration
can be simplified into an equivalent monostatic configuration, where
the equivalent view angle is that of the bisector between the sun and
the satellite (Jackson and Alpers, 2010; Rascle et al., 2018). The exact
comparison between sky-glint and sun-glint methodologies, with their
respective view angles, is left for further study.

As a result, it can be asserted that surface elevation anomaly pro-
vides a more faithful representation of actual wave dynamics before the
breaking point compared to sensor-acquired data. Then SDB derived
from it presents less bias and more stable results as a lot of different
noise source where corrected or removed. However, one issue intrin-
sically associated to the surface elevation analysis remains, accurate
estimation of surface elevation anomaly encounters difficulties in the
surfzone. The sky-glint effect is present in the MTF function before the
breaking point of the waves. On the other hand after the breaking point,
namely in the surfzone, the isotropic light scattering generated by the
white foam is the governing mechanism of the MTF, preventing the sky-
glint effect to occur. This sudden change in the governing mechanism of
the MTF leads to incorrect estimations of the surface elevation anomaly
after the breaking point. Consequently, the methodology proposed
by Almar et al. (2021a) may not be applicable in surfzone regions with
a high proportion of wave rollers (or white foam). Therefore, while
using pixel intensities introduces a higher estimation error, caution
is necessary when computing SDB where the input dataset is a sky-
glint derived surface elevation anomaly in the presence of foam in the
surfzone. A composite approach that integrates both methods could be
considered.

5.3. Spaceborne videos: general considerations and limitations

High resolution videos acquired by Jilin satellite present advan-
tageous characteristics for missions designed to study hydrodynamic
conditions and wave kinematics in the coastal zone. The 5 Hz push-
frame acquisition lasting up to the minute could constitute a well suited
dataset for tracking the different waves ranging from 3 to 25 s and
their propagation over a wide area (greater than 100 s of km2) (Almar
et al., 2022). However, the Jilin sensor shoots videos at an 8-bit depth,
which is particularly detrimental for wave acquisition. A sensitivity
analysis of the time-series band-pass filter (not presented in this study)
revealed that the error in bathymetry estimation increased significantly
for low cut-off periods shorter than 8 s. The low Signal-to-Noise Ratio
(SNR) in the Jilin 8-bit depth acquisition necessitates setting a relatively
high value for the low cut-off period to remove noise. It is known that
wave period influences bottom estimation predictions; shorter wave
periods result in shorter local wavelengths and better adaptation to the
underlying seafloor (Thuan et al., 2019; Santos et al., 2022). In shallow
water, there is a trade-off in setting the low cut-off period between
minimising the estimation error from residual noise after filtering and
the error induced by not tracking shorter waves. Additionally, the low
SNR of the acquisition introduces a primary source of error when
deriving the optical model with sky-glint. Therefore, a 12-bit depth
acquisition would be preferable for such acquisitions.

Finally, it is worth mentioning the need for frequent in-situ mea-
surements, which are essential for the validations of new methodologies
in bathymetry estimations using remotely sensed data. Despite ad-
vances in remote sensing technologies, the unique challenges of bathy-
metric measurements remain unresolved, underlining the importance



A.N. Klotz et al. Remote Sensing of Environment 315 (2024) 114411 
of accurate in-situ data. This study highlights the persistent difficulties
associated with scarce in-situ bathymetric measurements, underlining
in particular the urgent need to find alternative solutions such as satel-
lites (Turner et al., 2021). Satellite derived estimates are a potentially
viable solution to provide a good and accurate means of sensing large
areas where bathymetric measurements are not available (Almar et al.,
2021b).

6. Conclusion

This study details the temporal correlation method and recent en-
hancements for estimating nearshore bathymetry from short (around
1 min) spaceborne videos. The method involves correlating pixel inten-
sity time series shifted in time and space, extracted from a correlation
window within a stack of frames. The resulting correlation is analysed
through Radon transform space to infer wave characteristics (celerity,
and wavelength) for depth estimation. Applied to a one-minute Jilin
satellite video (1.4-meter resolution) along the coast of Saint-Louis
in Senegal, the SDB derived from the Jilin video using the temporal
correlation method indicates a bias of 0.97 m within the first 2 km of
the cross-shore profile (depth ranging from 0 to 16 m), compared to an
in-situ survey conducted three years prior to the video acquisition. A
notable improvement involves the wavelength-based adaptation of the
correlation window at each point of the output grid. The adaptive cor-
relation window process proves effective in capturing beach features,
exemplified by the identification of the submerged sandbar on the
Saint-Louis beach. Furthermore, utilising the surface elevation anomaly
derived from pixel intensity as input reduces the SDB estimation bias to
0.44 m. This results highlight the potential application of the temporal
correlation method on future Earth observation satellite missions that
will capture image sequences (or videos) such as CO3D (CNES/Airbus).
While the present study focuses on spaceborne videos, the temporal cor-
relation method’s versatility invites further exploration and validation
using alternate sources such as camera-mounted or Unmanned Aerial
Vehicle (UAV) recordings.
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