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Abstract
Research in 3D mapping is crucial for smart city
applications, yet the cost of acquiring 3D data of-
ten hinders progress. Visual localization, partic-
ularly monocular camera position estimation, of-
fers a solution by determining the camera’s pose
solely through visual cues. However, this task
is challenging due to limited data from a sin-
gle camera. To tackle these challenges, we or-
ganized the AISG–SLA Visual Localization Chal-
lenge (VLC) at IJCAI 2023 to explore how AI can
accurately extract camera pose data from 2D im-
ages in 3D space. The challenge attracted over 300
participants worldwide, forming 50+ teams. Win-
ning teams achieved high accuracy in pose esti-
mation using images from a car-mounted camera
with low frame rates. The VLC dataset is avail-
able for research purposes upon request via vlc-
dataset@aisingapore.org.

1 Introduction
Camera pose estimation, also referred to as visual localiza-
tion [Barros et al., 2022], plays a pivotal role in determining
the 6-degree-of-freedom pose (3D position and orientation)
of a camera within its environment using visual cues. Specifi-
cally, monocular camera poses estimation [Engel et al., 2014]
involves utilizing a single camera to derive the camera’s po-
sition and orientation. This process entails analyzing 2D im-
ages captured by the camera and computing a transformation
matrix that characterizes the camera’s spatial relationship to
the 3D world. Despite the challenges posed by the limited

information available from a single camera, the significance
of camera pose estimation cannot be overstated, especially
considering the high costs associated with obtaining 3D data
from alternative sources like LiDAR sensors.

Accurate camera pose estimation is indispensable across
a spectrum of real-world applications, ranging from urban
planning [Coors et al., 2000] to augmented reality, underwa-
ter surveillance [González-Sabbagh and Robles-Kelly, 2023],
robotics, and autonomous vehicles. In urban planning, cam-
era pose estimation equips planners with valuable spatial in-
sights that inform decision-making processes. In augmented
reality, precise knowledge of the user’s device position and
orientation relative to the surrounding environment is pivotal
for convincingly overlaying virtual objects. Moreover, cam-
era pose estimation plays a critical role in underwater surveil-
lance by facilitating the tracking and monitoring of objects,
structures, and environmental conditions in aquatic environ-
ments. Furthermore, in robotics and autonomous vehicles,
accurate camera pose estimation empowers robots to navigate
and interact with their surroundings effectively.

To promote the development and testing of models in
more dynamic and diverse environments, we introduce the
AISG–SLA Visual Localization Challenge (VLC). The pri-
mary objective of the challenge is to discern the relative pose
estimates among images obtained by a monocular camera af-
fixed to a vehicle navigating the streets of Singapore. The
focus lies in accurately measuring the rotational differences
between successive images, reflecting the subtle variations
in orientation as the vehicle progresses along its path. In
addition, the secondary objective involves precisely estimat-
ing relative translations, and capturing the spatial movements
and displacements between scenes observed in consecutive
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frames. These two assessment criteria require participants to
address the complexities of visual localization in dynamic ur-
ban settings effectively for both rotational alignment and po-
sitional tracking within real-world driving scenarios.

The paper’s structure is as follows: Section 2 reviews ex-
isting camera pose estimation studies. Section 3 explores the
VLC dataset’s characteristics and challenges. Section 4 out-
lines winning teams’ strategies 1. The conclusion offers final
remarks.

2 Related Work
Within the realm of camera pose estimation, there exist two
primary approaches for solving the associated problems: di-
rect [Engel et al., 2017] and indirect [Mur-Artal et al., 2015]
methods. Indirect methods typically involve detecting inter-
est points, associating them with feature descriptors, and op-
timizing the camera pose and 3D point clouds by minimizing
reprojection error [Rosinol et al., 2020; Campos et al., 2021].
On the other hand, direct methods delve into the image for-
mation process and define objectives based on photometric
error [Zubizarreta et al., 2020]. While direct methods capture
more image details, such as lines and intensity variations [En-
gel et al., 2017], they face more complex optimization chal-
lenges and are less robust to geometric distortions.

Recent advancements in deep learning-based tech-
niques [Zhou et al., 2018] have shown promise in address-
ing challenging scenarios in camera pose estimation. These
techniques often involve training systems for specific sub-
tasks, such as feature detection, matching, and localization.
However, some deep learning models tend to concentrate on
small-scale reconstruction and may lack capabilities like loop
closure and global bundle adjustment, limiting their applica-
bility for large-scale deployment.

Current methodologies heavily rely on training deep mod-
els using datasets such as KITTI [Geiger et al., 2013], Eu-
RoC [Burri et al., 2016], and TartanAir [Wang et al., 2020].
However, these datasets often exhibit limited motion ampli-
tude and may contain synthetic data, which may not accu-
rately represent real-world application scenarios.

3 VLC Dataset
In this section, we outline the characteristics of the dataset.

3.1 Data Sources
The dataset utilized in this research comprises photographs
taken by a spherical camera system equipped with a 5-
megapixel resolution and a Sony IMX264 2/3′′ CMOS sen-
sor, featuring a pixel size of 3.45 × 10 − 3 mm and utilizing
4.4 mm focal length lenses. These photographs were captured
within the urban areas of two different townships in Singa-
pore, primarily showcasing human subjects (faces captured in
images were blurred), vehicles, architectural structures, and
natural landscapes predominantly found within residential ar-
eas and parks.

1https://prizechallenge.aisingapore.org/competitions/1/visual-l
ocalisation/leaderboard/

Figure 1: The camera is directed towards the rear of the vehicle, re-
sulting in consecutive captures where the movement is not depicted
within the image frame.

Figure 2: Illustration of challenging matches by LightGlu.

The images were captured based on distance (i.e., every 10
meters), estimated by the number of tire rotations. This is ap-
proximately equivalent to 1 or 2 shots every second. Some
distances between timestamps might have a larger difference
(e.g., 8.8 meters vs. 10 meters) because the car might have
been making a turn. The visual data for the VLC was pro-
vided in the form of street-level monocular images stored in
JPEG format. The dataset was divided into two sets: a train-
ing set containing 10,007 images and a testing set contain-
ing 2,219 images. These sets were further subdivided into
trajectories, with four trajectories allocated for training pur-
poses and one trajectory reserved for testing. Here, a trajec-
tory refers to a sequence of images captured as the camera
moves along a continuous path. The intrinsic parameters, in-
cluding the focal length and optical center (also known as the
principal point), were provided.

3.2 Data Matching Challenge
Several challenges were introduced into the dataset to en-
hance its complexity. First, there were considerable variations
in the time intervals between successive frames, with some
intervals spanning up to 1.5 minutes, resulting in limited over-
lapping visual features. Secondly, the frame rate differed sig-
nificantly across different trajectories, leading to noticeable
discontinuities in the dataset. To streamline the dataset, the
lower portion of each image, which predominantly depicted
static car components, was excluded from consideration as
it was deemed irrelevant for pose estimation tasks. Further-
more, the dataset exhibited diverse lighting conditions, ne-
cessitating that models developed by participants demonstrate
robustness in handling such variations. Figure 1 illustrates the
challenges within the dataset. Firstly, on the left, we have a
standard pair of images (1 sec apart) that are relatively easy to
match. In the center is a typical pair (2 sec apart) that presents
more difficulty in matching due to sharp turns, which occur
infrequently in the sequence, making them particularly chal-
lenging. Finally, on the right is a pair of images (76 sec apart)
that can hardly be matched.

Despite being consecutive in the sequence, some images
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Figure 3: Method pipeline. 3(a) Extract DeDoDe keypoints in
all images and fine non-sequential image pairs to match using i)
DINO v2, ii) manual inspection. 3(b) Match keypoints in sequential
and non-sequential image pairs using RoMa, filter with Graph-Cut
RANSAC. 3(c) Structure from motion using COLMAP, each red dot
is a position where a picture was taken.

display characteristics such as time gaps in the dataset, where
non-overlapping pairs may result in the method generating ar-
bitrary relative poses, leading to subpar outcomes in straight-
forward sequential matching. In Figure 2, we illustrate chal-
lenging matches addressed by LightGlue [Lindenberger et al.,
2023], a deep neural network tailored to matching sparse lo-
cal features between image pairs. In the left image, numerous
matching points are obscured by the roof, while in the right
image, a 90◦ turn of the car causes matching failure.

4 Proposed Methods
The AISG–SLA Visual Localization Challenge took place at
IJCAI 2023 from May 26, 2023, to July 26, 2023, featuring
a total prize pool of up to USD 40,000. With over 300 par-
ticipants globally, the event saw the formation of more than
50 teams. In this section, we provide an overview of the win-
ning teams’ strategies and their approaches to addressing the
pose estimation problem. Due to space limitations, readers
are encouraged to contact the teams for further details 2.

4.1 RoMa and DeDoDe Strategy
GETINGARNA, the first-place winning team, scored 0.0273
in rotational error and 1.4205 in translational error, leverages
their recent research on deep learning-based image match-
ing, notably the RoMa [Edstedt et al., 2023] and DeDoDe
methods [Edstedt et al., 2024]. These techniques excel in re-
liably estimating relative poses for most consecutive image
pairs within the challenge sequence.

To attain accurate estimates for the most challenging im-
age pairs and address loop closures. The team devised a
pipeline that integrates image retrieval with DINOv2 [Oquab
et al., 2023], and full structure-from-motion reconstruction
with COLMAP [Schönberger and Frahm, 2016; Schönberger
et al., 2016]. By employing image retrieval with DINOv2,
they successfully matched specific non-consecutive image
pairs, effectively addressing the challenge of significant time
gaps in the image sequence. These improvements contributed
to their solution outperforming all competitors.

KBRODT, securing 2nd place (Figure 4), adopted a simi-
lar approach, leveraging RoMa and the deep neural network

2https://aisingapore.org/aisg-sla-visual-localisation-challenge
-winners/

Figure 4: Visual representation of predicted sub-trajectories of the
rotational error (RE).

model DeDoDe descriptor upon recognizing the limitations
of ORB detectors [Campos et al., 2021] and FLANN match-
ers [Muja and Lowe, 2009] for the task at hand. Their strat-
egy revolves around utilizing publicly available pretrained
weights for both RoMa and DeDoDe descriptor models. This
strategic decision not only streamlined their implementation
process but also eliminated the necessity for extensive re-
training, ensuring stable and robust performance across var-
ious tasks. Notably, the team achieved a rotational error of
0.0382 and a translational error of 6.3374.

4.2 CNN-based Strategy
The third-place winning teams, Team SYLISH and Team
SDRNR (tied), both adopted a CNN-based strategy in their
architectural designs. SYLISH’s solution integrated Light-
Glue and MobileNetV2 [Sandler et al., 2018] as funda-
mental components, establishing a deep image retrieval net-
work and deep feature matching for 2D-2D correspondence
among similar images. They inferred relative motion between
frames through essential matrix estimation within a RAN-
SAC scheme and estimated translation scale factors using a
deep-scale estimation network. The resulting poses under-
went refinement via nonlinear least-squares optimization to
address rotation graph problems.

SDRNR utilized basic CNN approaches like EfficientNet
and ResNet. These models processed two RGB images from
consecutive states, accompanied by precomputed depth maps
and flow maps, predicting quaternions for rotation and cor-
responding translations. They advanced their model by inte-
grating a visual matching system capable of identifying an-
chor point matches on RGB images, even amidst significant
camera pose changes. Additionally, they implemented heuris-
tics to address situations where no matches were found, par-
ticularly during 180◦ turns or anomalously long time deltas
between states.

5 Conclusion
3D mapping research is crucial for smart city development,
but obtaining 3D data is expensive. Monocular camera po-
sition estimation provides a cost-effective solution by deter-
mining camera pose from visual cues. The AISG–SLA Visual
Localization Challenge (VLC) at IJCAI 2023 showed that
state-of-the-art techniques from the research community can
be effective in accurately extracting camera pose data from
2D images in the real world. Furthermore, the VLC dataset,
available for research purposes, provides a valuable resource
for further research in dynamic urban environments.
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Carrel. A comprehensive survey of visual slam algorithms.
Robotics, 11:24, 2022.

[Burri et al., 2016] Michael Burri, Janosch Nikolic, Pascal
Gohl, Thomas Schneider, Joern Rehder, Sammy Omari,
Markus W Achtelik, and Roland Siegwart. The euroc mi-
cro aerial vehicle datasets. The International Journal of
Robotics Research, 35(10):1157–1163, 2016.

[Campos et al., 2021] Carlos Campos, Richard Elvira, Juan
J Gómez Rodrı́guez, José MM Montiel, and Juan D
Tardós. Orb-slam3: An accurate open-source library for
visual, visual–inertial, and multimap slam. IEEE Transac-
tions on Robotics, 37(6):1874–1890, 2021.

[Coors et al., 2000] Volker Coors, Tassilo Huch, and Ursula
Kretschmer. Matching buildings: Pose estimation in an
urban environment. In Proceedings IEEE and ACM Inter-
national Symposium on Augmented Reality (ISAR 2000),
pages 89–92. IEEE, 2000.

[Edstedt et al., 2023] Johan Edstedt, Qiyu Sun, Georg
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González-Sabbagh and Antonio Robles-Kelly. A survey
on underwater computer vision. ACM Computing Surveys,
55(13s):1–39, 2023.

[Lindenberger et al., 2023] Philipp Lindenberger, Paul-
Edouard Sarlin, and Marc Pollefeys. Lightglue: Local
feature matching at light speed. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 17627–17638, 2023.

[Muja and Lowe, 2009] Marius Muja and David G Lowe.
Fast approximate nearest neighbors with automatic algo-
rithm configuration. VISAPP (1), 2(331-340):2, 2009.

[Mur-Artal et al., 2015] Raul Mur-Artal, Jose Maria Mar-
tinez Montiel, and Juan D Tardos. Orb-slam: a versatile
and accurate monocular slam system. IEEE transactions
on robotics, 31(5):1147–1163, 2015.

[Oquab et al., 2023] Maxime Oquab, Timothée Darcet, Théo
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