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Abstract— The use of deep learning (DL) in Earth observation
technology has become essential. Even though DL models do
remarkably well in classifying high-resolution satellite images
and extracting semantic information, they frequently need a lot of
training data, which can be costly and time-consuming to obtain.
With an emphasis on ocean synthetic aperture radar (SAR)
image analysis, this research investigates the use of synthetically
generated data using generative adversarial networks (GANs)
for data augmentation. Relying on GAN-based generated images
for remote sensing applications requires a thorough assessment
of the quality and authenticity of the generated images, as well
as validation of the model’s performance on real-world data.
We assess the diversity and reliability of GAN-generated images
by training a classification network on these images and
evaluating their performance on real-world data. By comparing
the classification accuracy in different experimental setups,
we approximate the precision and recall for GANs performance.

Index Terms— Data augmentation, deep neural network, gen-
erative adversarial networks (GANSs), ocean pattern classification,
synthetic aperture radar (SAR), synthetic image generation.

I. INTRODUCTION

EEP learning (DL) has emerged as a powerful tool

in remote sensing image processing, playing a crucial
role in Earth observation technology. However, implementing
DL models for remote sensing image processing requires
large amounts of training data, which can be expensive and
time-consuming to acquire. To address this issue, researchers
have proposed several solutions, including data augmentation
techniques, transfer learning, and active learning [1].

One promising solution is the use of synthetic data
generation using generative adversarial networks (GANS).
GANs can provide more diverse and realistic samples
compared with traditional data augmentation techniques.
Synthetic data generated by GANs can be used to augment
the training dataset, helping overcome the limitations of data
scarcity and improve the performance of the DL model.
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Relying on GAN-based generated images for remote
sensing applications requires a thorough assessment of the
quality and authenticity of the generated images, as well
as validation of the model’s performance on real-world
data. Selecting appropriate evaluation metrics is crucial for
assessing the performance of GANs. However, traditional
metrics, such as inception score (IS), Fréchet inception
distance (FID) [2], and Kernel inception distance (KID) [3],
may not fully capture the quality and diversity of the generated
images for remote sensing applications. In this study,
we discuss the reliability of GAN-based generated images and
propose two approaches that approximate precision and recall
for GAN performance.

A synthetic aperture radar (SAR) is crucial for advancing
our understanding of the world’s oceans, primarily due to
its all-weather capability. Unlike optical sensors, which are
affected by cloud cover and darkness, SAR operates effectively
under any weather conditions, providing continuous data
essential for studying dynamic ocean processes, such as ocean
currents, wave patterns, and wind behavior.

In this study, we focus on ocean SAR image analysis and
emphasize the need to evaluate the diversity and reliability
of GAN-generated images. We train a classification network
on these synthetic images and assess its performance on real-
world data to ensure that the generated images are realistic
and diverse enough to enhance model performance in practical
applications. In addition, structural similarity index (SSIM) is
exploited to check the correlation between generated images.

Our approach involves using a GAN to generate images,
which are then used to train a classification network. To assess
the reliability of the generated images, we utilize ResNet18 as
a classifier and conduct two experimental setups. Each setup
involves two balanced datasets: one of real images and the
other of generated images. In the first setup, we train the
classifier on real images and test it on generated images,
while in the second setup, we do the reverse. By comparing
classification accuracy across both setups, we approximate the
precision and recall for GANS.

II. RELATED WORKS

Synthetic SAR image generation has been an active area of
research in recent years which has got the attention of remote
sensing experts. By reviewing the literature, we realize many
research works address SAR image generation for ship object
generation [4], [5], for SAR target image generation [6], [7],
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[8], and optical to SAR image translation [9], [10], [11] but
not for ocean image pattern. Despite these articles are not
related to ocean SAR image generation [12], they provide
valuable insights into the use of DL techniques, specifically
GAN:g, for generating synthetic SAR images with high fidelity
and resolution. For example, [13] explores the use of GAN to
generate new spotlight SAR images from a limited preexisting
dataset for target detection. Also, [14] introduces a hierarchical
GAN network model to generate SAR images, gradually
improving the resolution and quality of the images through
a multistage network. More advanced study [15] addresses
the issue of insufficient large-scale training datasets in remote
sensing by ensuring the distribution consistency between
generated synthetic images and real images. It incorporates
two novel designs: a noise modeling pipeline that simulates the
physical process of noise production during image capture and
a detection-oriented image harmonization model that reduces
variations between the pasted foreground and background
in synthetic images. Some studies [6], [7], [16] take into
account the azimuth angles of the SAR data to generate
precise SAR images with controllable azimuths. Zeng et al.
[6] propose ATGAN that reframes generation as image-
to-image translation, using a coarse-to-fine generator and
spectral-normalized patch discriminator to produce precise
SAR images.

In the domain of SAR image classification, particularly for
ocean scenes, addressing the challenge of misclassification
caused by the presence of speckles is of paramount
importance. For instance, [17] introduces a novel DL model,
developed from the ground up, designed to automatically
classify oceanic and atmospheric phenomena in Sentinel-1
SAR wave mode (WV) vignettes. The innovative preprocess-
ing technique applied in this research effectively mitigates
speckle noise and enhances subtle features within the SAR
images, facilitating the discrimination of these complex
scenes.

In order to improve ocean SAR image -classification
accuracy, Ma et al. [18] proposed a novel technique called
Kernel entropy component analysis (KECA). KECA captures
complex nonlinear structures in SAR data by optimizing the
selection of informative features. To address computational
challenges associated with KECA, the study introduces
KECANet, a multistage convolutional kernel network that
improves classification accuracy while maintaining computa-
tional efficiency.

In summary, the classification of SAR images for ocean
monitoring has been extensively explored in scholarly
literature, underscoring the potential of SAR technology for
various oceanographic applications. SAR provides several
advantages, including high-resolution imaging and sensitivity
to changes on the ocean surface. However, it also presents
challenges, such as the necessity for domain expertise to create
labeled datasets. Researchers can enhance the performance
of SAR in ocean monitoring applications by employing data
augmentation techniques. Incorporating these considerations,
GANSs can be effectively utilized to generate synthetic images
for data augmentation, thereby improving the performance of
DL models in remote sensing image processing.
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III. METHODOLOGY

In this section, we present the methodology of StyleGAN2
with adaptive discriminator augmentation (ADA) [19], which
extends the original StyleGAN [20] framework with a dynamic
augmentation strategy for the discriminator during training.
The StyleGAN2-ADA architecture consists of a generator
and a discriminator network, both of which are composed of
convolutional layers. The architecture is similar to StyleGAN2,
with the primary difference being the introduction of the
ADA mechanism to stabilize training when using limited
data. The methodology encompasses the following steps and
components.

A. Mapping Network

The mapping network is a fully connected (MLP) network
that maps points in the latent space to an intermediate latent
space. This network is responsible for controlling the style of
the generated images.

B. Intermediate Latent Space

The intermediate latent space, also known as the style space,
is used to control the style of the generated images at different
levels of detail. The style space is injected into the generator
model at multiple points, allowing for fine-grained control over
the generated images.

C. Weight Demodulation

Weight demodulation is a technique introduced in Style-
GAN?2 that reconstructs the augmentation operation from the
original StyleGAN. It is used to control the style of the
generated images at different levels of detail.

D. Noise Injection

Noise is introduced as a source of variation at each point
in the generator model. This noise helps create stochastic
variations in the generated images, such as texture and fine
details.

E. Adaptive Discriminator Augmentation

The ADA mechanism in StyleGAN2-ADA applies random
augmentations to the input images during training, which helps
prevent overfitting and stabilizes training when using limited
data.

The generator and discriminator networks are trained using
an optimization process that minimizes their respective loss
functions, such as the Wasserstein loss with gradient penalty.
For a given real sample (x) and a random noise vector z,
we calculate the real score D(x) and fake score D(G(z)),
which are the results of discrimination on the real sample and
fake sample, respectively.

The loss function of the discriminator is defined as follows:

Lossp = —log(1 — sigmoid(D(G (z))))
— log(sigmoid(D(x))) + L (1)
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Fig. 1. Example of each class of TenGeoP-SARwv [21]. From (a)—(j) are
pure ocean waves, wind streaks, micro convective cells, rain cells, biological
slicks, sea ice, icebergs, low wind area, atmospheric front, and oceanic front.

where L is the Gradient penalty term and is defined as follows:

L=05%r, * Z V%m] +0.5%r, * Z V%fake )

where ry, and rp, are gradient penalty coefficients. V%ml and
V%ﬂ‘ke are penalized gradient computations for real samples
and generated samples, respectively. The loss function of the
generator is the cross entropy of the generated samples, and
it is calculated

Lossg = — log(sigmoid(D(G(z)))) + LppL 3)

where Lppy, is path length regularization term.

IV. EXPERIMENTS

This section describes the dataset, two experimental settings
for classification, training detail, and evaluation measures
utilized in this work.

A. Dataset

The dataset TenGeoP-SARwv, as provided by [21],
comprises 37560 SAR images sourced from Sentinel-1A WV
acquisitions. These images represent ten distinct atmospheric
and ocean-related physical phenomena. The ten distinct classes
referred to in [21] are illustrated in Fig. 1 along with their
corresponding class names. From Fig. 1(a) to (j) are pure
ocean waves, wind streaks, microconvective cells, rain cells,
biological slicks, sea ice, icebergs, low wind area, atmospheric
front, and oceanic front.

B. Experimental Setups

We create two balanced datasets. The first dataset, D_1,
consists of 500 real samples of each class, and the second
dataset, D_2, consists of 500 generated images for each class.
Images in D_2 are generated randomly with different random
seed numbers. In the first setup, we train the classifier on
real images using D_1 and test on D_2. This experiment will
assess the quality of generated images. Higher accuracy means
the classifier, which is trained on real images, can correctly
classify the generated images. In other words, it means the
generated images have high quality, and intraclass diversity
is enough good. In the second setup, D_2 has been used
for training and D_1 for testing. This setup approximates
the recall of GANs and assesses the diversity of generated
images. Higher accuracy in this setup shows that generated
images have high diversity. The classifier used in both setups
is ResNetl8.
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TABLE I
COMPARISON OF FID SCORES AND CLASSIFICATION
ACCURACIES FOR EACH CLASS

Class FID ACC_0 | ACC_1 | ACC_2
a | Pure Ocean Waves 2.34 99.06 99.9 86.6
b | Wind Streaks 3.51 98.4 97.16 72
¢ | Micro Convective Cells | 9.93 96.28 92.5 46.8
d | Rain Cells 10.54 99.9 98.44 60
e | Biological Slicks 9.19 99.9 99.16 88.8
f | Sea Ice 18.76 96.04 95.51 73
g | Iceberg 15.69 98.2 97.36 14.8
h | Low Wind Area 14.86 97.99 92.94 94.8
1 | Atmospheric Front 9.74 94.8 95.33 52.6
] Oceanic Front 16.6 95.51 83.2 22.6

Average 11.116 | 97.608 95.15 61.2

C. Training Details

In each experiment, StyleGAN2-ADA was trained sepa-
rately for each class. The training starts using weight random
initialization with a fixed random seed value. Each vignette is
resized to 256 and converted from uint16 to uint8 with a range
of [0-255] in portable network graphic (PNG) format. For the
style-based generator, we use leaky rectified linear unit (ReL.U)
with ¢ = 0.2 and an equalized learning rate for all layers.
The mapping network consists of eight fully connected layers,
and the dimensionality of all input and output activations
is 512. The classifier, ResNetl8, has 18 layers, including
convolutional layers and skip connections. It starts with a 7 x
7 convolutional layer followed by four layers of convolutional
blocks, each containing two residual blocks. The optimizer
for the classifier and GANs is Adam with 8; =0, 8, = 0.99,
and € = 1078, The batch size is set to 32 by considering
the computational power and shared memory of the GPU.
All experiments are conducted on a single NVIDIA Quadro
GV100 GPU using the PyTorch framework with CUDA
support.

D. Evaluation Metrics

In this letter, we calculate FID, which captures the similarity
of generated images to real ones better than the IS. FID
measures the distance between generated data and real data
at the feature level and is defined as follows:

FID = [jm —mw||2+Tr[C+cw _acent] @

where m and m,, are the means of real image features and
generated image features, respectively. C and C, are the
covariance matrices of the real image and generated image,
respectively. Tr is the trace of the matrix. The results are
provided by FIDs using 50 000 images drawn randomly from
the training set and report the lowest distance encountered
throughout training. It is worth noting that a lower value
of FID demonstrates better performance. In addition to FID,
we calculate the classification accuracy of each class. We note
the first setup’s accuracy, Auc_l, and the second setup’s
classification accuracy, Auc_2.

V. RESULTS

Fig. 2 shows six randomly generated images for each
class using StyleGAN2-ADA. For comparison, Fig. 1 displays
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Fig. 2. Presenting six randomly generated images for each class in order
(images are more bright for better visualization).

one real sample from each class. The generated images are
remarkably realistic, closely resembling their real counterparts
and making it challenging to differentiate between them.
The model successfully created high-quality images across all
classes, from simple pure ocean waves to complex sea ice
textures. The sea ice images in the sixth row are particularly
noteworthy, showcasing intricate features and varying contrasts
that closely match real sea ice samples. This demonstrates the
model’s ability to generate diverse and high-fidelity images
across different textural complexities. To thoroughly assess the
model’s performance in terms of fidelity and diversity, we use
both quantitative measures, such as FID and a classifier-based
approach. The latter involves evaluating classification accuracy
in two distinct experimental setups.

Before presenting the final results of two experiments,
to check the actual correlation between real and generated
images and correlation among generated images in D_2,
we calculate SSIM for each class. Fig. 3 compares SSIM
between real and generated images, as well as the SSIM
for generated images only. The results show that the average
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Fig. 3. SSIM between real and generated images, as well as the SSIM for
generated images only.

SSIM for real versus generated images across all classes
is 0.8351, which evaluates the visual quality of generated
images. On the other hand, to evaluate the internal consistency
of generated images or to analyze how different generations
compare against each other, we calculate SSIM for generated
images only with an average of 0.8692. This indicates that
the generated images, on average, have a higher structural
similarity when compared with other generated images rather
than to the real images and demonstrates the lack of diversity
of generated images, while generated images provide high
visual quality.

However, it is important to note that the SSIM values vary
across individual classes. For example, class “d” (rain cells)
has a relatively high SSIM of 0.8844 for real versus generated
images, but a lower SSIM of 0.8691 for generated images only.
In contrast, class “c” (microconvective cells) has a lower SSIM
of 0.7969 for real versus generated images but a higher SSIM
of 0.9564 for generated images only. These findings suggest
that the performance of the generative model may be class-
dependent, and further investigation is needed to understand
the factors contributing to these differences. We further explore
this assessment by employing the classification-generated
images.

Table I compares FID scores and classification accuracies
for each class of ocean SAR images. The FID scores provide
insight into the quality of generated images, with lower scores
indicating better quality. Pure ocean waves and wind streaks
have the lowest FID scores (2.34 and 3.51, respectively),
suggesting high-quality generated images for these classes.
In contrast, sea ice and oceanic front have the highest FID
scores (18.76 and 16.6), indicating lower quality of generated
images.

The classification accuracies are presented in three columns:
ACC_0, ACC_1, and ACC_2. ACC_0 represents the accuracy
on the original unbalanced dataset [21], showing consistently
high performance across all classes (average 97.608%).
ACC_1, representing accuracy when training on real images
and testing on generated ones, is also high (average 95.15%),
indicating that generated images closely resemble real ones in
most cases. This comparison provides a more comprehensive
view of the fidelity of the generated synthetic data by
demonstrating how the same classification model performs on
both real and synthetic data.

However, ACC_2, which represents accuracy when training
on generated images and testing on real ones, shows a
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significant drop (average 61.2%). This suggests that while
generated images may look realistic, they often lack the
diversity needed to train a classifier that generalizes well to
real data. The disparity is particularly pronounced for classes,
such as iceberg (14.8%) and oceanic front (22.6%), indicating
that these classes pose significant challenges for the GAN in
terms of generating diverse, representative samples.

Interestingly, there is not always a clear correlation between
FID scores and classification accuracies. For instance, low
wind area has a relatively high FID (14.86) but achieves the
highest ACC_2 (94.8%). This suggests that FID alone may not
be sufficient to evaluate the quality and diversity of generated
images for classification tasks.

In conclusion, while the GAN performs well in generating
high-quality images for most classes (as evidenced by low
FID scores and high ACC_1), it struggles to capture the
full diversity of real images, particularly for complex classes,
such as iceberg and oceanic front. This is reflected in the
lower ACC_2 scores, suggesting room for improvement in
generating more diverse and representative synthetic images
for ocean SAR data augmentation.

VI. CONCLUSION

In this study, we utilized StyleGAN2-ADA to generate
synthetic ocean pattern images using SAR data from
Sentinel-1A WV acquisitions. We assessed the reliability of
the generated images by employing ResNet18 as a classifier in
two experimental setups, each with balanced datasets of real
and generated images. The consistency of generated images
in the created dataset is assessed by SSIM. In addition,
we calculated FID of the generated images and compared it
with classification accuracy. Our findings lead to the following
conclusions.

1) FID effectively evaluates the quality of generated images
but is limited in quantifying their diversity, as evidenced
by low average AUC-2 (61.2%) despite low average
FID (11.116). This indicates that realistic images do not
necessarily equate to diverse images.

2) A qualitative and quantitative comparison revealed that
generating diverse images requires sufficiently varied
datasets for training GANSs.

3) GANSs appear to face a tradeoff between quality and
diversity. While they can produce high-quality images
for dominant modes, they may struggle to maintain
quality across the entire data distribution, resulting in
lower quality for less represented modes.
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