@AGUPUBLICATIONS

1	
2	Geophysical Research Letter
3	Supporting Information for
4	Precession-driven variations in the Indonesian Throughflow thermocline and its
5	implications on the Agulhas Leakage
6	Peng Zhang ^a , Jian Xu ^{a,} *, Ann Holbourn ^b , Wolfgang Kuhnt ^b , Renjie Pei ^{b,c} , Zhifang
7	Xiong ^d , Tiegang Li ^d
8	^a State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, China
9	^b Institute of Geosciences, Christian-Albrechts-University, Kiel, Germany
10	^c Department of Geological Sciences, San Diego State University, California, US
11	^d Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural
12	Resources, Qingdao, China
13	*Corresponding authors. Email: jx08@live.cn
14	Contents of this file
15	Figures S1 to S4
16	Introduction
17	This file consists of four figures. Figure S1 shows the linear correlation of Fe/Ca, Al/Ca
18	and Mn/Ca with Mg/Ca. Figure S2 shows the proxy records from IODP Site U1483. Figure
19	S3 presents spectra of various proxy records and their correlation and phase relationship
20	on precession band. Figure S4 compares proxy records of thermocline temperature and
21	salinity between the Timor Sea and the South Atlantic.

23 Figure. S1 Linear correlation of Fe/Ca (a), Al/Ca (b) and Mn/Ca (c) with Mg/Ca.

24

25

Figure. S2 Proxy records from IODP Site U1483. (a) *P. obliquiloculata* δ^{18} O; (b) thermocline temperature (TT) calculated from *P. obliquiloculata* Mg/Ca; (c) local thermocline seawater δ^{18} O (δ^{18} O_{sw-c}) derived from *P. obliquiloculata* δ^{18} O and Mg/Ca-TT

and corrected for the effect of global ice volume. Envelopes in (b) and (c) denote the calculating uncertainties in thermocline temperature and $\delta^{18}O_{sw-cr}$, which are ~1.0°C and ~0.25‰, respectively. The $\delta^{18}O$ and Mg/Ca data in the interval of 147.89-157.92 ka (red dots) are from Core MD01-2378 (this study), which was recovered at the same location and has the same age model as Site U1483. Inclusion of these data allows to bridge a depositional hiatus between 1401 cm (145.55 ka) and 1515 cm (158.59 ka) in the revised SPLICE of Site U1483.

36

Figure. S3 Spectral and cross-spectral analyses of various proxy records in this study.
Spectral analysis of Site U1483 (a) thermocline temperature (TT) and (b) thermocline

40 $\delta^{18}O_{sw-c}$ (TS) (this study), (c) TT difference between Cores MD98-2165 and SO139-74KL 41 ($\Delta TT_{MD98-2165-SO139-74KL}$) (Pang et al., 2021), (d) total organic carbon (TOC) content of Core 42 SO139-74KL (Lückge et al., 2009), (e) relative abundance of Agulhas leakage fauna (ALF 43 (%)) from Core MD96-2081 (Peeters et al., 2004) and (f) δ^{18} O difference between G. truncatulinoides and G. ruber ($\Delta \delta^{18}O_{G. truncatulinoides-G. ruber$) of Core GL-1180 (Nascimento et 44 45 al., 2021). (g) Coherence of MD96-2081 ALF (%) with $\Delta TT_{MD98-2165-SO139-74KL}$ and U1483 TT 46 and TS based on cross-spectral analysis. (h) Coherence of precession with $\Delta TT_{MD98-2165-}$ _{SO139-74KL}, U1483 TT and TS, MD96-2081 ALF (%), SO139-74KL TOC and GL-1180 Δδ¹⁸O_G. 47 48 truncatulinoides-G. ruber, respectively. (i) Phase wheel showing the phase relationships of ΔTT_{MD98-} 49 2165-SO139-74KL, U1483 TT and TS, MD96-2081 ALF (%), SO139-74KL TOC and GL-1180 $\Delta \delta^{18}O_{G. truncatulinoides-G. ruber}$ with precession. Spectral and cross-spectral analyses were 50 51 respectively performed by REDFIT (Schulz and Mudelsee, 2002) and Redfit-X (Ólafsdóttir 52 et al., 2016) with a rectangular window.

53

Figure. S4 Comparison of thermocline temperature (TT) and salinity (TS) between the Timor Sea and the South Atlantic. The Timor Sea Site U1483 is from this study. The South Atlantic Cores GL-1090, GL-1180 and 64PE-174P13 are from Ballalai et al. (2019),

- 57 Nascimento et al. (2021) and Scussolini et al. (2015), respectively. Precessional parameter
- 58 is from Berger and Loutre (1991).