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Abstract

9 The need for ecosystem-based approach to fisheries management is widely recognized. 

10 Designing ecosystem models for management purpose requires the identification of key 

11 interactions and forcings driving the dynamics of fish stocks, which can be a very challenging 

12 task given the complexity of interactions that determine the evolution of marine ecosystems. 

13 To overcome this difficulty, this study proposes a statistical approach based on multivariate 

14 time series analysis to identify the main biotic interactions and abiotic factors using as a case 

15 study a complex and exploited marine ecosystem, the Gulf of Lions (GOL) in the 

16 Mediterranean Sea. To do so, first, pairwise Granger causality tests were performed to detect 

17 and select the strongest interactions and drivers, then Multivariate Auto-Regressive (MAR) 

18 models were run to check the relevance of the selected causal relationships in a multivariate 

19 system. The results led us to identify three statistical interaction networks (SINs) of moderated 

20 complexity. The first one showed statistical interactions between blackbellied angler (Lophius 

21 budegassa), hake (Merluccius merluccius), grey gurnard (Eutrigla gurnardus), and John dory 

22 (Zeus faber), and the effect of nitrate concentration. The second focused on blackbellied angler, 
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23 red mullet (Mullus barbatus), anchovy (Engraulis encrasicolus), under the combined influence 

24 of demersal trawlers, SST and nitrate concentration. The third one included horned octopus 

25 (Eledone cirrhosa), capelan (Trisopterus capelanus), sardine (Sardina pilchardus), and the 

26 effect of nitrate concentration. These SINs can serve as a basis to build models of intermediate 

27 complexities to describe the dynamics of the main fish stocks of the GOL.

28 Keywords: Granger causality, Multivariate Auto-Regressive (MAR) models, Statistical 

29 interaction networks, environmental effects, fishing effects, Gulf of Lions.

30 1. Introduction

31 The collapse of several stocks worldwide in the late 1980s (Crespo and Dunn, 2017; Hilborn 

32 et al., 2020), and the increasing threat of climate change on marine resources (Barange and 

33 Perry, 2009) has led to the recommendation of implementing an ecosystem-based approach to 

34 fisheries management (FAO, 1995; Cury et al., 2008). EBFM is a multi-factorial approach for 

35 fisheries management, ideally accounting for as many drivers as possible, such as interspecific 

36 interactions, environmental changes, pollution and other constraints on habitat and water 

37 quality. This led to different perspectives on how to implement ecosystem models, depending 

38 on the region, the purpose, and the accessible level of complexity (Plaganyi, 2007; Trochta et 

39 al., 2018).

40 In many areas though, fisheries management (when it exists) is still based on classical, single-

41 species stock assessment models, where fishing mortality is the main driver of the fish stock 

42 dynamics. For example, in the Mediterranean region, where an ambitious management plan is 

43 ongoing since 2020 (the “Westmed” plan, see Sola et al., 2020 for details), most of the stock 

44 assessment models routinely used to provide advice regarding fisheries management are based 

45 on classical single-species assessment approaches (statistical catch at age or surplus production 

46 models, see STECF, 2023). Furthermore, the spatial and/or bio-economic models currently 

47 used to inform the Westmed plan do not consider interactions between species (see the example 
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48 of the IAM model, the BEMTOOL model, or the ISIS-Fish model in STECF, 2022). The need 

49 to develop ecosystem models tailored for operational management in the Mediterranean region 

50 is clear, and some steps have already been taken in this direction, for example in the Adriatic 

51 Sea (Angelini et al., 2016). However, most areas of the Mediterranean Sea still lack such 

52 approaches.

53 This is the case for the Gulf of Lions (GOL), which is a continental shelf bordering the French 

54 coast whose northern location in the Mediterranean basin makes it a potential refuge from 

55 climate change (Pennino et al., 2020). The GOL ecosystem has been under strong fishing 

56 pressure since many decades (Aldebert, 1997). Today, the ecological status of the GOL 

57 ecosystem is of great concern (FAO, 2023). Several ecosystem models have already been 

58 proposed for the GOL (Banaru et al., 2013, 2019; Corrales et al., 2015; Diaz et al., 2019; 

59 Cresson et al., 2020; Vilas et al., 2021; Seyer et al., 2023). However, none are currently used 

60 for decision making and fisheries management, most likely because these highly complex 

61 models are not well tailored to produce reliable diagnostics regarding fishing mortality or 

62 management strategies.

63 Ecosystem models are most often structured by trophic interactions, in the sense that they try 

64 to represent what we know about the numerous trophic relationships possibly existing in the 

65 system. However, the focus of fisheries management is not on modeling exhaustively the food 

66 web, but rather on explaining the joint dynamics of the most important harvested stocks. If 

67 evidence on food web structure can be obtained through diet or isotope analysis, it is more 

68 challenging to gather evidence that the consumption of a given predator affects the population 

69 dynamics of its preys and vice versa. Some well-studied systems provide examples of studies 

70 deciphering the effects of trophic interactions on fish dynamics can be found. These include 

71 Lindegren et al. (2009) who studied cod-herring-sprat (Gadus morhua; Clupea harengus; 

72 Sprattus sprattus) interactions in the Baltic sea; Or Durant et al. (2019) who showed a strong 
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73 dependence on synchrony with zooplankton prey in the Arcto-boreal small pelagic fish 

74 population (the Barents sea) in contrast to the temperate fish population (Bay of Biscay); Or 

75 Shears et al. (2003) who addressed the trophic cascade effects of increased predator abundance 

76 in the Leigh marine reserve (northeastern New Zealand). These studies are usually restricted 

77 to a few interacting species, usually 2-4 predominant ones, rather than the entire food web. 

78 Furthermore, modeling species interactions within a given ecosystem is a challenge for several 

79 other reasons. First, whatever the environment, most trophic interactions within a food web are 

80 not strong enough to significantly drive the dynamics of the species composing it (Mutshinda 

81 et al., 2009; Kawatsu et al., 2021). In addition to key prey-predator relationships, other non-

82 trophic interspecific interactions – such as competition, commensalism, or mutualism – can 

83 also drive community dynamics (Rockwood, 2015), even though they may be more challenging 

84 to identify in marine systems. Lastly, external drivers can also exert a strong control on stock 

85 dynamics, through recruitment success (Cury and Roy, 1989) or fishing pressure (Kuparinen 

86 et al., 2016).

87 All these driving forces and interactions, when combined with intrinsic population dynamic 

88 processes (i.e. density dependence) can quickly lead to complex and data-intensive models 

89 (Smit et al., 2021). Unfortunately, a high level of information is not always available, and 

90 information on the biology or ecology of marine species, or environmental factors, is primarily 

91 supplied through monitoring programs, rarely available before the 1960s (Lotze and Worm, 

92 2009). In the Mediterranean, routine surveys were initiated in the 1990s (Fortibuoni et al., 

93 2017). Both the Mediterranean international bottom trawl survey (MEDITS; Jadaud and 

94 Certain 1994) and its pelagic counterpart (PELMED; Bourdeix and Hattab 1985) are carried 

95 out on a yearly basis, providing relatively short time series of ~30 points.

96 To build ecosystem models for management purposes, it is therefore relevant to take a 

97 parsimonious approach. This requires clear identification of (1) the stocks under focus and (2) 
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98 the main factors driving their dynamics, whether they are trophic, non-trophic, or exogenous 

99 drivers; as well as (3) possibly selecting the most influential among these factors to avoid the 

100 pitfall of fitting overly complex models to limited time series (Plaganyi et al., 2014). To achieve 

101 this, one can use prior knowledge on the ecosystem under focus. But in certain cases, such 

102 knowledge may be limited to a few components, with the risk of missing unknown but 

103 important interactions. To solve this, we propose in this study an extensive analysis of 

104 ecosystem monitoring data tailored to identify key interactions. To do so, we apply a relatively 

105 simple statistical approach to identify key variables and interactions through the multivariate 

106 analysis of time series. The approach builds on the Granger causality (GC) concept, which 

107 measures the ability of one variable to improve the prediction of another (Granger, 1969). 

108 Notably GC can be measured using Multivariate Auto-Regressive (MAR) models (see 

109 Barraquand et al., 2021), which are a particularly efficient technique to detect biotic and abiotic 

110 interactions within a community dynamics (Certain et al., 2018). GC has been extensively used 

111 in the field of economics (Masih and Masih, 1996; Foresti, 2006). In ecology, it has proven to 

112 be very effective in evidencing interspecific relationships (Parker et al., 2020) and stock-

113 recruitment relationships (Ye, 2000); as well as assessing the influence of an environmental 

114 driver on population dynamics (McLean et al., 2018; Rincón et al., 2019; Chivers et al., 2020; 

115 Hays et al., 2021). The objective of this study is thus to reduce the complexity of the GOL 

116 ecosystem by identifying the most significant biotic interactions and abiotic effects through 

117 multivariate analysis of available time series using GC tests. Although this approach is applied 

118 to the GOL ecosystem, its ease of implementation makes it reproducible for other ecosystem 

119 with similar data sets.
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120 2. Materials and methods

121 2.1. Case study: Gulf of Lions (GOL) fisheries

122 Like most Mediterranean fisheries, the GOL fisheries are mixed fisheries characterized by 

123 many fleets with relatively small vessels exploiting several dozens of species. The rapid 

124 development of the fishing fleet in the 1960s exerted a strong fishing pressure on the exploited 

125 stocks and the first signs of over-exploitation were reported as early as the late 1980s (Aldebert, 

126 1997; Van Beveren et al., 2016). To support the regulation of these fisheries under the EU 

127 common fisheries policy, annual monitoring surveys (MEDITS survey, demersal trawl, 

128 (Jadaud and Certain, 1994), and PELMED survey, acoustic survey, (Bourdeix and Hattab, 1985, 

129 Fig. 1) were launched in the early 1990s (Bertrand et al., 1997; Spedicato et al., 2019). They 

130 extensively cover the GOL continental shelf and provides standardized time series of 

131 abundances for the most important pelagic and demersal species in the area.

132 In the mid-2000s, an environmental shift in the GOL, probably mediated through the planktonic 

133 food web, caused rapid and abrupt changes in abundance and body condition of several species 

134 (Saraux et al., 2019; Feuilloley et al., 2020; Bensebaini et al., 2022; Garcia et al., 2023) and 

135 resulted in a massive transfer of fishing effort from pelagic to demersal stocks which later on 

136 resulted in an increased fishing pressure on demersal stocks (Saraux et al., 2019), which later 

137 led to the implementation of a restructuring plan decreasing the fishing effort of demersal 

138 trawlers operating in the area (EU, 2019). However, despite the reduction in fishing effort, 

139 landings by demersal trawlers remain the most important. Data on landings in recent years 

140 (2018-2020) showed that 47 species account for 90% of total landings, and of which around 50% 

141 are landed by trawlers (Certain et al., 2022). For many reasons such as a lack of data throughout 

142 the whole time series (see e.g. Morfin et al., 2012), we restricted our analysis to 25 species that 

143 were regularly caught (i.e. there were no missing values in the time series). Because 

144 envisioning multispecies models for management purpose requires to focus on key species and 
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145 their interactions (Plaganyi et al., 2014), it was necessary to select some species of key 

146 importance to the fishery. Therefore, from these 25 species we identified 6 “target species” for 

147 our analysis: hake (Merluccius merluccius), red mullet (Mullus barbatus), horned octopus 

148 (Eledone cirrhosa), blackbellied angler (Lophius budegassa), sardine (Sardina pilchardus) and 

149 anchovy (Engraulis encrasicolus). The species were selected based on the possibility of stock 

150 assessments, the availability of routine sampling by MEDITS and PELMED surveys (Morfin 

151 et al., 2012; Saraux et al., 2014), as well as their significance in terms of landings and economic 

152 value (Table 1).

153 2.2. Data processing

154 Our focus is to identify any biotic and abiotic interactions possibly affecting the 6 target species 

155 mentioned above. Data were extracted from two monitoring campaigns, set up in the early 

156 1990s, which take place once a year, one for demersal stocks, from mid-May to the end of June 

157 (MEDITS), and the other for pelagic stocks, during the month of July (PELMED). The 

158 standardized densities (log-transformed and centered) of 25 species have been considered for 

159 this analysis (Fig. 1). For 11 species, the large data set allowed to split the series into juveniles 

160 and adults with the exception of red mullet, where only adults have been retained as juveniles 

161 are poorly sampled. For the remaining 15 species, division into two life stages was not possible 

162 due to the lack of data for some years (i.e. there are missing values in the time series when it is 

163 split), resulting in a total of 36 time series (Table 2). In addition, data on 9 abiotic drivers have 

164 been chosen and extracted based on the work of Feuilloley et al (2020). Six of them are 

165 environmental descriptors: Sea Surface Temperature (SST), Western Mediterranean oscillation 

166 index (WeMOI), mixed layer depth (MLD), Rhône River flow, nitrate and phosphate 

167 concentration in the Rhône River, and the three remaining relates to the fishing effort of either 

168 demersal trawlers, pelagic trawlers, and seiners. Environmental data covered the whole period 

169 from the early 1990s to 2020, while fishing effort data covered from 2001 to 2020 (Table 2). 
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170 The data were collected on a monthly or daily scale, then an annual average was calculated 

171 over a one-year period from July 1st to June 30th to better match the dates of the MEDITS and 

172 PELMED surveys. These data have been standardized (scaled and centered) before analysis. 

173 The details on biotic and abiotic time series used for this study are provided in Appendix A.

174 2.3. Granger causality and Multivariate Auto-Regressive (MAR) Models

175 We propose here a statistical approach to identify key variables and interactions through 

176 multivariate time series analysis. Our dataset is comprised of 45 time series, 36 corresponding 

177 to species and 9 to covariates describing the environment and the fishing effort. Fitting a full 

178 Multivariate Auto-Regressive MAR model to such high number of series is quite impractical 

179 and would require much longer time series than the one at hand (between 20 to 28 points). For 

180 example, simulations made by Certain et al. (2018) suggested that a nonlinear and stochastic 

181 ecological system of dimension 10 would require time series with at least 500 to 800 points to 

182 be correctly fitted. To overcome this problem, we focused on pairwise interactions, sequentially 

183 performing pairwise GC tests with one time lag to select the most important interactions. Then, 

184 MAR models with one time lag were built with the selected interactions to check their 

185 consistence in a multivariate system; i.e. the robustness of coefficient estimates when the effect 

186 of other variables and covariates was taken into account. The analytical process is summarized 

187 in Fig. 2, and details regarding GC tests and MAR modeling are provided in the following 

188 sections.

189 2.4. Pairwise Granger causality test

190 The GC test posed by Granger (1969), is a statistical hypothesis test to determine whether one 

191 time series is useful in forecasting another. More specifically, x Granger causes y if y is better 

192 predicted with x than without. This translates into the implementation of two auto-regressive 

193 models predicting y values, one taking into account only past y values (the univariate model; 

194 Eq. 1), and the other both past y and x values (the bivariate model; Eq. 2).
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195                                                  𝑦𝑡 = ∑𝑛
𝑝=1 𝑎𝑝𝑦𝑡―𝑝 + 𝜂𝑡,   𝜂𝑡 ∼ 𝑁(0,𝜎2

𝜂)…...……......……..(Eq.1)

196                           𝑦𝑡 = ∑𝑛
𝑝=1 𝑏1,𝑝𝑥𝑡―𝑝 + ∑𝑛

𝑝=1 𝑏2,𝑝𝑦𝑡―𝑝 + 𝜖𝑡,   𝜖𝑡 ∼ 𝑁(0,𝜎2
𝜖)………....…...(Eq. 2)

197Where subscript p is indicating time lags. ap and b2,p are the autocorrelation coefficients while b1,p 

198 is the coefficients outlining the effect of xt-p on yt. ηt and єt are the associated errors, which 

199 follow a normal distribution with a mean of 0 and variances of ση
2 and σє

2 respectively.  GC is 

200 deduced when predictions regarding future values of y issued from the bivariate model (Eq. 2) 

201 outperforms the univariate one (Eq. 1). The effect size (G) of the interaction is defined as the 

202 ratio between the residual variance of the bivariate model and the univariate model (Eq. 5).

203                                                                    𝐺 = ln(
𝜎2

𝜂

𝜎2
𝜖
)…………………..………………….(Eq. 3)

204 If there is no interaction between x and y, x does not improve the prediction of y, so ση
2≈σє

2 

205 and G≈0. In the opposite case where x affects y, σє
2<ση

2, and hence G>0 (Detto et al., 2012; 

206 Barraquand et al., 2021).

207

208 The approach involved the following steps. To test whether time series x “Granger causes” 

209 time series y, both a univariate autoregressive model for x (Eq. 1) and a bivariate model (Eq. 

210 2) were fitted. Then, effect size (G) was calculated following Eq. 3, and p-values were 

211 computed by a Wald test (see “grangertest” function within R package vars; Pfaff and Stigler, 

212 2023).To search for potential biotic interactions driving the dynamics of our 6 target species, 

213 we performed a succession of pairwise GC tests, using the 36 biotic time series extracted.  As 

214 the aim was to reveal which species potentially drives the dynamics of the 6 target species, the 

215 tests involving two non-target species were not conducted. In total, 315 tests were performed. 

216 We only considered a simple time lag of one year (p=1), because of the shortness of the 

217 available time series. Performing many sequential pairwise tests using short time series has 
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218 several shortcomings. First, the large number of tests theoretically would require multiple-

219 testing corrections, such as Bonferroni correction (Moran, 2003) or Holm’s test (Holm, 1979). 

220 However, there is a growing body of literature explaining that large non-significant effects 

221 should not be discarded, especially when samples are small as in our case (Amrhein et al., 

222 2019). Conversely, even if “statistically significant”, an interaction may have a weak effect 

223 size and thus may not be useful for the purpose of describing the dynamics of the target series.

224 Because of these statistical issues and because our focus is primarily on identifying interactions 

225 strong enough to be of importance for the dynamics of the system (e.g. with large effect size), 

226 we set a subjective threshold for effect sizes (thereafter noted Gth) to distinguish “potentially 

227 strong” interactions. We assumed that only interactions able to explain at least 25% of the 

228 variance in the response variable were of interest, which corresponds to causal effect size 

229 greater than 0.28 (Gth≥ln(1/0.75)≈0.28). In a second step, we computed p-values with the Wald 

230 test to further classify these “potentially strong” interactions, and we retained those for which 

231 p-value≤0.1. This 10% threshold was derived from a power analysis (detailed in Appendix B) 

232 that demonstrated that with short series around 20 points, the GC test was not very powerful in 

233 detecting weak interaction coefficients, but remained efficient in detecting high ones (>0.3), 

234 provided that the assumed α risk was a bit higher than the classical 5%. Finally, we decided to 

235 only retain interactions satisfying both criteria (G ≥ Gth and p-value≤0.1).

236 After this series of pairwise interaction tests, a number of non-target species potentially 

237 affecting the dynamics of the target species were identified. Once this was done, the effects of 

238 abiotic drivers were then tested on this selected pool of biotic time series. For each selected 

239 biotic time series, 7 pairwise GC tests were conducted: 6 for environmental series, and one for 

240 fishing effort, as we only tested the effort of the fleet presenting the highest proportion of 

241 catches of the species under consideration.
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242 2.5. Multivariate Auto-Regressive (MAR) Models

243 After these two sequences of biotic and abiotic pairwise GC tests, a number of relevant 

244 interactions potentially driving the dynamics of six target stocks were identified. The variables 

245 connected through these interactions form a “Statistically Interacting Network” (SIN). In this 

246 last part, we checked the relevance of these SINs using Multivariate Auto-Regressive (MAR) 

247 modeling. A MAR model is a system of m linear equations describing the variation of each 

248 variable (here fish densities) and their interactions, and l linear equations describing the effect 

249 of each exogenous variable or covariates (here environmental factors and fishing pressures). In 

250 matrix form, it is written as follows (Holmes et al., 2018):

251                              𝑀𝐴𝑅(1):𝑥𝑡 = 𝐵𝑥𝑡―1 +𝑎 + 𝐶𝑢𝑡 + 𝑤𝑡,  𝑤𝑡 ∼ 𝑁(0,𝑄𝑡)….......…..….(Eq. 4)

252 with xt a vector whose elements corresponds to the m response variables of the model. B is the 

253 m*m interaction matrix, with bij the effect of variable j on variable i. The diagonal of the matrix 

254 B represents the effect of the variables on themselves. ut is a vector of l covariates and C is the 

255 m*l matrix of covariates effects, with cij the effect of covariate j on variable i. wt is a 

256 multivariate normally distributed error vector with mean 0 and variance-covariance matrix Q. 

257 Matrix B and C parameters were estimated by a maximum likelihood estimation using a 

258 Kalman filter (Harvey, 1989).

259 We therefore modeled each SIN identified by the pairwise GC test with a MAR(1) model. In 

260 these models, only the auto-correlation coefficients and coefficients of interactions identified 

261 previously with the pairwise GC test were estimated, while all other possible interactions, 

262 discarded by the pairwise test, were set to zero. Because all the interactions are modeled at 

263 once, some interaction coefficients may differ from the values obtained through the pairwise 

264 GC test. For instance, this may occur when the detected interaction was actually attributable to 

265 a confounding or a mediating variable not accounted for in the pairwise test, but recovered in 

266 the MAR(1) model. In a nutshell, a “confounder” is a third variable that has an effect on both 
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267 x and y, and is the cause of the interaction between x and y, while a “mediator” is a third variable 

268 that is impacted by x and has an effect on y, and is the cause of the interaction between x and y 

269 (Lederer et al., 2019). Therefore, comparing the interaction coefficients derived from the 

270 pairwise GC test and the MAR(1) model is another way of evaluating the robustness of the 

271 detected interactions: if a given interaction, recovered by the pairwise GC test, remains relevant 

272 in the MAR(1) model, our confidence in this interaction is strengthened.

273 As noted above, the major environmental shift that occurred in the GOL (Feuilloley et al., 2020) 

274 has had a considerable impact on densities and body condition of many fish species (Saraux et 

275 al., 2019; Bensebaini et al., 2022). Such a drastic environemental event may act as a hidden 

276 confounding factor in a multivariate statistical analysis, leading to spurious interactions. In 

277 order to investigate this, the effect of a simple covariate describing the three phases of this 

278 major environmental shift was included in the SINs previously highlighted. The "Shift" 

279 covariate, based on Bensebaini et al. (2022), was taken into account in MAR models with 

280 effects on species whose interactions could not be explained (for more details of the analysis 

281 see Appendix C). The coefficients obtained from the different models (with and without the 

282 "Shift" covariate) were compared to each other to assess their relevance (see Appendix C).

283 3. Results

284 3.1. Pairwise test: biotic interactions

285 Regarding the biotic interactions, out of 315 tested links, 10 were retained by our procedure 

286 (i.e. about 3.2%, Fig. 3, Table 3) with G≥0.28 and p-value≤0.1, 39 were “weak” with G<0.28 

287 and p-values≤0.1 (i.e. about 12.4%, Appendix D: Table D.2), and 266 were deemed irrelevant 

288 (weak effect size and large p-value). The 10 retained interactions were rather strong since their 

289 associated effect sizes varied between 0.28 and 0.38.

290 Fig. 4 (the top of the figure) shows an example of a biotic interaction with on the left the two 

291 series tested and on the right the scatter-plot of the two time series. Time series show a positive 
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292 relationship between adult red mullet and juvenile blackbellied angler, and the scatter-plot 

293 shows that there is a positive correlation between the two variables. The graphics of the other 

294 interactions could be seen in Appendix D: Fig. D.1, and D.2.

295 The selected biotic interactions were compared to a table of trophic links that may exist 

296 between the studied species (Appendix D: Table D.1). This table has been prepared from 

297 bibliographic references on the diet studies of the different investigated species in the 

298 Mediterranean in general and in the western basin in particular. Finally, an ecological 

299 hypothesis has been proposed to the 10 detected links (Table 3), to categorize them into 

300 “growth”, “stock-recruitment relationship”, “predation”, and “unknown” when no biotic 

301 relationship was documented. Intraspecific interactions were expressed through two sorts of 

302 mechanisms controlling the population dynamics; the “growth”, for the positive effect of 

303 juvenile hake on adult hakes (+0.35), and “stock-recruitment relationship”, for the positive 

304 effect of adults on juveniles of hake (+0.8), and for the negative effect of juveniles on adults of 

305 Horned octopus (-0.42). Among interspecific interactions, “predation” is usually one of the 

306 easiest links to identify, such as the positive effect of adult grey gurnard on adult hake (+0.38), 

307 adult red mullet on juvenile blackbellied angler (+0.64). The 5 remaining links, i.e., the positive 

308 effects of adult blackbellied angler on juvenile hake (+0.77), John dory on juvenile hake 

309 (+0.48), sardine on juvenile horned octopus (+0.52), the negative effect of juvenile capelan on 

310 sardine (-0.43), anchovy on adult red mullet (-0.51) could not be identified, so they are noted 

311 “unknown” in Table 3, as no main hypothesis from literature could be retained to explain them.

312 3.2. Pairwise test: abiotic drivers

313 Each biotic time series selected previously is submitted to some exogenous forcings 

314 (environmental and fishing pressure). Out of the 84 tests carried out, 6 effects were retained as 

315 strong (Fig. 3, Table 4) with G≥0.28 and p-value≤0.1, 13 were “weak” (0<G<0.28) but still 

316 associated to low p-values (i.e. about 15.5%, Appendix D: Table D.3) and 65 were deemed 
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317 irrelevant (weak effect size and large p-value). The results showed that the selected abiotic 

318 effects were not negligible since Gobs (observed value of G) varied between 0.28 and 0.84. 

319 There was a positive effect of the SST on adult red mullet (+0.34), and phosphate concentration 

320 on adult grey gurnard (+0.30); a negative effect of nitrate concentration on sardine (-0.34) and 

321 juvenile blackbellied angler (-0.46); a negative effect of demersal trawlers on adult red mullet 

322 (-0.46), and juvenile blackbellied angler (-0.44).

323 The Fig. 4 (the bottom of the figure) shows an example of the effect of an abiotic driver on the 

324 density of a species. Time series show a negative relationship between demersal trawlers and 

325 adult red mullet, and the scatter-plot shows that there is a clear negative correlation between 

326 the two variables. The effects of the other drivers could be consulted in Appendix D: Fig. D.3, 

327 and D.4.

328 3.3. Network characterization and Multivariate Auto-Regressive (MAR) Model

329 The final step of our analysis was to fit MAR(1) models to the three identified SINs (Fig. 5), 

330 in order to investigate whether interactions detected by the pairwise GC tests would still be 

331 relevant in a multivariate context. The first MAR model represented a network of statistical 

332 interactions between adult blackbellied angler, juvenile and adult hake, adult grey gurnard, 

333 John dory, and the effect of nitrate concentration. The second focused on juvenile blackbellied 

334 angler, adult red mullet, anchovy, under the combined influence of demersal trawlers, SST and 

335 nitrate concentration. The third one included juvenile and adult horned octopus, juvenile 

336 capelan, sardine, and the effect of nitrate concentration. Our results show that all interactions 

337 but one detected by the pairwise test were also recovered by the MAR(1) model. Most 

338 coefficients obtained by the MAR models showed the same sign, but tended to have lower 

339 values than with the pairwise GC test. The one interaction that disappeared was the effect of 

340 fishing effort of demersal trawlers on juveniles blackbellied angler (the coefficient value 

341 changed from -0.44 to -0.06, see Fig. 4). The dominant pattern, though, is that interactions 
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342 identified by the pairwise procedure still hold in a multivariate context. By adding the effect of 

343 the “shift” covariate (Appendix C), the results showed that the values of two interaction 

344 coefficients slightly changed in value, i.e., the effect of adult blackbellied angler on juvenile 

345 hake, and the effect of juvenile capelin on sardines. In the first interaction, the value went from 

346 0.38 to 0.14, in the second, it went from -0.27 to -0.38. Regarding the autocorrelation 

347 coefficients, they were correctly estimated (≠0), except for juvenile hake (-0.05) and juvenile 

348 horned octopus (-0.06), whose values were nearly close to zero.

349 4. Discussion

350 The aim of this study was to identify the most relevant interactions driving the dynamics of an 

351 exploited marine system, using a relatively simple and effective statistical approach. The 

352 method was applied to the time series available in the GOL, resulting in the identification of 

353 three statistical interactions networks (SINs), which provides basic information to implement 

354 an Ecosystem model of intermediate complexity (MICE; Plaganyi et al., 2014) in this area in 

355 further studies.

356 4.1. Effect of environmental drivers

357 Each of the SINs identified in this study were affected by at least one driver. The importance 

358 of nutrient concentration supplied by the Rhône River has already been discussed for the 

359 dynamics of pelagic fishes (Feuilloley et al., 2020; Many et al., 2021). Our findings strengthen 

360 these conclusions and identify further taxons to which this enrichment matters most (e.g. 

361 juvenile blackbellied angler, and adult grey gurnard). The positive effect of temperature on red 

362 mullet is consistent with previous studies that indicated a preference for warmer waters by this 

363 species (Maravelias et al., 2007; Tserpes et al., 2019), especially regarding recruitment success 

364 that may be favored by warmer SST (Levi et al., 2003). This result is further in agreement with 

365 stock assessment outputs that tends to document that red mullet recruitment has substantially 

366 increased since 2010 in the GOL (STECF, 2023).
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367 4.2. Fishing effects

368 Concerning the effect of fishing effort, only the effect on adults red mullet has been retained 

369 with the MAR, although the fish community of the GOL is known to be under intense fishing 

370 pressure since the 1970s (MEDITS, 2007). Still, over the time period studied, time series of 

371 fishing effort did not have a strong effect on species dynamics. This apparent lack of fishing 

372 effect may be attributed to the fact that the MEDITS time series started in the mid-1990s, so 

373 two to three decades after the strong increase in fishing pressure in the GOL (Van Beveren et 

374 al., 2016). During the period of growth and development of the fisheries, an increase in fishing 

375 effort and catches is usually observed, often followed by a decrease in the abundance of the 

376 exploited populations (King, 2007). In the GOL, this period was between the 1960s and 1980s 

377 (see also Maurin and Meglio, 1961; Meuriot et al., 1987), and the first signs of overexploitation 

378 appeared at the end of the 1980s with a decline in abundance of the most vulnerable species, 

379 such as rays and small sharks, and then of the most important commercial species in the 1990s, 

380 such as seabass, sole or hake (Aldebert et al., 1993; Alaya, 1996). In other word, all the effect 

381 of increase of fishing effort on species density had been already achieved by the time MEDITS 

382 started, leading to community dynamics being driven more strongly by environmental drivers 

383 and species interactions, with the effects of fluctuations in fishing effort observed during the 

384 survey time period being too weak to weigh into the dynamics of species composition.

385 The fact that environmental factors have had more effect than fishing tend to support that the 

386 GOL has been overexploited since decades, as populations that are already overexploited are 

387 often more vulnerable to environmental variations (Planque et al., 2010), especially when these 

388 variations all occur at the same time. Communities already weakened by overfishing can suffer 

389 serious and irreversible ecological following an environmental upheaval, as was the case with 

390 the small pelagic community in the in the mid-2000s (Saraux et al., 2019; Feuilloley et al., 

391 2020).
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392 4.3. Statistic versus trophic interactions

393 Aquatic, and especially marine systems are known to have particularly complex food webs 

394 (Link, 2002) composed of hundreds of interacting species. Most of these trophic interactions 

395 are weak and do not always lead to detectable effects in terms of predator-prey dynamics. In 

396 fact, restricting ourselves to the taxons studied here, the literature review revealed at least 23 

397 trophic links between the studied species (see Fig. 6, Appendix D: Table D.1). Among these 

398 links, only 3 have been highlighted by our approach, while 7 interactions would not correspond 

399 to documented feeding. This strong discrepancy between expected trophic interactions and the 

400 recovered GC interactions (Fig. 6) is a good example showing that trophic relationships should 

401 not be the sole driver to build models of marine ecosystem dynamics. For example, in the case 

402 of hake, despite their known preference for small pelagics (Mellon-Duval et al., 2017), no links 

403 have been evidenced between hake and sardine or anchovy, suggesting that their dynamics are 

404 either independent, or not interacting strongly enough to be detected by our analysis. Other 

405 studies in the same region have shown that the population dynamics of small pelagic fish 

406 (mainly sardines and anchovies) is not affected by the increased abundance of their major 

407 predators, such as bluefin tuna (Thunnus thynnus) (Van beveren et al., 2017) and dolphins 

408 (Queiros et al., 2018). In fact, most of the trophic links issued from our literature survey did 

409 not translate into a retained statistical interaction, which suggests that trophic interactions have 

410 a rather weak impact on population dynamics in the GOL. In addition, the recovered dynamic 

411 interactions are not necessarily attributable to direct trophic interactions, which suggests that 

412 non-trophic and indirect interactions have a non-negligible role as co-drivers of community 

413 dynamics. There is a growing appreciation of this idea in the field of terrestrial ecology as 

414 shown by a study on multi-trophic communities in insects (Kawatsu et al., 2021), or another 

415 study on terrestrial plants (Ohgushi, 2008), but still not widely spread in the field of marine 
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416 ecology. This is probably due to the difficulty of observing indirect interactions in marine 

417 environment.

418 4.4. The unknown interactions

419 GC provides one approach that, in its most basic form, is relatively easy to implement and rests 

420 on a firm statistical foundation. However, GC does not provide any ecological or biological 

421 insight on the relationship between the variables. For example, in the case of the positive effect 

422 of John dory on juvenile hake, the negative effect of juvenile capelan on sardine, or the negative 

423 effect of anchovy on adult red mullet, no clear ecological processes can be advocated to support 

424 the observed interactions. These apparently spurious causalities may arise when the interaction 

425 actually occur though some other hidden variables not accounted for in the analysis (Hsiao, 

426 1982).

427 Causal inference requires careful consideration of confounders and mediators. The case of the 

428 interaction between adult blackbellied angler and juvenile hake is a good example of 

429 confounding effect. The interaction coefficient between the two species was reduced when the 

430 effect of the “shift” covariate was added to the model. we can therefore easily deduce that there 

431 is indeed a confounding effect of the environmental “shift” on this interaction, but it is not the 

432 main cause here, since the interaction has not completely disappeared.

433 In the case of the negative effect of anchovy on adult red mullet, it could be a third species 

434 which is impacted positively by anchovy and has a negative impact on adult red mullet. This 

435 third species could be a predator in common for both species whose population is poorly 

436 sampled. Putting forward hypotheses likely to explain the underlying process(es) of a causal 

437 relationship is not obvious in some cases, and would require more information on the biology 

438 and ecology of the studied species. Nevertheless, the absence of logical explanations for some 

439 interactions was not an obstacle in itself if the interaction, even if unknown, enabled better 

440 prediction of the variable of interest.
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441 4.5. Contribution to the management of the Gulf of Lions Ecosystem.

442 One important challenge of stock assessment is to include further processes, notably biotic 

443 interactions and environmental forcing, to better explain and predict the dynamics of the target 

444 stocks. Identifying which process to include, with which covariate, and how to include it can 

445 be difficult questions and addressing them requires a certain amount of direct data on biological 

446 and ecological processes such as feeding habits, growth, recruitment, or natural mortality 

447 (Maunder and Piner, 2015). Our analysis demonstrates how to highlight and combine the 

448 different elements of an interaction network while overcoming the lack of data issues using 

449 multivariate analysis of time series produced directly from survey data. The SINs identified in 

450 the GOL unravel (1) the importance of abiotic drivers (nitrate and phosphate inputs, 

451 temperature and demersal trawling effort) on the dynamics of our target stocks; and (2) the 

452 coupling between various stock dynamics that could benefit from a joint modeling approach. 

453 In addition to the 6 target species initially considered, our analysis revealed the importance of 

454 three other interacting species: John dory, grey gurnard and capelan. Two of them (capelan and 

455 grey gurnard) are important species in terms of abundance (Certain et al., 2022), and John dory 

456 has a great commercial interest (FranceAgriMer, 2022). As such, they are good candidates to 

457 be included in the list of potential species to be assessed (Certain et al., 2022).

458 The MAR(1) models described in our study, in their current implementation, are not designed 

459 to provide the classical reference points expected for fisheries assessment or management (see 

460 Caddy and Mahon, 1995 for a review of reference points in fisheries management). However, 

461 they can serve as a basis for computing Ecologically Sustainable Exploitation Rates (“ESER”, 

462 see Säterberg et al., 2019) in a multi-specific context, and they can provide long-term 

463 projections of log-density under different management scenarios in a context of global 

464 warming and taking into account biotic interactions, and this can help to support stock 

465 conservation and management (Ward et al., 2014). Indeed, a fitted MAR(1) model can predict 
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466 the trend of a population over longer period under a “PRES” perturbation (i.e. a change in the 

467 mean of a covariate Bender et al., 1984). This kind of projection can provide an idea of the fate 

468 of some species that are not modeled in conventional stock assessments (like grey gurnard or 

469 blackbellied angler) and are generally considered to be static (i.e. species whose dynamics are 

470 not described, see example of the IAM model in STECF, 2022).

471 5. Conclusion

472 In conclusion, in this study a relatively simple method has been carried out to statistically detect 

473 and select key interactions in an ecosystem from relatively short time series obtained from 

474 different data sets. This approach has shown some effectiveness in detecting strong statistical 

475 relationships and thus in reducing a complex multivariate system to the most essential 

476 interactions. Results showed 3 SINs of intermediate complexity that provide a synthetic 

477 overview of the most important biotic interactions and abiotic drivers in the GOL fisheries. 

478 This case study showed that there could be some limitations in the use of GC to identify an 

479 interaction network within a complex and unknown ecosystem. However, this method remains 

480 one of the most appropriate to overcome the problem of lack of data to build ecosystem models 

481 in data-limited regions, as well as to restrict the complexity of the ecosystem to a few key 

482 interactions and drivers.
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502 Tables

503 Table 1. Landings in euros and tons of the most fished species in the Gulf of Lions area, 

504 cumulated over 2018 and 2020 (compiled from Certain et al., 2022). Species are sorted 

505 according to the quantity landed, the economic importance, by category of stock assessment 

506 (going from “yes” indicating that a stock assessment exists to “hard” to have a stock 

507 assessment), and the availability of routine sampling by MEDITS and PELMED surveys. 

508 Species in blue are the targeted species in this study.

Common name Scientific name Total value k€ 
(2018-20)

Total landings 
Tons (2018-20)

Survey  
(MEDITS - 
PELMED)

Stock assessment

European hake Merluccius merluccius 14307,5 2344,45 Yes Yes
Red mullet Mullus barbatus 5459,57 1002,91 Yes Yes
Anchovy Engraulis encrasicolus 3234,2 3165,84 Yes Yes
Sardine Sardina pilchardus 1820,84 1414,41 Yes Yes

Blackbellied angler Lophius budegassa 8081,71 1497,23 Yes Possible
Horned octopus Eledone cirrhosa 5403,65 1602,77 Yes Possible

Squid Illex spp 2859,69 584,92 Yes Possible
Capelan Trisopterus minutus 2385,57 1439,93 Yes Possible

Red gurnard Chelidonycthys cuculus 1541,75 802,31 Yes Possible
Gurnard Triglidae 1190,97 586,31 Yes Possible

Mediterranean horse mackerel Trachurus mediterraneus 981,23 1021,77 Yes Possible
Gilthead seabream Sparus aurata 39473,15 3141,85 No Hard

European eel Anguilla anguilla 15165,82 2153,20 No Hard
European seabass Dicentrarchus labrax 15001,64 833,65 No Hard

Mullet Mugil spp 7629,33 1978,43 No Hard
Mediterranean mussel Mytilus galloprovincialis 1084,65 779,19 No Hard
Thicklip grey mullet Chelon labrosus 1061,07 771,42 No Hard

Common octopus Octopus vulgaris 14605,3 2010,73 Yes Hard
Octopus Octopodidae 10682,93 1147,71 Yes Hard

Atlantic mackerel Scomber scombrus 5267,3 2280,26 Yes Hard
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510 Table 2.  The 36 biotic and the 9 abiotic time series used for the pairwise Granger causality 

511 (GC) tests, with the time period covered by the series, the data source, and precision on life 

512 stage for the biotic series. The 6 targeted species of our study are indicated in blue.

Scientific name Life stage Time series Source
Sardine Sardina pilchardus No stage 1995-2021 PELMED
Anchovy Engraulis encrasicolus No stage 1995-2021 PELMED
Spotted flounder Citharus linguatula No stage 1994-2021 MEDITS
Four-spot megrim Lepidorhombus boscii No stage 1994-2021 MEDITS
Shortfin squid Illex coindetii No stage 1994-2021 MEDITS
European squid Loligo vulgaris No stage 1994-2021 MEDITS
Surmulet Mullus surmuletus No stage 1994-2021 MEDITS
Blue whiting Micromesistius poutassou No stage 1994-2021 MEDITS
Angler Lophius piscatorius No stage 1994-2021 MEDITS
Common octopus Octopus vulgaris No stage 1994-2021 MEDITS
Axilary seabream Pagellus acarne No stage 1994-2021 MEDITS
Blackspot seabream Pagellus bogaraveo No stage 1994-2021 MEDITS
Common pandora Pagellus erythrinus No stage 1994-2021 MEDITS
Common sole Solea vulgaris No stage 1994-2021 MEDITS
John dory Zeus faber No stage 1994-2021 MEDITS
Red mullet Mullus barbatus Adult 1994-2021 MEDITS
Horned octopus Eledone cirrhosa Adult 1994-2021 MEDITS
Horned octopus Eledone cirrhosa Juvenile 1994-2021 MEDITS
European hake Merluccius merluccius Adult 1994-2021 MEDITS
European hake Merluccius merluccius Juvenile 1994-2021 MEDITS
Blackbellied angler Lophius budegassa Adult 1994-2021 MEDITS
Blackbellied angler Lophius budegassa Juvenile 1994-2021 MEDITS
Grey gurnard Eutrigla gurnardus Adult 1994-2021 MEDITS
Grey gurnard Eutrigla gurnardus Juvenile 1994-2021 MEDITS
Blackbelly rosefish Helicolenus dactylopterus Adult 1994-2021 MEDITS
Blackbelly rosefish Helicolenus dactylopterus Juvenile 1994-2021 MEDITS
Norway lobster Nephrops norvegicus Adult 1994-2021 MEDITS
Norway lobster Nephrops norvegicus Juvenile 1994-2021 MEDITS
Greater forkbeard Phycis blennoides Adult 1994-2021 MEDITS
Greater forkbeard Phycis blennoides Juvenile 1994-2021 MEDITS
Atlantic horse mackerel Trachurus trachurus Adult 1994-2021 MEDITS
Atlantic horse mackerel Trachurus trachurus Juvenile 1994-2021 MEDITS
Mediterranean horse mackerelTrachurus mediterraneus Adult 1994-2021 MEDITS
Mediterranean horse mackerelTrachurus mediterraneus Juvenile 1994-2021 MEDITS
Capelan Trisopterus capelanus Adult 1994-2021 MEDITS

B
io

tic
 ti

m
e 

se
ri

es

Capelan Trisopterus capelanus Juvenile 1994-2021 MEDITS
SST - - 1982-2021 Copernicus Marine Service
MLD - - 1993-2020 Copernicus Marine Service
WeMOI - - 1821-2020 Cru data
Rhône  flow - - 1993-2020 hydro.eaufrance
P Concentration - - 1990-2021 naiades.eaufrance
N Concentration - - 1990-2021 naiades.eaufrance
F.E. of demersal trawlers - - 2000-2020 SACROIS data base and expertise
F.E. of pelagic trawlers - - 2000-2020 SACROIS data base and expertiseA

bi
ot

ic
 ti

m
e 

se
ri

es

F.E. of seiners - - 2000-2020 SACROIS data base and expertise
F.E.:Fishing effort ; P : phosphate ; N : nitrate ; WeMOI : Western Mediterranean Oscillation Index ; MLD : Mixed Layer 
Depth ; SST : Sea Surface Temperature
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515 Table 3.  Results of the selection of the pairwise Granger causality test applied to test biotic 

516 interactions (interactions with strong effect, i.e. Gobs ≥0.28, and significant, i.e.  p-value≤0.1). 

517 The right column indicates the main hypotheses assigned to the selected interactions.

ID x y Gobs p-value b11 Main hypothesis
1 Hake juv Hake adu 0.38 0.003 0.35 Growth
2 Caplan juv Sardine 0.37 0.004 -0.43 None
3 G. gurnard adu Hake adu 0.35 0.004 0.38 Predation
4 Bb. angler adu Hake juv 0.32 0.006 0.77 None
5 Hake adu Hake juv 0.3 0.008 0.8 Reproduction
6 J. dory Hake juv 0.3 0.007 0.48 None
7 Anchovy R. mullet adu 0.3 0.004 -0.51 None
8 H. octopus juv H. octopus adu 0.29 0.008 -0.42 Reproduction
9 Sardine H. Octopus juv 0.28 0.01 0.52 Predation
10 R. mullet adu Bb. angler juv 0.28 0.007 0.64 Predation

ID: link identifier; b11: the interaction coefficient between the two variables; Gobs: the observed 
value of the effect size; juv: juvenile; adu: adult.
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519 Table 4. Results of the selection of the pairwise Granger causality applied to test the effects of 

520 abiotic drivers (abiotic driver with strong effect, i.e. Gobs ≥0.28, and significant, i.e.  p-

521 value≤0.1).

ID Abiotic driver Variable Gobs p-value b11

a SST Red mullet adu 0.79 0.0 0.34
b Nitrate concentration Sardine 0.62 0.0 -0.34
c Demersal trawlers Red mullet adu 0.39 0.007 -0.46
d Nitrate concenration Blackbellied angler juv 0.37 0.003 -0.46
e Demersal trawlers Blackbellied angler juv 0.30 0.024 -0.44
f Phosphate concentration Grey gurnard adu 0.28 0.011 0.30

ID: link identifier; b11: is the effect of the covariable at time t on the variable at time t; 
Gobs: is the observed value of the effect size; juv: juvenile; adu: adult.
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523 Figure legends

524 Fig. 1. Map of the sampling stations of the MEDITS survey and the radials of the PELMED 

525 survey in the Gulf of Lions.

526 Fig. 2. Process diagram for building the statistical interaction network(s).

527 Fig. 3. Variation of p-values according to Gobs values obtained by the pairwise GC tests.  On 

528 the left, the results of the biotic interaction tests. On the right, the results of abiotic effect tests. 

529 In green, the area corresponding to strong and significant interactions (Gobs ≥0.28 and p-

530 value≤0.1). In orange, the area corresponding to weak but significant interactions (0<Gobs ≤0.28 

531 and p-value≤0.1). In red, the area corresponding to interactions that are weak and not 

532 significant.

533 Fig. 4. Example of graphical representation of time series (left) and scatter-plot (right) for a 

534 biotic interaction (top) and an abiotic effect (bottom), both selected with strong and significant 

535 interactions: Gobs ≥0.28 and p-value≤0.1) among the results of the pairwise Granger Causality 

536 test.

537 Fig. 5. Diagram of selected biotic interactions and abiotic effects (strong and significant 

538 interactions: Gobs ≥0.28 and p-value≤0.1) showing the comparison between coefficients from 

539 the pairwise Granger Causality test (in black), and coefficients from MAR(1) models (in 

540 orange). 1, 2, and 3 are the three Statistical interaction networks that could be identified and 

541 each of them is surrounded by a gray area. The size of the species in the diagram is relative to 

542 their average size and according to their life stage (adult or juvenile).

543 Fig. 6. Diagram of comparison between the causal interactions (in black) highlighted in this 

544 study and the trophic interactions (in orange) summarized from diet studies (Appendix D: Table 

545 D.1). Bold arrows outline causal interactions that are probably due to trophic links. Dashed 
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546 arrows always point from prey to predator. The size of the species in the diagram is relative to 

547 their average size and according to their life stage (adult or juvenile).
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