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A B S T R A C T

Although microorganisms often live in dynamic environments, most studies, both experimental and theoretical,
are carried out under static conditions. In this work, we investigate the issue of optimal resource allocation in
bacteria growing in periodic environments. We consider a dynamic model describing the microbial metabolism
under varying conditions, involving a control variable quantifying the protein precursors allocation. Our
objective is to determine the optimal strategies maximizing the long-term growth of cells under a piecewise-
constant periodic environment. Firstly, we perform a theoretical analysis of the resulting optimal control
problem (OCP), based on the application the Pontryagin’s Maximum Principle (PMP). We determine that
the structure of the optimal control must be bang–bang, with possibly some singular arcs corresponding to
optimal equilibria of the system. If the control presents singular arcs, then these can only be reached and
left through chattering arcs. We also use a direct optimization method, implemented in the BOCOP software,
to solve the studied OCP. Our study reveals that the optimal solution over a large time horizon is related
to the one over a single period of the varying environment with periodic constraints. Moreover, we observe
that the maximal average growth rate attainable under periodic conditions can be higher than the one under
a constant environment. We further extend our analysis to conduct a qualitative comparison between the
predictions from our model and some recent biological experiments on E. coli. This analysis particularly
highlights the mechanisms of action of the ppGpp signaling molecule, thus providing relevant explanations
of the experimental observations. In conclusion, our study corroborates previous research indicating that this
molecule plays a crucial role in the regulation of resource allocation of protein precursors in E. coli.
1. Introduction

Bacteria and other microorganisms form the basis of every ecosys-
tem. Also, they play a key role in many bio-industrial processes, such
as food and drug production or waste-water treatment (Liao et al.,
2016; Yegorov et al., 2019; Yabo et al., 2024). However, important gaps
remain in our knowledge of their physiology due to the complexity of
studying their internal mechanisms.

Mathematical models have proved to be greatly effective in simpli-
fying the study of bacteria, while being able to reproduce and explain
many experimental observations on their growth and metabolism.

Control theory provides a natural tool to approach these problems,
which has been applied in a wide variety of biological contexts (Ewald
et al., 2017). Using the appropriate objective function, it provides an
ideal behavior, and a benchmark for the comparison of other metabolic
regulation mechanisms. It is usual to suppose that bacteria are naturally
selected to maximize their growth rate, an assumption in accordance
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with the behavior observed in Edwards et al. (2001) and Ibarra et al.
(2002).

Earlier articles investigating the mathematical modelization of the
metabolism of microorganisms studied their growth in steady-state
conditions (Edwards et al., 2001; Ibarra et al., 2002; Lewis et al., 2010;
Scott et al., 2014; Maitra and Dill, 2015). Later studies introduced
dynamical modeling of the response of bacteria after a single shift
in their environment (Giordano et al., 2016; Pavlov and Ehrenberg,
2013; van den Berg et al., 1998; Yabo et al., 2022; Ehrenberg et al.,
2013; Yegorov et al., 2019; Waldherr et al., 2015). These have been
significant steps in the study of the mechanism of the optimization
of resource allocation in micro-organisms. However, the type of con-
ditions that these models represents is only in accordance with what
microorganisms can face in a laboratory, where it is feasible to maintain
a constant environment (Borirak et al., 2014).
https://doi.org/10.1016/j.jtbi.2024.111953
Received 13 May 2024; Received in revised form 12 September 2024; Accepted 19
vailable online 30 September 2024 
022-5193/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
September 2024

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/yjtbi
https://www.elsevier.com/locate/yjtbi
mailto:javier.innerarity-imizcoz@inria.fr
https://doi.org/10.1016/j.jtbi.2024.111953
https://doi.org/10.1016/j.jtbi.2024.111953
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2024.111953&domain=pdf
http://creativecommons.org/licenses/by/4.0/


J. Innerarity Imizcoz et al.

m

𝐸

w

𝑉

∫

H
t
T

𝛼

w

𝐽

Journal of Theoretical Biology 595 (2024) 111953 
Fig. 1. Diagram of our model of bacterial metabolism. The control variable 𝛼 represents
the proportion of protein precursors allocated to producing 𝑅. The environment 𝐸𝑀 is
a piecewise-constant period input.

In a natural setting, it is not reasonable to assume that the envi-
ronment of a given individual remains constant. We must therefore
consider time-dependent environments if we want to study the mech-
anisms regulating the allocation of its resources in a more realistic
context (Nguyen et al., 2021a).

For this reason, we modify the resource allocation model proposed
in Giordano et al. (2016) by setting the substrate availability in the
environment of a given cell to a periodic piecewise-constant function.
This results in a more realistic environmental input, representing the
cyclic changes in substrate concentration that are caused for example
by day–night dynamics or for host-associated microbes by periodic
feeding of the host.

One of the main results of this work is showing that there exists
a non-constant periodic environment which improves on the maximal
average growth rate attainable in a constant medium. We also find that
the mechanism of regulation induced by the ppGpp molecule explains
well the behavior of bacteria in dynamic environments. This nucleotide
has been found to play a crucial role in bacterial response to changes in
amino acid concentration by downregulating rRNA synthesis (Potrykus
and Cashel, 2008; Magnusson et al., 2005).

The paper is organized as follows. We introduce the model of inter-
est in Section 2, where the environment is non-constant. Then, we state
the optimal control problem (OCP) in Section 3. We address this OCP
through the application of a variant of Pontryagin’s Maximum Principle
(PMP) in Section 4. Next, we numerically obtain the solution of the
problem in Section 5. Section 6 is devoted to studying the relationship
between the infinite-time OCP and the problem with periodic boundary
conditions of the same period as the environment. In Section 7, we
study how two key parameters of the environment, its period and
amplitude, affect the solution of the OCP. Finally, we study the ppGpp-
regulated suboptimal strategy, which we compare with the optimal
control and with experimental observations on E. coli (Nguyen et al.,
2021b) in Section 8.

2. The mathematical model

We modify the self-replicator model proposed in Giordano et al.
(2016), which represents the metabolism of a given micro-organism.
The external medium (𝐸𝑀 ) of this cell has some substrate that the cell
can absorb and convert into precursor metabolites (𝑃 ) through some
reactions catalyzed by the metabolic machinery (𝑀). These precursors
are then converted by the gene expression machinery (𝑅) into the

acromolecules that form 𝑅 and 𝑀 . The resource allocation parameter
𝛼(𝑡) is the proportion of the precursor’s mass used to build 𝑅 at a given
time 𝑡. This process is schematized in Fig. 1.

The model can be simplified by dividing all the variables by the
total volume of the cell, which is assumed to be proportional to the

total macromolecular mass, 𝑉 = 𝛽(𝑀 +𝑅), with 𝛽 > 0. We also suppose

2 
that reactions follow Michaelis–Menten dynamics. After normalization,
the system reads as follows.

⎧

⎪

⎨

⎪

⎩

�̇� = (1 − 𝑟)𝐸𝑀 (𝑡) − (1 + 𝑝) 𝑝
𝐾+𝑝 𝑟

�̇� = (𝛼 − 𝑟) 𝑝
𝐾+𝑝 𝑟

�̇� = 𝑝𝑟
𝐾+𝑝𝑉 ,

(1)

where 𝑝 and 𝑟 are time-dependent variables. The first one represents
the cytoplasmic concentration of 𝑃 , whereas 𝑟 is the concentration of 𝑅.
The concentration of 𝑀 does not need to appear in these equations as it
can be defined by 𝑚 = 1− 𝑟. The resource allocation parameter 𝛼(𝑡) will
be the control exerted on the system. The parameter 𝐾 is intrinsic to
the metabolism of the cell, and will therefore be treated as a constant.
In Giordano et al. (2016) the parameter 𝐸𝑀 , representing the richness
of the external medium (summing up a Michaelis Menten function of
the substrate), is considered to be constant.

We propose to modify this system by setting 𝐸𝑀 to be a piecewise-
constant periodic input of period 𝑇 > 0, described by

𝑀 (𝑡) =

{

𝐸max
𝑀 , if 𝑡 ∈ [0, 𝑇 ∕2),

𝐸min
𝑀 , if 𝑡 ∈ [𝑇 ∕2, 𝑇 ),

(2)

with 0 < 𝐸min
𝑀 < 𝐸max

𝑀 . This definition of 𝐸𝑀 yields a more realistic
model, which takes into account the always-changing conditions in
which microorganisms usually grow. These conditions nevertheless
tend to exhibit some kind of periodic behavior. For example, one can
think of ecosystems in which the substrate availability is dependent on
the amount of sunlight it receives (Mairet and Bayen, 2021).

3. Statement of the dynamic optimal control problem

We seek to determine the resource allocation strategy that will
maximize the volume increase of the cells. We define the quantity

𝜇(𝑡) =
𝑝𝑟

𝐾 + 𝑝
(𝑡),

hich is the growth rate of the cell. That is,

(𝑡) = 𝑉 (0) exp∫

𝑡

0
𝜇(𝜏) 𝑑𝜏 ∀𝑡 ≥ 0. (3)

Therefore, maximizing is equivalent to maximizing
𝑡

0
𝜇(𝜏) 𝑑𝜏.

ere, we seek the strategy that is able to optimize growth on an infinite
ime-interval, i.e. we are interested in the optimal long-term strategy.
he objective of our optimal control problem (OCP) is thus to find

𝑜𝑝𝑡 such that lim inf
𝑡𝑓→∞

(

𝐽𝑡𝑓 (𝛼𝑜𝑝𝑡) − 𝐽𝑡𝑓 (𝛼)
)

≥ 0 ∀𝛼 ∈ 𝑈∞,

here

𝑡𝑓 (𝛼) = ∫

𝑡𝑓

0

𝑝𝑟
𝐾 + 𝑝

𝑑𝑡,

𝑈∞ = {𝛼 ∶ [0,+∞) → [0, 1] ∣ 𝛼 is measurable}

and the system (𝑝, 𝑟, 𝑉 )(𝑡) follows System (1). Note that, since 𝑝 and
𝑟 are independent from the cellular volume 𝑉 , we can omit this last
variable from System (1).

We will start our study of the OCP by carrying out its theoretical
analysis in the following section.

4. Application of Pontryagin’s Maximum Principle

4.1. Optimality conditions

For the theoretical analysis of the optimization problem, we will
use the Infinite Horizon Maximum Principle (Carlson et al., 2012), an
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extension of Pontryagin’s Maximum Principle (PMP), which includes
most of its results. We set the Hamiltonian

𝐻 = 𝐻(𝑝, 𝑟, 𝜆𝑝, 𝜆𝑟, 𝜆0, 𝛼, 𝑡) = 𝜆𝑝�̇� + 𝜆𝑟 �̇� + 𝜆0(
𝑝𝑟

𝐾 + 𝑝
)

= 𝜆𝑝

[

(1 − 𝑟)𝐸𝑀 (𝑡) −
(1 + 𝑝)𝑝𝑟
𝐾 + 𝑝

]

+ 𝜆𝑟
(𝛼 − 𝑟)𝑝𝑟
𝐾 + 𝑝

+ 𝜆0
𝑝𝑟

𝐾 + 𝑝
= 𝐻0 +𝐻1𝛼,

here

0 = 𝜆𝑝

[

(1 − 𝑟)𝐸𝑀 (𝑡) − (1 + 𝑝)
𝑝𝑟

𝐾 + 𝑝

]

− 𝜆𝑟
𝑝𝑟2

𝐾 + 𝑝
+ 𝜆0

𝑝𝑟
𝐾 + 𝑝

and

1 = 𝜆𝑟
𝑝𝑟

𝐾 + 𝑝
.

The adjoint variables fulfill (𝜆, 𝜆0) = (𝜆𝑝, 𝜆𝑟, 𝜆0) ≠ 0, 𝜆0 ≥ 0 and the
differential equations

⎧

⎪

⎨

⎪

⎩

�̇�𝑝 = 𝜆𝑝
𝑟(2𝐾𝑝+𝐾+𝑝2)

(𝐾+𝑝)2 + 𝜆𝑟(𝑟 − 𝛼) 𝐾𝑟
(𝐾+𝑝)2 − 𝜆0

𝐾𝑟
(𝐾+𝑝)2

�̇�𝑟 = 𝜆𝑝
[

𝐸𝑀 (𝑡) + (1+𝑝)𝑝
𝐾+𝑝

]

+ 𝜆𝑟
𝑝(2𝑟−𝛼)
𝐾+𝑝 − 𝜆0

𝑝
𝐾+𝑝 .

(4)

We also have the maximization condition

𝐻(𝑡, 𝑝, 𝑟, 𝜆, 𝜆0, 𝛼(𝑡)) = max
𝑣∈[0,1]

𝐻(𝑡, 𝑝, 𝑟, 𝜆, 𝜆0, 𝑣) a.e. on [0,+∞).

Finally, the Hamiltonian obeys the differential equation
𝑑𝐻
𝑑𝑡

= 𝜕𝐻
𝜕𝑡

= 𝜆𝑝(1 − 𝑟)
𝑑𝐸𝑀
𝑑𝑡

(𝑡) a.e., (5)

hich implies that 𝐻 remains constant when 𝐸𝑀 is also constant.

.2. Analysis of optimal controls

The above conditions allow to find the possible values of 𝛼𝑜𝑝𝑡, which
re given in Theorem 4.1.

heorem 4.1. The optimal control 𝛼𝑜𝑝𝑡 is given by

𝑜𝑝𝑡(𝑡) =

⎧

⎪

⎨

⎪

⎩

1 if 𝜆𝑟 > 0
0 if 𝜆𝑟 < 0
𝛼∗𝑜𝑝𝑡(𝐸𝑀 (𝑡)) if 𝜆𝑟 = 0,

where

𝛼∗𝑜𝑝𝑡(𝐸𝑀 ) =
𝐸𝑀 +

√

𝐾𝐸𝑀

𝐸𝑀 + 2
√

𝐾𝐸𝑀 + 1
.

f 𝜆𝑟 = 0 on a time interval 𝑡 ∈ [𝑡1, 𝑡2], with 𝑡1 < 𝑡2, the system must lie at
he equilibrium point (𝑝∗𝑜𝑝𝑡, 𝑟∗𝑜𝑝𝑡)(𝐸𝑀 (𝑡)), where

∗
𝑜𝑝𝑡(𝐸𝑀 ) =

√

𝐾𝐸𝑀 and 𝑟∗𝑜𝑝𝑡(𝐸𝑀 ) = 𝛼∗𝑜𝑝𝑡(𝐸𝑀 ). (6)

Proof. Since the control is affine in 𝛼, and by the maximization
ondition on 𝐻 , we have that 𝛼𝑜𝑝𝑡 takes its maximal (resp. minimal)
alue when 𝐻1 > 0 (resp. 𝐻1 < 0). By the positivity of 𝑝 and 𝑟, the sign

of 𝐻1 is simply the same as 𝜆𝑟.
If the optimal control has a singular arc (a time interval 𝑡 ∈ [𝑡1, 𝑡2],

ith 𝑡1 < 𝑡2, over which 𝜆𝑟 = 0), then 𝜆0 must be non-zero and we
an normalize the adjoint variables by setting 𝜆0 = 1. Indeed, if it were
0 = 0, then on the singular arc

= �̇�𝑟 = 𝜆𝑝

[

𝐸𝑀 (𝑡) +
(1 + 𝑝)𝑝
𝐾 + 𝑝

]

⟹ 𝜆𝑝 = 0 ⟹ (𝜆, 𝜆0) = 0,

which contradicts the optimality conditions.
Therefore, over the singular arc,

⎧

⎪

⎪

⎨

⎪

⎪

𝐻 = 𝜆𝑝
[

(1 − 𝑟)𝐸𝑀 (𝑡) − (1+𝑝)𝑝𝑟
𝐾+𝑝

]

+ 𝜆0
𝑝𝑟

𝐾+𝑝

�̇�𝑟 = 𝜆𝑝
[

𝐸𝑀 + (1+𝑝)𝑝
𝐾+𝑝

]

− 𝜆0
𝑝

𝐾+𝑝 = 0,

⎩

m

3 
which implies that, in a singular trajectory,

𝐻 = 𝜆𝑝𝐸𝑀 (𝑡).

Let 𝑡𝑠 ∈ [𝑡1, 𝑡2] be a time point different from the discontinuities in 𝐸𝑀 .
By (5), and since 𝐸𝑀 is locally constant around 𝑡𝑠, so is 𝐻 . Therefore,
by the above equation, the adjoint variable 𝜆𝑝 must also be locally
constant. By combining the equations �̇�𝑟 = 0 and �̇�𝑝 = 0, we obtain
that 𝑝 = 𝑝∗𝑜𝑝𝑡(𝐸𝑀 ), given by Eq. (6).

In particular, 𝑝 is locally constant around 𝑡𝑠 and the equation �̇� = 0
ields 𝑟 = 𝑟∗𝑜𝑝𝑡(𝐸𝑀 ). Since 𝑟(𝑡) is locally constant we must have that 𝛼 =

𝑟 = 𝛼∗𝑜𝑝𝑡(𝐸𝑀 ). Since the points (𝑝∗𝑜𝑝𝑡, 𝑟
∗
𝑜𝑝𝑡)(𝐸𝑀 ) are different between two

different values of 𝐸𝑀 , a singular arc cannot contain the discontinuities
of 𝐸𝑀 , as it would require a discontinuity in the system. □

We have just proved that singular arcs in a piece-wise constant
environment correspond to intervals on which the system is constant.
In the following subsection, we will see that this constant value is
precisely the equilibrium point that optimizes steady-state growth.

4.3. Relation to the static OCP

We seek to understand why the singular arcs of the optimal control
correspond to such concrete static values of the system. In order to do
so, we focus on the static OCP of finding which of these equilibrium
points yields the highest growth rate. That is, for a given constant value
of 𝐸𝑀 , we seek to determine the tuple

(𝛼∗, 𝑝∗, 𝑟∗) ∈ [0, 1] × R+ × [0, 1]

such that
⎧

⎪

⎨

⎪

⎩

(�̇�, �̇�)(𝛼∗, 𝑝∗, 𝑟∗) = 0

𝜇∗(𝛼∗, 𝑝∗, 𝑟∗) = 𝑝∗𝑟∗

𝐾+𝑝∗ is maximal.

For each possible value of 𝐸𝑀 > 0, this problem admits only one
solution (see Giordano et al. (2016)), which is precisely the tuple
(𝛼∗𝑜𝑝𝑡, 𝑝

∗
𝑜𝑝𝑡, 𝑟

∗
𝑜𝑝𝑡)(𝐸𝑀 ) given by Theorem 4.1. Therefore, we reinterpret

he theorem as follows. The optimal control must take its maximal or
inimal value, except when the system lies at its optimal equilibrium
oint. In the following, we shall call the optimal steady-state growth
ate 𝜇∗

𝑜𝑝𝑡 =
𝑝∗𝑜𝑝𝑡𝑟

∗
𝑜𝑝𝑡

𝐾+𝑝∗𝑜𝑝𝑡
.

4.4. The Kelley condition and chattering phenomena

To check whether a singular arc of the system verifies the Kelley
Condition (Marchal, 1973), we compute the derivatives

𝜕
𝜕𝛼

𝑑𝑘

𝑑𝑡𝑘
𝐻1

over a singular arc. They are null for all 𝑘 < 4. For q=2, we find

𝜕
𝜕𝛼

𝑑2𝑞

𝑑𝑡2𝑞
𝜙(𝑡) = −

𝑝2𝑟2
[

2𝑝𝐸𝑀 (𝑡) + (𝐾 + 2𝑝)𝐸′
𝑀 (𝑡)

]

(𝐾 + 𝑝)4
.

ince singular arcs of our control are contained in intervals over which
𝑀 is constant, the necessary condition to have a singular trajectory

−1)𝑞 𝜕
𝜕𝛼

𝑑2𝑞

𝑑𝑡2𝑞
𝜙(𝑡) < 0,

is fulfilled over any singular arc. This arc is of even order 𝑞 = 2, which
eans that it can only be attained and left through chattering (Borisov,
000). That is, in order to attain the singular arc, an infinite amount
f bang arcs are needed in a finite time.

We have found that the optimal control consists of a concatenation
f bang arcs, with possibly some singular arcs corresponding to the
olution of the related static optimization problem. If these singular
rcs appear, they can only be reached and left through chattering. In
he next section, we will solve the OCP numerically, which will shed
ore light on the structure of the optimal control.
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Table 1
Conditions of the numerical resolution.
𝐾 𝐸min

𝑀 𝐸max
𝑀 𝑇 (𝑝0 , 𝑟0)

0.003 0.2 1.0 10 (0.024, 0.18)

Fig. 2. Result of the numerical simulation of the OCP for a finite final time of 𝑡𝑓 = 40.
The plots over the last period have been omitted. On the top subfigure, the optimal
control. The top dotted line corresponds to 𝛼∗

𝑜𝑝𝑡(𝐸
max
𝑀 ) and the bottom one to 𝛼∗

𝑜𝑝𝑡(𝐸
min
𝑀 ).

n a black thinner line, the environmental input 𝐸𝑀 . On the bottom, the time plot
f 𝜆𝑟. The sign of this adjoint variable determines the value of 𝛼𝑜𝑝𝑡. The intervals on
hich 𝜆𝑟 is zero correspond to the singular arcs of 𝛼𝑜𝑝𝑡.

. Numerical computation of the optimal control

We now compute the optimal control by means of a direct numerical
esolution, that is we discretize the system of ODEs. We set a finite time
orizon of 𝑡𝑓 = 40 = 4𝑇 . We will omit the last period of the result, as
he control will be seen to tend to a limit cycle, before changing on
his last period due to boundary effects and thus depleting the cell of
great part of its precursor resources 𝑝 a short time before the final

ime of the simulation. We will see in Section 6 that this limit cycle is
he solution of the similar optimization problem of maximizing growth
ver one period with periodic boundary conditions.

The values of the constant and initial values of the OCP fed into the
ptimal control solver BOCOP (Inria Saclay Team Commands, 2017)
re given in Table 1. The initial value of the system corresponds to
𝑝0, 𝑟0) = (𝑝∗𝑜𝑝𝑡, 𝑟

∗
𝑜𝑝𝑡)(𝐸

min
𝑀 ). This point corresponds to the steady-state

ptimal for 𝐸𝑀 = 𝐸min
𝑀 , which has been found in Lewis et al. (2010) to

e the point naturally attained by bacteria in constants environments.
he structure of the optimal control described in Section 5.2 remains
imilar for the different initial conditions that we have tested. We have
sed 𝑁 = 4000 time steps and a relative tolerance of 10−14.

.1. Result of the numerical resolution

The top plot of Fig. 2 shows the optimal control 𝛼𝑜𝑝𝑡 found for this
iece-wise constant periodic environment. We see from the plot that
he optimal control seems to tend to a limit cycle. We are able to
umerically verify this convergence. Because of this limit cycle, and
ince the last period is affected by the proximity of the final time of the
esolution, we have decided to plot 𝛼𝑜𝑝𝑡 only until the time 𝑡 = 30 = 3𝑇 .

.2. Structure of the optimal control

The optimal control starts with a first transient phase on the interval
0, 𝑇 ] and then becomes periodic, with the same period as 𝐸 . During
𝑀

4 
Fig. 3. Phase plot of the variables 𝑝 and 𝑟 from (1), on the time-interval [0, 3𝑇 ] and
nder 𝛼𝑜𝑝𝑡. In blue, over the first period and in orange over the second and third periods
which are overlapped). The solutions of the static OCP corresponding to both possible
alues of 𝐸𝑀 are highlighted.

ts first period, it presents a very brief constant singular arc included
n the interval over which the environmental variable is maximal. This
ingular arc is longer during the phase where 𝛼𝑜𝑝𝑡 becomes periodic.
n both cases, the singular arc is preceded and followed by bang–bang
rcs, with chattering occurring in between. This is in accordance with
he theoretical study carried out in Section 4.

We notice that the control does not reach the second theoretically
ossible singular arc, which would correspond to 𝐸𝑀 = 𝐸min

𝑀 . However,
f the period is long enough, the control does reach both possible
ingular arcs. It may also have no singular arcs (see Fig. 5) if the
eriod is short enough. We have seen in Subsection Section 4.3 that,
uring its singular phase, the solution of the dynamic OCP converges
oward that of the static OCP, as previously observed in this class of
ystems when 𝐸𝑀 is constant (see, e.g., citecaillau2022turnpike and
eferences therein). This turnpike phenomenon Trélat (2023) is well-
nown and has been observed in various similar problems in biology
aillau et al. (2022), Djema et al. (2021, 2022). In this case we
bserve the emergence of a turnpike with different values, each of these
orresponding to a different value of the environmental input.

The bottom plot of Fig. 2 shows the time plot of the adjoint
ariable 𝜆𝑟, obtained through the resolution of System (4). This vari-
ble determines the value of 𝛼𝑜𝑝𝑡. From this plot, we confirm that
𝑟 is null on the computed singular arcs. As happens to the con-
rol, the system goes through a transient first period to then be-
ome periodic, as shown in Fig. 3. As mentioned previously, the
oint (𝑝∗𝑜𝑝𝑡, 𝑟

∗
𝑜𝑝𝑡)(𝐸

max
𝑀 ) is reached during this periodic phase, but not

(𝑝∗𝑜𝑝𝑡, 𝑟
∗
𝑜𝑝𝑡)(𝐸

min
𝑀 ).

5.3. Feasibility of the optimal strategy

We also notice that the control anticipates the changes in the
environment of the bacteria, by having a bang arc 𝛼 = 1 or 𝛼 =
0 which begins shortly before a discontinuity in 𝐸𝑀 . This increases
the concentration of gene expression machinery (𝑟) to prepare for a
higher concentration of nutrients (given by a higher 𝐸𝑀 ), or decreases
𝑟 in preparation for the upcoming nutrient shortage. This property is
consistent with what has been found in other biological OCP in the
literature (Mairet and Bayen, 2021).

One may wonder about how this particular aspect of the optimal
control can be implemented in practice, as it requires knowledge of
the future evolution of the environment of the cell. We can make
the supposition that bacteria are specially prepared to thrive in an
environment with a certain period. One can think for example of how
day/night (Muratore et al., 2022) or seasonal dynamics all have a fixed
period. We shall also see in Section 8 how a simple feedback control
independent from 𝐸 can result in near-optimal growth.
𝑀
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Fig. 4. The optimal control for the periodic problem. Its plot coincides visually with
that of the optimal control for the original problem over 𝑡 ∈ [2𝑇 , 3𝑇 ).

6. Relation to the periodic problem

In Giordano et al. (2016), it is shown that the optimal control
(in a static environment) ended in a constant arc corresponding to a
stable equilibrium point that maximized steady-state growth. In the
case of a periodic environment, the equivalent of an equilibrium point
under a constant control is a periodic orbit corresponding to a periodic
control. We would like to investigate which control maximizes growth
on such an orbit of the same period as the environment, and whether
the optimal control that we found in Section 5 tends to it.

That is, we are now interested in solving the similar problem of
finding a control

𝛼𝑇𝑜𝑝𝑡 ∈ argmax∫

𝑇

0

𝑝
𝐾 + 𝑝

𝑟 𝑑𝑡,

where the system (𝑝, 𝑟)(𝑡) follows System (1) and fulfills the periodic
boundary condition (𝑝, 𝑟)(𝑇 ) = (𝑝, 𝑟)(0). The environment is given, as
stated above, by Eq. (2).

The solution to this problem is shown in Fig. 4. This control and
the optimal control for our initial problem (on the limit cycle shown in
Fig. 2) completely overlap. This seems to be a general phenomenon
associated with our model, irrespective of the parameters used. We
see that in a periodic environment the infinite-horizon optimal control
eventually leads the system along a periodic trajectory which is optimal
along the set of all periodic trajectories of the same period 𝑇 .

7. Effect of the period and amplitude of the environment

In this section, we will study how two of the parameters defining
the environment given by (2) affect the resulting long-term volume
increase of the solution of our OCP. We will consider a fixed average
environmental capacity, defined as

𝐸𝑀 = 1
𝑇 ∫

𝑇

0
𝐸𝑀 (𝑡) 𝑑𝑡.

or the environmental input defined in Eq. (2), we have that 𝐸𝑀 is the
arithmetic mean of 𝐸min

𝑀 and 𝐸max
𝑀 .

The parameters whose effect we will study are the period 𝑇 and
he amplitude of the environment 𝛥𝐸𝑀 = 𝐸max

𝑀 − 𝐸min
𝑀 . Thus, we

can define the environmental input 𝐸𝑀 by giving, instead of its two
possible values, its average and its amplitude. The condition that 𝐸min

𝑀
be positive is equivalent to 𝛥𝐸𝑀 ≤ 2𝐸𝑀 .

In order to measure the asymptotic volume increase rate, we will
se the equivalent average growth rate over a period of the limit cycle.
his rate can be defined over any time interval [0, 𝑡] as

𝜇(𝑡) =
log(𝑉 (𝑡)) − log(𝑉 (0))

𝑡
=

∫ 𝑡
0 𝜇(𝜏)𝑑𝜏

𝑡
,

such that 𝑉 (𝑡) = 𝑉 (0)𝑒𝜇(𝑡)𝑡. If, as we will do in this section, we focus
n 𝜇(𝑇 ), the average growth rate over a period of duration 𝑇 of the
5 
environmental input, we obtain that 𝑉 (𝑡) behaves asymptotically as
𝑒𝜇(𝑇 )𝑡. We will take 𝑉 (𝑡) to be the volume variable of the solution to
he problem defined in Section 6.

It is especially interesting to investigate whether, for a fixed 𝐸𝑀 ,
there exist some 𝑇 and 𝛥𝐸𝑀 that maximize the average exponential
increase in biomass that the solution of the optimal control problem
with those parameters yields. If this is so, we would want to approxi-
mate those values and measure how much it increases the potential cell
growth with respect to the one attainable in a constant environment.

We will use the BOCOP solver to find the value of the parameters
𝑇 and 𝛥𝐸𝑀 that maximize this average growth 𝜇(𝑇 ) over a period,
assuming the control 𝛼 = 𝛼𝑇𝑜𝑝𝑡 defined in Section 6, which depends on
𝑇 and on 𝛥𝐸𝑀 . In order to be able to include 𝑇 into the differential
equations system we normalize by dividing the time by this parameter
so that the normalized system reads as follows.

⎧

⎪

⎨

⎪

⎩

𝑑𝑝
𝑑𝑡 (𝑡 = 𝑡∕𝑇 ) = 𝑇

[

(1 − 𝑟)𝐸𝑀 (𝑡) − (1 + 𝑝) 𝑝
𝐾+𝑝 𝑟

]

𝑑𝑟
𝑑𝑡 (𝑡 = 𝑡∕𝑇 ) = 𝑇

[

(𝛼 − 𝑟) 𝑝
𝐾+𝑝 𝑟

]

,

where the environmental constant with normalized time is given by

𝐸𝑀 (𝑡) = 𝐸𝑀 (𝑡) =

{

𝐸max
𝑀 , if 𝑡 ∈ [0, 𝑇 ∕2) ⟺ 𝑡 ∈ [0, 1∕2)

𝐸min
𝑀 , if 𝑡 ∈ [𝑇 ∕2, 𝑇 ) ⟺ 𝑡 ∈ [1∕2, 1)

and the periodic conditions are now
{

𝑝(𝑡 = 1) = 𝑝(𝑡 = 0)
𝑟(𝑡 = 1) = 𝑟(𝑡 = 0)

The average growth rate �̄�(𝑇 ) to be maximized can be expressed as a
function of the variables in normalized time as

̄(𝑇 ) = ∫

1

0

𝑝𝑟
𝐾 + 𝑝

(𝑇 𝑡)𝑑𝑡.

s before, we take the constants 𝐾 = 0.003 and 𝐸𝑀 = 0.6 for the
umerical resolution of this problem. We now seek to optimize over
hree variables: the resource allocation parameter 𝛼 ∶ [0,+∞) → [0, 1]
nd the real parameters 𝑇 ∈ (0,+∞) and 𝛥𝐸𝑀 ∈ [0, 2𝐸𝑀 ].

When initialized with the right initial conditions, the BOCOP soft-
ware (Inria Saclay Team Commands, 2017) gives a solution of
(𝑇 , 𝛥𝐸𝑀 ) ≈ (0.26, 1.2 = 2𝐸𝑀 ), which results in an average growth rate
of 𝜇𝑜𝑝𝑡 ≈ 0.3571, slightly better than in a constant environment (𝜇∗

𝑜𝑝𝑡 ≈
0.3561). Note that the optimal amplitude of the environment appears to
be the maximal possible one. The optimal control for this environment,
which is plotted in Fig. 5, has a simple bang–bang structure, with just
two switches per period.

Even though it only slightly enhances the maximal growth rate
attainable in a constant environment, this result is in our opinion very
interesting, as it shows that it is possible to have periodic conditions
which are more advantageous than constant ones. This result has been
proved in the literature for other biological process (Silveston et al.,
2008), but it is not generally true that periodic inputs improve on
constant ones (Ali Al-Radhawi et al., 2021).

We shall see in the following section how our model explains some
of the behaviors actually observed in real-life bacteria.

8. Study of a control strategy

In this section, we will study one control strategy that appears to
be the one naturally used by real-life bacteria. The ppGpp signaling
molecule has been found to play an important role in the regulation
of the transcription of growth-related genes (Potrykus et al., 2011;
Gaca et al., 2015; Liu et al., 2015). Following our assumption that
bacteria are selected by evolutionary pressure according to their ability
to outgrow their opponents, we will see how the 𝛼 determined by
the mechanisms of ppGpp compares to the optimal control in terms

of resulting growth rate in a periodically changing environment. This
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Fig. 5. Plot of the optimal control 𝛼𝑇
𝑜𝑝𝑡 for the environmental input defined by Eq. (2)

ith the optimal parameters (𝑇 , 𝛥𝐸𝑀 ) ≈ (0.26, 1.2 = 2𝐸𝑀 ).

uboptimal control strategy was found in Giordano et al. (2016) to
esult in a near-optimal growth when the bacteria were exposed to a
ingle upshift in the concentration of nutrients.

We will also compare the experimental observations realized on
acteria evolving in fluctuating environments (Nguyen et al., 2021b)
o the ones that can be drawn from our model, assuming the cell
opulation implements this ppGpp-mediated strategy in all types of
nvironment. These comparisons will yield insights on the importance
f this molecule in regulating the response of bacteria to fluctuations
n their environment.

.1. Optimality of 𝑝𝑝𝐺𝑝𝑝

We now compare the growth rate attained using the optimal control
nd the ppGpp-regulated one. We consider the on–off control given
n Giordano et al. (2016), which is found in that same article to be
ery similar to the actual functioning of the ppGpp molecule.

This on–off control is given by

=

⎧

⎪

⎨

⎪

⎩

1 if 𝑟 < 𝑔(𝑝)
0 if 𝑟 > 𝑔(𝑝)
𝑟 if 𝑟 = 𝑔(𝑝)

,

here

(𝑝) =
𝑝2 +𝐾𝑝

𝑝2 + 2𝐾𝑝 +𝐾
,

o that

(𝑝∗𝑜𝑝𝑡(𝐸𝑀 )) = 𝑟∗𝑜𝑝𝑡(𝐸𝑀 ) ∀𝐸𝑀 ≥ 0.

hus, for a constant 𝐸𝑀 , the system under this control has
𝑝∗𝑜𝑝𝑡, 𝑟

∗
𝑜𝑝𝑡)(𝐸𝑀 ) as a globally asymptotically stable equilibrium point.

his implies that the rate �̄�(𝑇 ) of bacteria under this on–off control
ends to 𝜇𝐽 , the mean between 𝜇∗

𝑜𝑝𝑡(𝐸
max
𝑀 ) and 𝜇∗

𝑜𝑝𝑡(𝐸
min
𝑀 ), when 𝑇 grows

to infinity.
In order to find the theoretically optimal behavior of bacteria ac-

customed to a periodic environment, we take the solution 𝛼𝑇𝑜𝑝𝑡 to the
problem defined in Section 6, which we have shown in that section to
correspond to the limit cycle of the infinite-horizon optimal control. For
simulating the on–off strategy, we have numerically computed its limit
cycle.

We have solved the resulting optimal control problems using
BOCOP, with the same parameters as in Table 1, except for the period
𝑇 and the boundary conditions.

For a large range of values of 𝑇 , we have calculated the average
growth rate on a given period �̄�(𝑇 ) under the optimal and the on–off
control. We have compared both average rates with each other and with
𝜇∗

avg, the optimal steady-state growth rate in a constant environment
𝐸avg
𝑀 = (𝐸max

𝑀 +𝐸min
𝑀 )∕2. The results are shown in Fig. 6. We can appreci-

ate how the average growth rate under the optimal control tends to 𝜇𝐽 ,
𝑇
as it does under the on–off control. This is due to the fact that 𝛼𝑜𝑝𝑡 tends

6 
Fig. 6. Average growth rate on a period of the limit cycle, under the optimal 𝛼 (red)
nd the on–off control (blue). The top dotted line corresponds to 𝜇∗

avg and the bottom
ne to 𝜇𝐽 .

Fig. 7. Ratio between the cellular volumes after one hour on the limit cycle, under
the on–off control and under the optimal control.

to spend most of each subperiod on the singular arc corresponding to
(𝑝∗𝑜𝑝𝑡, 𝑟

∗
𝑜𝑝𝑡)(𝐸𝑀 ). This property has also been observed in the optimal

control after a single shift in the environment in Giordano et al. (2016),
and is in accordance with the findings of Edwards et al. (2001), Ibarra
et al. (2002) on the behavior of bacteria in steady environments.

Neither the optimal strategy nor the on–off control show a decrease
in the obtainable growth rate with respect to a constant medium for the
most rapidly varying periodic environments. For longer periods 𝑇 , we
observe that the growth rate becomes significantly smaller, although
this difference is more pronounced in the case of the on–off control.

Fig. 7 shows the volume loss per hour of a cell using the ppGpp-
egulated control when compared to a cell that uses the optimal control.
he former control strategy is close to optimal for very short or long
eriods 𝑇 , although it shows a significant loss in growth rate for periods
anging from a dozen minutes to an hour. It can lose up to 15% of mass
very hour when compared to an optimal strategy for a period 𝑇 of
pproximately 30 min. This may result from an evolutionary adaptation
o either fast or slow adaptations, or from an intrinsic difficulty in
dapting to fluctuating environments of an intermediate period. Future
xperiments on bacterial evolution in dynamical conditions may shed
ore light on this matter.

.2. Comparison with experimental data

We now compare some of the theoretical results that can be ob-
ained through our model to the ones directly measured on E. coli
n Nguyen et al. (2021b). In the series of experiments described in that
rticle, some of the microorganisms are kept in a constant environment
corresponding to 𝐸𝑀 = 𝐸max

𝑀 or 𝐸𝑀 = 𝐸min
𝑀 in our model) and others

evolve in a fluctuating environment which follows the same piecewise-
constant periodic shape as our 𝐸𝑀 . These last bacteria are divided into
groups for which the environment is of period 𝑇 = 30 s, 5, 15 or
60 min. When a periodic regime is achieved, the resulting growth rate
is measured by single-cell microscopy and compared to a single shift

experiment.
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Fig. 8. Time plot of the growth rate 𝜇(𝑡) in a downshift scenario and under an on–off
ontrol 𝛼 = 𝛼(𝑝, 𝑟). Dotted lines indicate experimental data.

Fig. 9. Time plot of the growth rate 𝜇(𝑡) in an upshift scenario and under an on–off
control 𝛼 = 𝛼(𝑝, 𝑟). Dotted lines indicate experimental data.

We have also simulated the reaction (in terms of the time-evolution
of their growth rate 𝜇) to a single upshift or downshift of bacteria pre-
viously evolving in a constant poor or rich environment, respectively.
The initial conditions for these simulations are therefore (𝑝0, 𝑟0) =
(𝑝∗𝑜𝑝𝑡, 𝑟

∗
𝑜𝑝𝑡)(𝐸

min
𝑀 ) or (𝑝0, 𝑟0) = (𝑝∗𝑜𝑝𝑡, 𝑟

∗
𝑜𝑝𝑡)(𝐸

max
𝑀 ) for bacteria accustomed

to a (constant) low or rich environment, respectively. We have then
compared it with the response to the same scenarios of bacteria accli-
matized to periodic environments, that is on the limit cycle produced
by the on–off control and their respective environment 𝐸𝑀 . Figs. 8 and
9 summarize the results obtained. We have plotted the growth rate on a
long, 2 h time span for cells used to a constant environment, and on one
semi-period of time length 𝑇 ∕2 (the interval [0, 𝑇 ∕2] in the case of an
upshift and [𝑇 ∕2, 𝑇 ] in the case of a downshift) for the other bacteria,
as has been done in Nguyen et al. (2021b).

The on–off control produces a sharper increase in growth rate imme-
diately after the upshift in bacteria dwelling in periodic environments
in comparison to a single upshift, as shown in Fig. 9. This behavior can
also be seen in the experimental data shown in the same plots. It has led
the authors of Nguyen et al. (2021b) to propose that the mechanisms
regulating bacterial growth may be different between constant and
periodic environments. In a downshift scenario, the on–off strategy
exhibit a very similar behavior in all conditions (Fig. 8).

One may wonder why the same on–off control yields different
growth rates in bacteria previously dwelling in different environments.
The answer is that the differential equations system has different limit

cycles depending on the period of 𝐸𝑀 , as can be seen in Fig. 10.

7 
Fig. 10. Different limit cycles of the system under the on–off control corresponding to
different values of the environmental period 𝑇 . The dotted line corresponds to 𝑟 = 𝑔(𝑝),
the switch in 𝛼. The equilibrium points corresponding to 𝐸max

𝑀 and 𝐸min
𝑀 are also marked.

None of the cycles studied in this article attain the equilibrium points
(𝑝∗𝑜𝑝𝑡, 𝑟

∗
𝑜𝑝𝑡)(𝐸

min
𝑀 ) and (𝑝∗𝑜𝑝𝑡, 𝑟

∗
𝑜𝑝𝑡)(𝐸

max
𝑀 ), the starting points of the simu-

lations for the bacteria previously in a constant environment. The
difference in the time-evolution of the growth rates is thus explained
by the difference in the starting points of the system.

In conclusion, the on–off feedback strategy, which we remind
the reader is similar to the actual dynamic of the ppGpp signaling
molecule, appears to explain well the differences observed in Nguyen
et al. (2021b) between bacteria accustomed to a constant environment
and those evolving in a periodic one. In addition, the growth rate
attainable under this control is close to the maximal theoretically
possible one. This corroborates previous findings (Potrykus et al., 2011;
Gaca et al., 2015; Liu et al., 2015) highlighting the crucial role the
ppGpp signaling molecule plays in the regulation of the allocation of
protein precursors in E. coli.

9. Conclusion

In this work, we studied the problem of the optimization of resource
allocation in bacteria in a dynamic environment. Basing ourselves on
the model proposed in Giordano et al. (2016), we modified the input
representing the substrate availability to a periodical one, which is
better able to capture the real-life conditions of most microorganisms.

We gave a precise definition of our optimal control problem, and
carried out a theoretical study of its solution using a variant of Pon-
tryagin’s Maximum Principle.

We proved, using this theorem, that the optimal infinite-horizon
control follows a bang–bang structure, with two possible distinct sin-
gular arcs. We saw that each of these arcs corresponds to a steady-
state which is the solution of the related static OCP. In addition, we
demonstrated that singular arcs can only be reached and left through
chattering.

We then computed this optimal control numerically, using the
BOCOP software. We saw how, for the set of parameters that we
used, the control goes through a transient phase before repeating the
solution of the related periodic problem at infinity. These numerical
computations also showed how, in periodic environments, the optimal
control strategy requires microorganisms to anticipate the changes in
the environment. Additionally, we found, among all environments of
the same shape and given mean, the one that resulted in the highest
optimal growth rate.

Finally, we considered a control strategy that is likely the one im-

plemented by real-life bacteria. We compared the average growth-rate
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produced by the ppGpp-mediated control to the solution of the OCP.
We also compared the time evolution of growth rate of bacteria that use
this suboptimal control with the one measured experimentally. Through
these simulations, we have found strong evidence that corroborate that
the ppGpp signaling molecule regulates the protein resource allocation
in E. coli.
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