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Abstract :   
 
Summary Continuous seismological observations provide valuable insights to deepen our understanding 
of geological processes and geohazards. We present a systematic analysis of two months of 
seismological records using an AI-based Self-Supervised Learning (SSL) approach revealing previously 
undetected seismic events whose physical causes remain unknown but that are all associated with the 
dynamics of the Mayotte submarine volcano. Our approach detects and classifies known and new event 
types, including two previously unknown eruptive sequences displaying properties similar to other 
sequences observed at underwater and aerial volcanoes. The clustering workflow identifies seismic 
events that would be difficult to observe using conventional classification approaches. Our findings 
contribute to the understanding of submarine eruptive processes and the rare documentation of such 
events. We further demonstrate the potential of SSL methods for the analysis of seismological records, 
providing a synoptic view and facilitating the discovery of rarely observed events. This approach has wide 
applications for the comprehensive exploration of diverse geophysical datasets. 
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unknown but that are all associated with the dynamics of the Mayotte submarine volcano.

Our approach detects and classifies known and new event types, including two previously

unknown eruptive sequences displaying properties similar to other sequences observed at

underwater and aerial volcanoes. The clustering workflow identifies seismic events that

would be difficult to observe using conventional classification approaches. Our findings

contribute to the understanding of submarine eruptive processes and the rare documenta-

tion of such events. We further demonstrate the potential of SSL methods for the analysis

of seismological records, providing a synoptic view and facilitating the discovery of rarely

observed events. This approach has wide applications for the comprehensive exploration

of diverse geophysical datasets.

Key words: Volcano seismology, Computational seismology, Machine learning, Neural

networks, fuzzy logic, Persistence, memory, correlations, clustering

1 INTRODUCTION

Analyzing seismic signals is a central area of research in Earth Sciences. However, the origin of a

substantial proportion of these signals remains poorly understood. This knowledge gap is particularly

critical for seismological stations deployed to monitor geohazards such as glaciers, landslides and

volcanoes. Seismological instruments deployed in these areas record thousands of events in a broad

spectrum of magnitudes. Cataloging these events, and exploring their spatial and temporal distribution

allows deepening our understanding of the dynamics and physics of these geological processes.

One of the primary objectives of the seismologists is to construct catalogs of seismic events. How-

ever, real-time monitoring and retroactive exploration of seismological time series requires substantial

human resources. Artificial Intelligence provides solutions for exploring and extracting information

from continuous and massive seismological records. Mousavi & Beroza (2023) and Kubo et al. (2024)

reviewed the recent advances in earthquake seismology using various machine learning approaches.

They particularly explored the current solutions for earthquakes catalog creation, from the detection

and picking of events to the earthquake location. The common approach for classifying seismic sig-

nals consists of training machine/deep learning models with large quantities of labeled data which is

time-consuming and sensitive to expert knowledge. The amount of labeled samples needed to train
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SSL reveals new eruptive sequences at the Mayotte submarine volcano 3

those algorithms is most of the time not enough when studying other sources than regional and global

earthquakes. Although good performances are achieved in the creation of high-magnitude earthquake

catalogs (Liu et al. 2020; Mousavi et al. 2020; Yang et al. 2024), the approaches are still not fully oper-

ational for constructing low-magnitude micro-seismic event catalogs. Creating micro-seismic catalogs

further faces challenges in achieving consensus on nomenclature and a standardized labeling process,

especially for unidentified seismic events. This is particularly true for volcanoes where seismic signals

describing similar source mechanisms can look different from one volcano to another, and even for

the same volcano over several time periods.

A large underwater eruption started in Mayotte (Comoros archipelago, Indian Ocean) in 2018, 50

km east from the island coast (Fig. 1a) (Cesca et al. 2020; Lemoine et al. 2020; Feuillet et al. 2021).

The activity started on 2018 May 10 with a seismic crisis that culminated with a Mw 5.9 earthquake.

It was followed by deflation and eastward displacement of the island and the occurrence of very-

long period events. Because the eruption was submarine it could not be observed easily and remote

observations have been employed to understand the volcano edification (Rinnert et al. 2019; Saurel et

al. 2021, land surface seismometers and ocean bottom seismometers). Numerous earthquakes linked

to the volcanic system have been recorded. These events include Volcano-Tectonic earthquakes (VT),

Long-Period earthquakes (LP) and Very-Long Period earthquakes (Lavayssière et al. 2022; Retailleau

et al. 2022b; Laurent, 2023, respectively). These events, apart from the early stages of activity and the

first magma propagation towards the surface, have been located deeper than 20 km. The eruption also

generated numerous hydro-acoustic signals (HA) that can be used to understand the volcanic activity

(Saurel et al. 2022, e.g. monitor the eruption flows,). A wide range of HA signals are generated during

eruptions but only a few submarine volcanoes have been monitored leading to a partial knowledge of

the diversity of those signals (Chadwick, et al. 2019; Caplan-Auerbach et al. 2017; Wilcock et al. 2016,

e.g.). Since the start of the eruption, several offshore prospecting campaigns have been conducted to

take in-situ measurements and in particular to deploy Ocean Bottom Seismometers (OBS), leading to

a comprehensive catalog for the period of October and November 2019.

Constructing manually this first event catalog was labor-intensive and subjective, as experts dis-

covered new types of seismic sources while sequentially analyzing the data. To explore seismological

records, unsupervised machine learning algorithms can be employed. Retailleau et al. (2022a) pro-

posed a wrapper for earthquake monitoring based on a deep-neural-network automatic phase picker,

which is used operationally for the Mayotte monitoring. Other developments in unsupervised algo-

rithms showed promise in identifying seismic signals. Mousavi et al. (2019) employed deep embedded

clustering to distinguish teleseismic events from local earthquakes, while Jenkins et al. (2021) used

deep neural networks coupled with a Gaussian Mixture Model (GMM) to cluster impulsive seismic
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events recorded at the Antarctica Ice Shelf. Following the same idea, Hu et al. (2024) proposed to

explore detected events on the Dalk glacier, East Antarctica, with deep auto-encoders and GMM clus-

tering on the resulting embedding. They highlighted three main event classes linked with the wind

activity, the basal slip of the glacier and the thermal variations. Recently, Kinzel et al. (2024) proposed

a Siamese-based workflow for clustering time series of pre-detected seismic events containing ice-

quakes, earthquakes and spikes. The authors applied a centroı̈d-based clustering (k-means) directly on

the feature space in order to capture meaningful learned information. These approaches rely on a priori

detected events and, in the case of GMM and k-means, necessitate the selection of a specific number of

clusters which might prevent the discovery of new and rare seismic events. Moreover, seismic signals

have to be extracted from the seismological records with detection algorithms (Allen, 1982; Baillard

et al. 2014; Zhu & Beroza, 2019; Mousavi et al. 2020, respectively, STA/LTA, PSPicker, PhaseNet

and EQTransformer) which introduce selection bias in the catalogs as they limit the variability in both

amplitude and type of the detected events (Yoon et al. 2015). To avoid a priori event detection and

enable the analysis of complete seismic traces, Seydoux et al. (2020) proposed to transform the con-

tinuous seismic signal with deep scattering-network and perform clustering on the model outputs. By

analyzing day-long windows of three-components seismic signals recorded at a single station, they

recovered precursory signals of the Nuugaatsiaq (Greenland, June 2017). Using the same approach

Steinmann et al. (2022) analyzed two day-long three-components seismological observations along

the North Anatolian Fault (Turkey) leading to the clustering of events within which earthquakes were

identified.

Due to the predominance of background noise and the relative rarity of the seismic signals of in-

terest in continuous seismic records, designing an unsupervised classification approach to detect those

signals is challenging. In this work, we propose a workflow (Fig. 2a) that combines Self-Supervised

Learning (SSL) with dimension reduction and clustering to offer a complete and exhaustive explo-

ration of the seismological data acquired during the MAYOBS6 and MAYOBS7 campaigns. SSL is

the process of training models to produce meaningful representations using unlabeled data. In other

words, SSL starts with finding correlations between the data in order to auto-label them thus allowing

the creation of generalist models that can be further fine-tuned for many domain applications. Among

the various SSL algorithms available (Grill el al., 2020; Caron et al. 2020; Zheng et al. 2021, respec-

tively, BYOL, SwAV or ReSSL), we used the Simple Siamese (SimSiam) network (Chen & He, 2021),

which architecture is displayed in Fig. 2b. The SimSiam network is a robust deep learning method de-

signed to maximize the similarity between two representations of the same image; it possesses the

advantage of not requiring a large amount of data to be trained to recognize efficiently similar events

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggae361/7817994 by Ifrem

er, Bibliothèque La Pérouse user on 14 O
ctober 2024



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

SSL reveals new eruptive sequences at the Mayotte submarine volcano 5

(Chen & He, 2021). This statistical property makes it more competitive than other unsupervised clus-

tering algorithms for seismological applications.

2 DATA

During MAYOBS6, MAYOBS7 and MAYOBS8 campaigns (Guyavarch, 2019; Pelleau, 2019a; Pel-

leau, 2019b), in October and November 2019, short-period OBS were deployed close (1 km) to the

active volcanic lava flows. They are composed of a 3-channels 4.5 Hz geophones and an hydrophone.

The OBS were deployed in two stages: IF07C from 1 October 2019 to 25 October 2019 and IF07D

from 26 October 2019 to 19 November 2019. They were both deployed in free fall from the ocean

water surface making their exact location unknown and different up to a few hundred meters.

A group of seismological experts scanned manually the seismic signals recorded by the vertical

components of the OBS for the two periods and produced a first seismic catalog (SefraN, Beauducel

et al. 2020; Saurel et al. 2021). The goal was to explore the dataset and identify unusual events.

The catalog is divided in four categories: VT events, HA events, single detected events (SDE) and

events of unknown origin. The VT are high-frequency seismic signals with most of the signal energy

concentrated in the 1 to 20 Hz frequency band, and which exhibit a characteristic exponential decrease

of the amplitude after the maximum of the envelope (Fig. 1b). VT are thought to be linked to the

deep volcanic system, such as magma propagation in the volcanic edifice (Lahr et al. 1994; Duputel,

Lengliné & Ferrazzini 2019; Wilcock et al. 2016; Taisne et al. 2011). Their duration is usually short,

ranging from 1 to 20 s. The HA seismic signals exhibit complex waveforms. They usually start with

a very impulsive and high-frequency (> 20 Hz) energy burst (Fig. 1c), followed by one or several

phases with energy in the 1 to 20 Hz frequency band. Their origin is subject to discussion due to the

depth of the volcano and the limited studies on the subject but these events might be caused by fast

cooling lava flows (Saurel et al. 2022). SDE are short events only detected at a single station. Their

origin is therefore uncertain however the highly energetic onset observed on the seismic and acoustic

sensors could be explained by events occurring near the volcano surface (shallow VT) or by short HA

sources at the surface.

The SimSiam based workflow uses images as inputs. To transform the seismological data into

images, we extract the seismic signals over non-overlapping 30 s-duration windows. We have chosen

this duration in order to fully capture most of the VT and HA events included in the first catalog.

Images are constructed by combining a temporal and a spectral representation of the seismic signals.

The representation in the temporal domain is the seismic signal recorded on the vertical component

of the OBS, filtered between 1 and 30 Hz and detrended from the daily mean. The filtering allows

removing high-frequency noise and increasing the signal-to-noise ratio for the seismic source of in-
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terest. The representation in the spectral domain is a spectrogram which shows the evolution of the

seismic signal frequency content with time and is computed from the non-filtered seismic traces to

include frequencies greater than 30 Hz (Fig. 3a). The spectrograms are constructed using short time

Fourier transforms, with windows of 0.12 s length, an overlap of 90 %, a sampling of 2048 points for

the frequency vector and no smoothing. The dataset consists of a total of 138,712 images for a period

of 50 days. Labeled events in the catalog represent a few part of these images. 2008 images correspond

to labeled VT events, 453 images to HA events and 1173 images to SDE.

3 METHODS

3.1 Self-Supervised Learning approach

We propose a SSL clustering workflow (Fig. 2a) based on the SimSiam network (Chen & He, 2021)

based on contrastive learning of two transformed views of the same input image (Fig. 2b). It aims to

maximize their similarity, using their common intrinsic information.

The network is composed of several encoders f and a prediction layer h (Fig. 2b). Encoders

are deep neural networks, composed of a succession of layers whose purpose is to extract relevant

features from the input image thanks to filters organized in convolution layers. The prediction layer

serves to adapt the output of the first encoder to better match the output of the second encoder, thereby

maximizing the similarity between the two augmented views. The prediction layer plays a crucial role

in ensuring that the representations learned are useful and informative. The encoders correspond to the

ResNet-18 backbone (i.e. feature-extracting network) (He et al. 2016), a 18 layers deep convolutional

neural network, and are initialized with random weights. The weights affect the filters’ outputs and

are updated at each epoch to optimize the network’s performances at maximizing the similarity of the

two augmented views.

The SimSiam network works with two parallel encoders. The first one is the input to the prediction

layer; the second one applies a stop-gradient operation, consisting in blocking the back-propagation

of the gradient (Fig. 2b). This approach avoids collapsing the model into a constant value with each

image being described with the exact same feature values. The input images are first resized into

square images of 256 x 256 pixels. Then, data augmentation is performed on each input image to

create pairs of transformed images. The data augmentation consists of random rotation, horizontal and

vertical flip and random changes of brightness, contrast, saturation and hue. The model does not aim

to include any physics in these transformations; e.g. a flipped spectrogram remains understandable

for seismologists even if it losses its physical sense. The idea behind data augmentation is to train

a model being robust to variations and transformations in the inputs. In this way, the model focuses
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SSL reveals new eruptive sequences at the Mayotte submarine volcano 7

on meaningful information, which are colors and invariant shapes on the images, useful for events

discrimination. Then, we use a batch size of 64 pairs of augmented views to train the model. The

negative cosine similarity (Chen & He, 2021), is used for measuring the dissimilarity between two

vectors in a vector space. It is defined with the equation:

D(p1, z2) = −
p1
||p1||2

· z2
||z2||2

, (1)

where || · ||2 represents the l2-norm. p1 is defined as the output vector of the transformation of x1

through f and h as x1 = h(f(x1)) while z2 is defined as the output vector of the application of f on

x2 as z2 = f(x2). Then, the symmetric loss is computed for each image as:

L =
1

2
D(p1, stopgrad(z2)) +

1

2
D(p2, stopgrad(z1)), (2)

where stopgrad(·) represents the stop-gradient operation applied on one side of the network (Fig.

2b). Finally, the total loss is defined as the average of all the image loss, leading to a minimum possible

value of -1.

Once trained, we use the encoder part of the network with the learned weights to encode all the original

input images. The number of features is set to 512. This results in a group of 512 value vectors of

features which is called a 512 dimensions embedding.

3.2 Dimension reduction and clustering

For the visual evaluation of the clustering, we use a dimension reduction techniques to transform the

512 dimensions embeddings into a two dimensions embeddings. We explored three algorithms: t-SNE

(Van der Maaten & Hinton, 2008), Principal Component Analysis (PCA) and Uniform Manifold Ap-

proximation and Projection (McInnes, Healy & Melville 2018, UMAP). t-SNE aims to preserve the

neighborhood of samples while reducing the dimension of the embedding. This allows neighbor sam-

ples in the 512 dimensions space to be described in two dimensions with close coordinates, preserving

their neighborhood. PCA creates new features that are linear combinations of the original ones and that

are uncorrelated with each others. In this way, PCA extracts information from the original embedding

to represent the data in a lower dimension space and highlight trends specific to different groups of

samples. UMAP is a non-linear dimension reduction method based on algebraic topology (McInnes,

Healy & Melville 2018). In opposition to PCA, UMAP does not suggest linear relationships between

features, which makes it possible to capture complex structures in high dimensions embeddings. It

also aims to preserve the topology of the high dimension embedding, which results in a preservation
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of local and global structures. Compared to t-SNE, UMAP performs better in the global structure

preservation, giving more sense to sample distances in the two dimensions embeddings (McInnes,

Healy & Melville 2018). However, with t-SNE, local structures are well preserved which makes easier

the identification of clusters (Van der Maaten & Hinton, 2008).

While t-SNE, PCA and UMAP share a common parameter (number of components) driving the

output size, they work differently and are controlled with distinct parameters. t-SNE is mainly depen-

dent on the perplexity and the early exaggeration that will act on the preservation of local and global

structures and the distance between clusters. PCA can be tuned with the svd solver parameters which

defines the method used to compute the Singular Value Decomposition. Finally, UMAP uses a number

of neighbors to adjust the focus on local or global structure preservation, a metric used to calculate

the distance between the samples and a number of epochs used to optimize the embedding dimension

reduction.

4 RESULTS

The procedure for model training consists in 15 epochs as it converges quickly to a loss value close

to -1 with a collapse level below 0.1. We thus obtain the 512 dimensions embeddings of the encoded

dataset.

4.1 Dimension reduction methods and clustering

The comparison of the dimension reduction techniques (Fig. 4) shows that t-SNE and UMAP provide

a sparser two dimensions space than PCA, whether using a default or tuned parameterization. PCA

has difficulties in two dimensions to separate samples from the stations IF07C and IF07D. t-SNE,

PCA and UMAP parameterization are tuned in order to favor local structures and small dense groups

of samples as these groups could represent consistent clusters . For t-SNE we use a perplexity of 40

and an early exaggeration of 1. PCA is tuned using svd solver = arpack and UMAP is optimized

with number of neighbors = 10, metric = euclidean, number of epochs = 100 and init = random. By

comparing tuned parameterizations, we observe that t-SNE yields more scattered patches than UMAP

for which the samples corresponding to the IF07D OBS remain grouped in a single patch (Fig. 4d,

4f). This is promising as it means that the t-SNE transformation is able to isolate groups of samples

that can be considered afterward as clusters. t-SNE is also able to create patches consistent with the

pre-existing knowledge by creating patches of almost only VT events. Thanks to its ability to preserve

the neighborhood of the embedded samples, we thus use t-SNE as dimension reduction technique.

Cluster extraction is the last step of the workflow. Density-Based Spatial Clustering of Applica-
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SSL reveals new eruptive sequences at the Mayotte submarine volcano 9

tions with Noise (Ester et al. 1996, DBSCAN) aims at clustering together points in the same neigh-

borhood as long as they have a certain minimal number of samples with a distance lower than epsilon

around them. If points are isolated, the algorithm assumes that the points are noise. Therefore, DB-

SCAN is a relevant technique to cluster the t-SNE patches delineations. DBSCAN is mainly sensitive

to the epsilon and the minimum number of samples parameters. The values are respectively set to 0.51

and 10 as this combination allows the best match with the t-SNE delineations (Fig. 3).

4.2 Clusters analysis

Plots of input images based on their t-SNE transformed embeddings highlight similarities between

groups of samples as displayed in Fig. 3(a). The processing yielded 95 clusters and 202 isolated

samples (Fig. 3b). In Fig. 3(b), each point represents a 30 s duration window of seismic signal. The

clusters are visually well defined with clear separations. The analysis identified clusters with 21,086

events for the largest cluster and 10 events for the smallest cluster. The median size of a cluster is

341 events. We obtained 7 clusters with more than 5000 samples and 36 clusters with less than 100

samples.

The manually labeled seismic events are grouped into a small number of clusters and are not

randomly scattered in the t-SNE 2-dimensions embedding. This suggests that the clustering process

is consistent (Fig. 3c). VT events are aggregated mainly in five clusters (clusters 3, 12, 39, 63, 94),

while SDE in one (cluster 8). Some clusters agglomerate both VT events and SDE (clusters 0, 1, 6 and

59) suggesting proximity between these two types of seismic signals. The SDE are mainly observed

on the IF07C records. The few labeled HA events are distributed in the clusters 51, 55-57, 61 and

65. As shown on Fig. 3(c), all the clusters containing known events include a large proportion of new

events. We also observe that many clusters present the particularity of being composed by events only

recorded at one of the two OBS station. This might be attributed to various factors, including their

potential variations in distance from the seismic sources and the local deployment conditions. These

conditions may include differences in seafloor properties beneath the stations or variations in tilt and

orientation of the sensor. Nevertheless, several clusters (3, 4, 7, 9, 11, 12, 39, 41 and 53) group events

recorded by the two stations over the whole time period.

Some clusters are correlated in time as shown by the number of events per hour for these clusters

(Fig. 5). The temporal correlations between clusters seem to be organized around two sequences: the

first sequence occurs on the 15 October 2019 and the second starts on the 31 October 2019. During

the first sequence, clusters 3, 4, 11, 39 and 53 are observed. In the second sequence, cluster 53 is

initially observed, followed by clusters 11, 12, 39, and 51 in succession. Cluster 53 exhibits seismic

signals with all the features of eruptive volcanic tremors which are high energy continuous seismic
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signals (hereinafter referred to as ”high-energy tremor”) that can last from a few dozens of minutes up

to several months. Cluster 4, 51 and 68 also exhibit complex intertwined or continuous low-frequency

(< 20 Hz) seismic signals (hereinafter referred to as ”tremor-like”), which form tremor-like sequences

albeit with less energy in the highest frequency band than observed in cluster 53. Clusters 12, 39,

and 64 encompass highly energetic events with duration exceeding 10 seconds and waveforms with

multiple phases (hereinafter referred to as ”high-energy long-duration multiphase events”). Cluster 3

gathers seismic signals identified as highly energetic VT seismic signals.

In order to gain a deeper understanding of the physical processes underlying the clustered se-

quences depicted in Fig. 5, we explore days of data surrounding these sequences (Fig. 6). The groups

called VT, HA, VT/HA and OTHER include all the clusters not considered in the Fig. 3(b) and were

labeled following manual inspection of each cluster and a priori knowledge of the seismic events. The

VT/HA group contains events whose sources have not been clearly identified because they combine

seismic signals with VT or HA features, or a hybrid of these features.

With this new representation, we are able to provide a phenomenological description of the two

eruptive sequences. The first sequence starts on 2019 October 14 with the increase in the occurrence

of VT events. Subsequently, around noon on October 15, we observe the activation of the cluster 4

(tremor-like), followed by clusters 3 (VT-like), 11 (tremor-like) and 53 (high-energy tremor). This

marks the beginning of a period in which VT, HA, and VT/HA events occur, with a notable increase in

HA events. Finally, the sequence ends with the activation of clusters 3 and 4, along with the emergence

of cluster 39 (high-energy long-duration multiphase events) followed by a drastic decrease in VT

and HA activity. The second sequence exhibits a similar overall pattern. It initiates on October 31,

marked by an increase in the occurrence of VT earthquakes and VT/HA events. Within this period, two

short episodes of tremors are observed. The first is mainly composed of events from cluster 68, while

the second (starting on 2019 November 2) is characterized by the activation of clusters 3, 4, 11, 12

(high-energy long-duration multiphase events), 39, and 53. Approximately 12 hours later, synchronous

activity is observed among clusters 11, 12, 39, 51 (tremor-like signals), 64 (high-energy long-duration

multiphase events), and 68 (tremor-like signals). Throughout this sequence, the clusters of tremor-like

signals and high-energy long-duration multiphase events dominate the activity. The number of events

per hour in clusters 11, 12, 39, 51 and 64 abruptly decreases after an episode dominated by events from

clusters 4 and 39 on November 3, which is clearly discernible on the spectrogram (Fig. 6e). Following

this episode, the activity transitions to being primarily dominated by VT events. The entire sequence

concludes rapidly after noon on 2019 November 4.
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5 DISCUSSION AND CONCLUSION

The proposed work aims at clustering continuous seismic data through a contrastive learning of im-

ages representing the spectrogram associated to 30 s length time series. Our choice of using images

is motivated by the wish to reproduce the same approach as handmade seismic and micro-seismic

catalog. It therefore justifies the choice of SSL approaches coming from the field of computer vision.

Using images also provides access to a synoptic and comprehensive representation (Fig. 3a) of the

dataset. Siamese networks for time series input have to be further explored as time series contain

more information, which could be useful to achieve high clustering performance for more complex

datasets, such as dense nodal network datasets. In fact, these datasets typically contain seismic infor-

mation from several dozen stations. This dramatically increases the number of windows to be analyzed

(several million) and increases the possibility of simultaneous events. Finally, some sites such as land-

slides present a high noise level, regrouping the faunal activity but also the human activity, resulting

in difficulties to observe low-magnitude events that could be masked by the high-energy noise level.

For these datasets, new representations of the input data need to be explored to take into account the

spatial information.

The objective of the proposed clustering workflow (t-SNE + DBSCAN) is not to achieve a one-to-

one correspondence between the number of clusters and the number of source mechanisms. Instead,

it aims to obtain coherent clusters of noise and events, encompassing the complete dataset. Conse-

quently, scientists are only required to identify several dozen clusters, as opposed to laboriously label-

ing thousands of individual events. It also offers the possibility of having sub-clusters of a pre-defined

group of events.

Our SSL-based exploration of two months of seismological records allows discovering a wealth

of new seismic events potentially associated with the volcanic activity of the Fani Maoré submarine

volcano. In particular, we identified two sequences starting with the increasing occurrence of VT

events and followed by complex seismic signals including tremors (Fig. 6). During the first sequence,

we observed an increase in the number of HA events, potentially indicating shallow volcanic activ-

ity, which may result from lava-water interactions (Fig. 6c). The sequence concluded abruptly with

low-amplitude tremor activity and the emergence of highly energetic, long-duration events, resem-

bling to the dynamics seen in surface eruptions (McNutt and Nishimura, 2008), particularly those

at effusive volcanoes like Piton de la Fournaise (Peltier et al. 2021). These eruptions typically in-

volve seismo-volcanic crises reflecting deep magma migration, followed by tremors and degassing

indicative of possible lava extrusion, and ultimately end with surface activity. Similar observations

align with data from the 2015 eruption of Axial Seamount underwater volcano (Tepp & Dziak, 2021).

The second sequence, starting on October 31, 2019, is more complex (Fig. 6f). It started with an in-
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crease in VT and HA events, followed by tremors of varying energy levels close to those observed

in the first sequence. The events marking the end of the first sequence reappeared. Approximately

twelve hours later, clusters of high-energy, long-duration multiphase events and tremors are observed

simultaneously. Interpretation of the 36 hours period between 2 November 2019, and 3 November

2019, presented challenges due to the difficulty in interpreting high-energy, long-duration multiphase

signals. These events displayed characteristics of VT and HA signals but had longer durations and

significantly higher amplitudes. Furthermore, these events were intertwined with tremors. Without de-

tailed information on station site conditions, we cannot rule out the possibility of instrumental noise

such as ocean currents, local vibrations and resonances. However, given the features of these seismic

signals and their chronological appearance, we believe that these clusters are associated with ongoing

eruptive activity.

Cui, Li & Huang (2021) studied a four-month period of seismic events in the vicinity of the

Kilauea volcano that preceded a series of eruptions and collapse events. In their characterization of

the seismicity, the authors consider a hybrid class whose frequency content is a mixture of long-

period events and VTs. Since this study relies on a pre-computed catalog that includes the locations

of the events, the authors hypothesize that the hybrid class is a mixture of fluid resonance and shear

failure. The VT/HA events identified in the present article do not appear to be the same type of hybrid

signals as those defined by Chouet et al. (2013), McNutt & Roman (2015) and Cui et al. (2021). A

detailed study of the frequency content of the identified VT/HA events, coupled with the location,

would definitely help to better interpret these complex signals and may have implications for their

characterization in other volcano-seismological studies. Obtaining accurate locations of the events

based on a single OBS is not possible considering the uncertainty of the OBS locations and their

coupling with the seafloor. Including seismological stations at land will not change the fact that part

of events are only detected in the OBS, which are deployed close to the volcano area. Investigating

higher-energy events that could be recorded by land stations is therefore reserved for future studies.

The documentation of underwater volcanoes is crucial for understanding submarine eruptive pro-

cesses and direct observations (e.g., Embley et al. 2014; Tepp & Dziak, 2021) are rarely available.

The proposed SSL and clustering workflow highlights sequences of seismic events that would have

been difficult to observe on the raw seismic signals and on the spectrograms as they were occurring

in a long and complex sequence of intertwined seismic signals. Additionally, our analysis shows that

the volcano activity over this period occurred intermittently in paroxismic sequences with complex

dynamics. Further analysis will enable to understand and model the processes underlying the different

clusters of observed signals and explore other periods of time to find similar or new seismic signals.

The SSL workflow does not only provide a comprehensive and synoptic view of the dataset (Fig.
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3a) but also facilitates the identification of rare seismic events, crucial for understanding the natural

phenomena. The ability to capture both overall trends and short-lived anomalies is what makes these

AI-based approaches compelling for seismological data processing and also for other geophysical time

series exploration.

The scope of the SSL approach extends to various applications including the exploration of numer-

ous historical and recent datasets, such as for studying other volcanoes, landslides, glaciers, faults and

surface/underground aquifers that generate a wide and complex variety of seismic signals. The orga-

nizational and visualization capabilities of the approach enable a systematic exploration of continuous

seismic data which also simplifies the analysis of dense instrumental arrays that demand extensive

labeling efforts from experts. The approach might also be used to extract coherent noise periods for

seismic studies based on background noise. The approach only requires expert inputs for labeling clus-

ters rather than individual events which saves many human-labeling hours. Moreover, pertinent results

can be obtained with a limited number of epochs. This allows similar studies to be conducted without

requiring high computing resources. Lastly, as demonstrated in this study by considering several time

periods and seismological stations, the SSL approach also paves the way for transfer learning for event

class identification in seismology.
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1–29.

Caplan-Auerbach, J., Dziak, R., Haxel, J., Bohnenstiehl, D., Garcia, C., 2017. Explosive processes during the

2015 eruption of axial seamount, as recorded by seafloor hydrophones. Geochemistry, Geophysics, Geosys-

tems, 18 (4), 1761–1774.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A., 2020. Unsupervised learning of vi-

sual features by contrasting cluster assignments. Advances in neural information processing systems, 33

, 9912–9924.

Cesca, S. et al., 2020. Drainage of a deep magma reservoir near mayotte inferred from seismicity and deforma-

tion. Nature Geoscience, 13 (1), 87–93.

Chadwick Jr, W. W., Rubin, K. H., Merle, S. G., Bobbitt, A. M., Kwasnitschka, T., Embley, R. W., 2019. Recent

eruptions between 2012 and 2018 discovered at west mata submarine volcano (ne lau basin, sw pacific) and

characterized by new ship, auv, and rov data. Frontiers in Marine Science, 495.

Chen, X., He, K., 2021. Exploring simple siamese representation learning. Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, 15750–15758.

Chouet, B. A., Matoza, R. S. 2013. A multi-decadal view of seismic methods for detecting precursors

of magma movement and eruption. Journal of Volcanology and Geothermal Research, 252, 108–175.

https://doi.org/10.1016/j.jvolgeores.2012.11.013

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggae361/7817994 by Ifrem

er, Bibliothèque La Pérouse user on 14 O
ctober 2024



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

SSL reveals new eruptive sequences at the Mayotte submarine volcano 15

Cui, X., Li, Z., Huang, H. 2021. Subdivision of seismicity beneath the summit region of Kilauea vol-

cano: Implications for the preparation process of the 2018 eruption. Geophysical Research Letters, 48,

e2021GL094698. https://doi.org/10.1029/2021GL094698
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(d)

(c)

(b)(a)

Figure 1. (a) Mayotte island and Fani Maoré submarine volcano. The red cross on the world map indicates the

location of the Mayotte island. The blue and yellow triangles are the deployment positions of the seismological

OBS stations IF07D and IF07C, respectively. The red patch represents the active lava flow area observed during

the OBS deployment (Revosima, 2020; Berthod et al. 2022). (B) VT earthquake. (C) HA event. (D) SDE.
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Figure 2. (a) Flowchart of the clustering workflow from the input images to the final clusters. The workflow uses

three algorithms: SimSiam which is the SSL network; t-SNE (t-distributed stochastic neighbors embedding)

as a dimension reduction tool and DBSCAN (density based spatial clustering of application with noise) for

clustering application. (b) Architecture of the SimSiam network (after Chen & He (2021), figure 1). x1 and x2

represent the two augmented views of the original high dimension image. f is an encoder network, composed

of an encoder and a projection multi layer perceptron. x1 and x2 are processed by the same encoder network

f . The prediction MLP h is then applied on one side. On the other side, a stop-gradient operation is applied.

Finally the model maximizes the similarity between both sides.
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(a)

(c)(b)

Figure 3. (a) t-SNE representation with few associated input images. This synoptic view of the dataset may be

interesting for seismologists as it allows in a short time to visually inspect the dataset, in an organized matter. For

the high-quality version, see Fig. S1 (available online). (b) t-SNE representation with the associated DBSCAN

clusters. Black dots represent isolated points. Clusters of interest are marked with their associated number. (c)

t-SNE representation with the associated labels of the events present in the REVOSIMA catalog for the two

OBS. The histogram represents the proportion of labeled events in each clusters.
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(a)

(d) (e)

(b) (c)

(f)

Figure 4. (a) and (d): 2d t-SNE embeddings with, respectively, default and chosen parameters. (b) and (e): 2d

PCA (Principal Component Analysis) embeddings with, respectively, default and chosen parameters. (c) and

(f): 2d UMAP (Uniform Manifold Approximation and Projection) embeddings with, respectively, default and

chosen parameters. All the embeddings are colored based on the events present in the REVOSIMA catalog for

the two OBS.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggae361/7817994 by Ifrem

er, Bibliothèque La Pérouse user on 14 O
ctober 2024



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

22 J. Rimpot et al.

0
20
40

Cluster 3

0

50
Cluster 4

0

20
Cluster 11

0

10
Cluster 12

0

10

20
Cluster 39

0

10
Cluster 51

0

5

10 Cluster 53

0

5

10 Cluster 64

0

20
Cluster 68

0
20
40

Clusters VT

0

20

40 Clusters HA

0

20
Clusters VT/HA

2019-10-08

2019-10-15

2019-10-22

2019-11-01

2019-11-08

2019-11-15
0

50

100 Clusters OTHERS

VT

Tremor-like

Tremor-like

High-energy
long-duration
multiphase events

High-energy
long-duration
multiphase events

Tremor-like

High-energy
tremor

High-energy
long-duration
multiphase events

Tremor-like

VT

HA

VT/HA

Other type
of events

Date

Nb
 e

ve
nt

 / 
ho

ur

Temporal evolution of the clusters Clusters exemples

Figure 5. Number of events per hour for some specific clusters. See Fig. S2 (available online) for the entire

representation. The right subplots give a representation of the clustered signals. VT, HA and VT/HA groups are

defined based on our prior knowledge and are composed with the following clusters : VT (clusters 6, 55 and 60),

HA (clusters 1 and 8) and VT/HA (clusters 2, 59 and 63). The OTHER group is composed by all the remaining

clusters.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. (a) and (d) Seismic traces after processing. (b) and (e) Spectrograms of the associated waveforms.

(c) and (f) Number of events per hour for selected clusters and groups of seismic events. Selection and color of

clusters are consistent with Fig.5.
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