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good estimate of grain-size distributions.18
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Abstract19

First-order reversal curve (FORC) diagrams are a standard rock magnetic tool for an-20

alyzing bulk magnetic hysteresis behaviors, which are used to estimate the magnetic min-21

eralogies and magnetic domain states of grains within natural materials. However, the22

interpretation of FORC distributions is challenging due to complex domain-state responses,23

which introduce well-documented uncertainties and subjectivity. Here, we propose a neu-24

ral network algorithm (FORCINN) to invert the size and aspect ratio distribution from25

measured FORC data. We trained and tested the FORCINN model using a dataset of26

synthetic numerical FORCs for single magnetite grains with various grain-sizes (45-40027

nm) and aspect ratios (oblate and prolate grains). In addition to successfully testing FORCINN28

against synthetic datasets, we also tested FORCINN against FORC data measured on29

natural samples with accurately determined grain-size and aspect ratio distributions. FORCINN30

was found to provide good estimates of the grain-size distributions for basalt samples31

and marine sediments.32

Plain Language Summary33

Magnetic minerals found in paleomagnetic and environmental samples are typically34

sub-micron or micron in size, rendering direct observation challenging. Therefore, to de-35

termine the grain-size properties, it has been standard practice for many decades to mag-36

netically measure bulk samples, and to interpret their response in terms of the grain-size37

magnetic characteristics. One of the most sophisticated methods is the first-order rever-38

sal curve (FORC) diagram, which measures the change in net magnetization in a vary-39

ing external field. However, FORC diagrams can be complex for natural samples and in-40

terpretation remains largely qualitative. This study proposes a machine-learning approach41

(FORCINN) to determine the size and aspect ratio of magnetite grains from FORC dis-42

tributions. A large numerical dataset of FORC diagrams is simulated for magnetite grains43

of differing sizes and aspect ratios and is used to train the FORCINN model. We show44

that this model effectively estimates the size distribution of magnetite grains in natu-45

ral specimens. As datasets encompassing diverse magnetic minerals are developed, this46

machine learning-based FORC inversion technique is anticipated to advance the macro-47

scopic interpretations of magnetic mineral assemblages.48

1 Introduction49

First-order reversal curve (FORC) diagrams are a standard magnetic tool used to50

characterize the magnetic grains within samples, providing insights into their magnetic51

domain state and grain-size, their magnetic anisotropy and mineral composition, plus52

the degree of magnetostatic interactions within a rock (Roberts et al., 2000, 2022). FORC53

diagrams are constructed from partial magnetic-hysteresis loop data, by taking the mixed54

second derivative of the magnetization (Pike et al., 1999; Roberts et al., 2014). FORC55

data have been used in many geological and environmental studies to quantify paleo-environmental56
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changes (e.g., Chang et al., 2018; Channell et al., 2016) and mineral-alteration processes57

(e.g., Chang, Pei, et al., 2023; Roberts et al., 2018). FORC data have also been used58

to determine paleomagnetic recording fidelity by determining the size and morphology59

of the constituent magnetic grains (Carvallo et al., 2006; Paterson et al., 2010). How-60

ever, the interpretation of FORC data still remains problematic due to our incomplete61

understanding of how individual domain-state FORC signals combine and contribute to62

the total FORC distribution. The current approach of interpreting FORC observations63

involves qualitative comparisons with published analytical (e.g., Newell, 2005), exper-64

imental (e.g., Krása et al., 2011; Zhao et al., 2017) and numerical FORC distributions65

(e.g., Amor et al., 2022; Carvallo et al., 2003; Harrison & Lascu, 2014) for various mag-66

netic domain structures. More complex analysis methods have been employed, e.g., prin-67

cipal component analysis (PCA) (Harrison et al., 2018; Lascu et al., 2015); however, these68

methods help to identify differences within datasets without explaining the underlying69

mechanisms.70

A quantitative method is required to invert FORC data of natural samples to de-71

termine the magnetic grain size and morphology distribution. To achieve this we need72

detailed knowledge of the FORC response of grains as a function of grain-size and shape.73

Due to the difficulties in experimentally isolating the magnetic response of individual grain-74

sizes, forward micromagnetic modeling is key to solving this problem. There has been75

a long history of using forward micromagnetic simulations to study the FORC response76

of individual grains (e.g., Carvallo et al., 2003; Valdez-Grijalva et al., 2018) and inter-77

acting clusters (e.g. Bai et al., 2021; Harrison & Lascu, 2014; Muxworthy et al., 2004;78

Valdez-Grijalva et al., 2020); however, most of these forward models are limited in scope.79

In this work, we use the Synth-FORC dataset (Nagy et al., 2024), which comprises over80

a thousand numerically calculated magnetite FORCs, with each simulated grain having81

a different size and aspect ratio. These simulations, calculated using the MERRILL (Ó Conbhúı82

et al., 2018) micromagnetic software package, are combined with a machine learning ap-83

proach that can directly estimate the size and morphology distribution of non-interacting84

magnetite grains from experimentally measured FORC distributions. This new tool is85

called FORCINN (FORC Inversion using Neural Networks).86

2 Methods87

The FORC distribution, represented as a two-dimensional matrix similar to an im-88

age (Berndt & Chang, 2019), has prompted us to explore the application of classical ma-89

chine learning-based computer vision algorithms for FORC inversion. Convolutional neu-90

ral networks (CNNs) are a classic algorithm for image processing, capable of effectively91

capturing fundamental features of images with rapid convergence and easy generaliza-92

tion (LeCun et al., 1998). ResNet improves upon CNNs by allowing deeper networks to93

extract more complex features (He et al., 2016). Hence, we constructed the FORCINN94

framework, utilizing two neural network-based machine learning algorithms, CNN and95
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ResNet, to invert FORC data and determine the distribution of grain-sizes and shapes96

(aspect ratio) of the magnetite assemblages in a sample (Figure 1). These models were97

trained us ing an extended Synth-FORC dataset described below, and tested against both98

synthetic and natural FORC data.99

2.1 Training and testing dataset100

The extended Synth-FORC dataset comprises micromagnetically generated FORCs101

for randomly-oriented magnetite grains with sizes varying between 45 and 195 nm equiv-102

alent spherical volume diameter (ESVD), and aspect ratios between 0.125 and 6.0 (Nagy103

et al., 2024). These grains have prolate (aspect ratio > 1) and oblate (aspect ratio < 1)104

shapes. Additional grain-sizes of 240 nm, 280 nm, 320 nm, and 400 nm (ESVD) were105

included, with the same aspect ratios as reported in Nagy et al. (2024). We utilized both106

lognormal and random distributions to sample size and shape distributions. Specifically,107

we generated a lognormal distribution by selecting various shape and scale parameters,108

and a random distribution by choosing different interval boundaries. These distributions109

were subsequently employed to synthesize the corresponding FORC samples. These dis-110

tributions were subsequently used to synthesize the corresponding FORC samples. Our111

training data consisted of 400,000 FORCs; our testing set consisted of 100,000 FORCs.112

Both datasets were derived from Synth-FORC and sampled in the same way. All FORC113

data used in this study are normalized raw FORC magnetization M/Ms, along with ad-114

ditional finite difference approximations of ∂(M/Ms)/∂Br, ∂(M/Ms)/∂B and ∂2(M/Ms)/∂Br∂B,115

where M is magnetization at field B with reversal field Br, normalized by the satura-116

tion magnetization Ms. We also include a white noise signal-component accounting for117

5%, 10%, and 20% of magnetization to evaluate the robustness of our models.118

In addition to testing the model against the synthetic test data, FORCINN was119

evaluated against five experimental FORC datasets where the grain morphology distri-120

butions were independently measured. These datasets consist of two basalt samples pre-121

viously studied (Michalk et al., 2008; Muxworthy, 2010; Muxworthy et al., 2011): one122

from the 1991 C.E. Hekla (Iceland) eruption (sample code HB91CY), and the other from123

the 1944 C.E. Vesuvius (Italy) eruption (VM1AX), with grain geometries recently de-124

termined using focused-ion beam nanotomography (FIB-nt) (Gergov et al., 2024). Two125

marine sediment samples (MD2361-125 and MD2361-315) from the core MD00-2361 from126

offshore North West Cape (Western Australia) were included, with dimension data de-127

termined through transmission electron microscopy (TEM) (Chang, Hoogakker, et al.,128

2023). Finally, a synthetic Wright magnetite powder sample (W(0.3 µm)) with grain di-129

mension data obtained via scanning electron microscopy (Muxworthy & Dunlop, 2002),130

was also used to test FORCINN.131
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Figure 1. Framework for FORC inversion based on neural networks (FORCINN) and train-

ing accuracy. (a) The original FORC data. (b) The corresponding size and aspect ratio distri-

bution used to determine (a). (c) The input for the FORCINN model, including the original

normalized FORC magnetization M/Ms, and its first-order derivatives (∂(M/Ms)/∂Br and

∂(M/Ms)/∂B) and second-order derivatives (∂2(M/Ms)/∂Br∂B). (d) The inversion framework

of the FORCINN using CNN and ResNet models. Training results of CNN (e) and ResNet mod-

els (f) trained with zero-noise, 5% noise, 10% noise, and 20% noise, including the accuracy of the

training set (solid lines) and the validation set (dashed lines).
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2.2 Model construction132

FORC inversion is a multi-regression problem where the input variable is the set133

of major and minor hysteresis loops that make up a FORC-diagram (Figure 1a), and the134

output variables are the size and aspect ratio distributions. To ensure efficient model con-135

vergence, we simplify the output variable to a histogram that represents the correspond-136

ing size and shape distribution (Figure 1b): the size range of the output histogram (from137

45 nm to 400 nm) is split into 35 bins, and the aspect ratio range (from 0.166667 to 6.0)138

is split into 33 bins. In other words, we simplified the FORC inversion from a multi-regression139

problem to a multi-class classification problem. Hence, the model output layer is a Soft-140

Max activation function (Bridle, 1989) consisting of a 1× 68 vector, representing the frac-141

tional contributions of size (35 bins) and aspect ratio (33 bins).142

Each input value in our dataset is encoded as an array of four two-dimensional ’slabs’143

(101 × 101 × 4; Figure 1c). The horizontal index of each slab corresponds to the Br field144

ranging from -0.2 T to 0.2 T in steps of 0.004 T plus additional one-padding values – re-145

sulting in 101 sample points; this is the same for the vertical index of each slab that cor-146

responds to the B field. We include one-padding values due to the triangular array struc-147

ture that FORCs are measured (see Figure 1 in Nagy et al. (2024) for reference), where148

only the row corresponding to the major hysteresis loop is fully populated. Each slab149

(indexed from 0 to 3) is derived from raw FORC magnetization: the first slab is the mag-150

netization normalized by the saturation value Ms; slabs 1-3 are finite difference approx-151

imations of the two first and mixed second partial derivatives of the normalized mag-152

netization.153

Neural network algorithms contain a number of hidden layers that non-linearly con-154

nect (map) the input and output (Rumelhart et al., 1986). The hidden layers of CNN155

model mainly consist of convolutional layers and max-pooling layers (Figure S1 and Ta-156

ble S1), which extract features from images through local connections and weight shar-157

ing (LeCun et al., 2015). ResNet introduces residual blocks based on CNN, which add158

shortcut connections to address the vanishing gradient problem in deep networks (Fig-159

ure S2 and Tables S2 and S3), making it possible to train deeper networks (He et al.,160

2016). The detailed descriptions of the hidden layers in CNN and ResNet can be found161

in Supporting Information Text S1.162

2.3 Training and Testing Process163

We adopted 75% of the training set for training and 25% for validation. The train-164

ing dataset is divided into batches of size 32 during training, with each batch used to165

train the model in one iteration (Chollet, 2021). An epoch is a complete pass of the learn-166

ing algorithm over the entire training dataset (Chollet, 2021). The model was trained167

for a total of 100 epochs. To evaluate the model convergence performance, we recorded168

the training accuracy, defined as the proportion of samples for which the model correctly169
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predicted the highest probability class (Chollet, 2021). Finally, the trained model was170

then tested on the testing set to evaluate its generalization ability.171

3 Training and Testing on Simulation Datasets172

Figures 1e and 1f show the accuracies of the CNN and ResNet algorithms on zero-173

noise, 5% noise, 10% noise, and 20% noise datasets after 100 epochs of training. The ac-174

curacies for the testing data set converged to approximately the same level, i.e., 82%,175

79%, 77%, and 76%, respectively for the CNN model; and 84%, 81%, 79%, and 78%,176

respectively for the ResNet model. The accuracy of the CNN model on the validation177

set is similar to that on the training set, whereas the validation accuracy of the ResNet178

model shows significant fluctuations, which may be due to the higher complexity of ResNet.179

For both networks, training accuracy slightly decreases with increasing noise.180

When applied to the simulation testing set, CNN models trained with zero-noise,181

5% noise, 10% noise, and 20% noise datasets consistently deliver precise predictions of182

the average size and aspect ratio, as indicated by R2 > 0.98 (Figures 2a-2h). The pre-183

dictive performance of the ResNet models trained with the high noise dataset is poorer,184

but still achieves R2 > 0.79 for size and >0.94 for the aspect ratio. Figure 3 shows a185

clear correlation between the ground truth and predicted distributions of size and as-186

pect ratio for the CNN model trained with the zero-noise dataset, with R2 > 0.85. These187

results on synthetic FORCs indicate that well-trained CNN and ResNet models have the188

potential to generalize to the size and aspect ratio inversion from the FORC distribu-189

tion observations on non-interacting magnetite.190

4 Testing on the Experiment Data191

4.1 Testing results192

The well-trained FORCINN model was used to invert the experimental FORC data193

of four natural samples and one synthetic powder sample (Figure 4). The FORC inver-194

sion results of the basalt samples from Helka and Vesuvius exhibit similar size distribu-195

tions as those determined from FIB-nt with p-values >0.05 of Kolmogorov-Smirnov test196

(Dodge, 2008) (Figures 4a and 4c). The experimentally determined mean/median for197

the Hekla sample was ∼88/71 µm versus a prediction of ∼111/100 µm, and for Vesuvius198

an experimental estimate of ∼174/136 µm versus a prediction of ∼147/120 µm. In both199

cases the predicted size distribution underestimates the grain content in the <80 nm range.200

This is likely due to relatively small variations in the hysteresis responses for grains in201

the single domain (SD) range, i.e., 45-85 nm for equant grains (Williams & Dunlop, 1989;202

Nagy et al., 2024). The predicted aspect-ratio distributions are relatively narrower com-203

pared to the experimental data (Figures 4b and 4d), in particular the number of oblate204

particles is underestimated.205
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Figure 2. FORCINN predicted versus ground truth for the simulation dataset of CNN (a, b,

e, f, i, j, m, n) and ResNet (c, d, g, h, k, l, o, p) models trained with zero-noise, 5% noise, 10%

noise, and 20% noise datasets, including ground truth and predicted average of sizes (a, c, e, g, i,

k, m, o) and aspect ratio (b, d, f, h, j, l, n, p) distributions. The black line represents where the

ground truth and predictions are equal. Coefficient of determination R2 represents the goodness

of fit of the model (Draper, 1998).
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Figure 3. Frequency versus grain-size (a-h) or aspect ratio (i–p) for the input distribution

for the synthetic ground truth FORC data (blue lines and dots) and the FORCINN predicted

distribution (orange lines and dots). The prediction results are for the CNN model trained with

the zero-noise dataset. Coefficient of determination R2 represents the goodness of fit of the model

(Draper, 1998).
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Figure 4. Probability density versus grain-size (a, c, e, g, i) or aspect ratio (b, d, f, h, j) for

the FORCINN predicted (orange) and the experimental ground truth data (blue). The experi-

mental data are for (a, b) Hekla, (c, d) Vesuvius, (e, f) MD2361-125, (g, h) MD2361-315, and (i,

j) Wright powder sample W(0.3 µm). For the Hekla and Vesuvius samples the distributions were

determined via FIB-nT (Gergov et al., 2024), whereas for MD2361-125, MD2361-315 and W(0.3

µm), the grain-size distributions are determined from 2D images (Chang, Hoogakker, et al., 2023;

Muxworthy & Dunlop, 2002). P-values were calculated by Kolmogorov-Smirnov test (Williams &

Dunlop, 1989; Nagy et al., 2024), which can indicate that the null hypothesis that the two data

distributions are indistinguishable cannot be rejected if greater than 0.05. The prediction results

of all models are presented in Tables S4-S8. This figure shows the results of the model with the

best overall predictive performance, characterized by a large p-value and mean/median values

close to the experimental data, specifically the ResNet model trained with 20% noise dataset

(a-h) and the CNN model trained with zero-noise dataset (i and j). The mean and median are

marked in the figure. –10–
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In general, there are a number of other reasons why the predicted distributions do206

not match the experimental data: (1) the experimental FORC data were acquired on bulk207

samples (∼1 cm3), which likely include wider grain-size distributions than the experi-208

mentally determined grain-size distributions, which are from much smaller volumes of209

sample, i.e, ∼10−6 cm3. (2) There maybe magnetostatic interactions in the experimen-210

tal data; however, for the basalt samples they are thought to be minimal (Gergov et al.,211

2024). (3) The FORC training data only extends to 400 nm in size. (4) The morpholo-212

gies of the real magnetic grains are more complex than the numerical models. The train-213

ing dataset only considers grains with equal intermediate and minor axes, while the re-214

constructed data has three different main axes. Despite some limitations in the dataset215

and predictions, the current testing results have sufficiently demonstrated the potential216

of FORCINN in inverting FORC data of basalt samples. These inverted morphological217

data can be utilized to evaluate the reliability of basalt paleointensity data (e.g., Car-218

vallo et al., 2006; Nagy et al., 2022).219

The predicted size distributions of two marine sediment samples containing mag-220

netofossils are larger than the size distribution obtained from the TEM image (Figures221

4e and 4g). The predicted aspect ratios are also higher (Figures 4f and 4h). These dif-222

ferences may be because only the morphological data of magnetofossils were counted from223

TEM images, excluding the larger detrital magnetite in the sample (Chang, Hoogakker,224

et al., 2023). Furthermore, some magnetofossils in sediments may also retain chain struc-225

tures (Amor et al., 2022), which exhibit strong interactions and result in an overestima-226

tion of inverted grain-size and aspect ratio. However, the inverted results correctly iden-227

tified that the size and high aspect ratio component of the glacial sediment sample (MD2361-228

315) are both larger than those of the interglacial sample (MD2361-125; Figures 4e-4h).229

These size and aspect ratio variations are thought to be indicative of past ocean oxygen230

changes (Chang, Hoogakker, et al., 2023).231

For the Wright powder sample, the grain-size mean/median predicted by FORCINN232

(∼222/195 µm) is smaller than the measured values of ∼386/306 µm (Figure 4i). This233

difference is likely due to the training dataset only extending to 400 nm; whilst the sam-234

ple has many grains >400 nm. Additionally, this powder sample was reported by Muxworthy235

and Dunlop (2002) to contain magnetostatically interacting grains with angular geome-236

tries, which would both contribute to the differences seen in Figure 4i. Mismatches be-237

tween the measured and predicted aspect ratios for the Wright powder sample are also238

seen (Figure 4j). As the micromagnetic data set of simulated FORCs expands to encom-239

pass larger grains with more diverse shapes, we expect this mismatch to greatly improve.240

4.2 Implications for rock, environmental, and paleo- magnetism241

The ability to accurately estimate the magnetic grain-size distributions like we have242

achieved on five experimental FORC data using FORCINN (Figure 4), has been a long-243

standing problem in the magnetism community. Previous methods have focused on de-244
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termining coercivity distributions (e.g., Kruiver et al., 2001; Maxbauer et al., 2016), un-245

mixing to produce end-members, which themselves contain complex distributions (e.g.246

Heslop & Dillon, 2007; Harrison et al., 2018), or have been based purely on single-domain247

theory, which limits their usefulness (e.g, Dunlop, 1976; Shcherbakov & Fabian, 2005).248

FORCINN is the first method capable of rapidly inverting rapidly measured magnetic249

data for their grain-size distribution, for grains that are larger than single-domain. FORCINN250

marks a major breakthrough in rock magnetic analysis with applications in areas of rock,251

environmental, and paleo- magnetism. Clearly, the training dataset needs to be extended252

to include larger grain-sizes plus different mineralogies for which micromagnetic mod-253

els have already been made, e.g., greigite (Valdez-Grijalva et al., 2018). Ideally, magne-254

tostatic interactions should also be included, but this is more challenging for magnetic255

particles, which display non-uniform magnetic behavior due to computational limits (Valdez-256

Grijalva et al., 2020), and it is thought that in many natural samples magnetostatic in-257

teractions are not significant (Muxworthy, 2013).258

5 Conclusions259

We have developed a neural network-based FORC inversion model (FORCINN)260

that accurately predicts the size and aspect ratio distribution of non-interacting mag-261

netite from their measured FORC distributions. The trained FORCINN model achieves262

precise predictions on a testing FORC dataset generated from micromagnetic simula-263

tions of individual magnetite grains (Figures 2 and 3). FORCINN also shows promise264

in inverting FORC data for their grain-size and aspect ratio distributions of five exper-265

imental datasets, for which the grain morphology information had been previously de-266

termined independently using electron microscopic methods (Figure 4).267

FORCINN provides CNN and ResNet models trained at different noise levels for268

comparison. For the micromagnetically generated non-interacting magnetite testing set,269

CNN outperforms ResNet with higher goodness of fit. For natural basalt and marine sed-270

iment samples, the ResNet model trained on the 20% noise dataset demonstrated the271

best performance. Therefore, we recommend trying this model first for inverting natu-272

ral samples.273

The current training dataset only includes FORC data from single magnetite with274

sizes ranging from 45 to 400 nm and aspect ratios from 0.166667 to 6, and lacks grains275

that exhibit triaxial morphological differences. This limits the inversion capability on276

FORC data of complex natural samples. In the future, it is important to expand the cur-277

rent dataset to include larger grain-sizes, a broader range of minerals, and potentially278

magnetostatic interactions.279

–12–



manuscript submitted to Geophysical Research Letters

Open Research280

The data and code related to this study have been uploaded to the Zenodo repos-281

itory (Pei et al., 2024), which includes the codes for building, training, and testing the282

FORCINN model, dataset processing codes, trained CNN and ResNet models, and the283

raw data for the testing and training sets.284
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Ó Conbhúı, P., Williams, W., Fabian, K., Ridley, P., Nagy, L., & Muxworthy, A. R.400

(2018). Merrill: Micromagnetic earth related robust interpreted language401

–15–



manuscript submitted to Geophysical Research Letters

laboratory. Geochemistry, Geophysics, Geosystems, 19 (4), 1080–1106.402

Paterson, G. A., Muxworthy, A. R., Roberts, A. P., & Mac Niocaill, C. (2010).403

Assessment of the usefulness of lithic clasts from pyroclastic deposits for pa-404

leointensity determination. Journal of Geophysical Research: Solid Earth,405

115 (B3).406

Pei, Z., Williams, W., Nagy, L., Paterson, G., Moreno, R., Muxworthy, A., & Chang,407

L. (2024). Code for ’FORCINN: First-order reversal curve inversion of mag-408

netite using neural networks’. Zenodo. doi: 10.5281/zenodo.13838980409

Pike, C. R., Roberts, A. P., & Verosub, K. L. (1999). Characterizing interactions in410

fine magnetic particle systems using first order reversal curves. Journal of Ap-411

plied Physics, 85 (9), 6660–6667.412

Roberts, A. P., Heslop, D., Zhao, X., Oda, H., Egli, R., Harrison, R. J., . . . Sato, T.413

(2022). Unlocking information about fine magnetic particle assemblages from414

first-order reversal curve diagrams: Recent advances. Earth-Science Reviews,415

227 , 103950.416

Roberts, A. P., Heslop, D., Zhao, X., & Pike, C. R. (2014). Understanding fine mag-417

netic particle systems through use of first-order reversal curve diagrams. Re-418

views of Geophysics, 52 (4), 557–602. doi: 10.1002/2014RG000462419

Roberts, A. P., Pike, C. R., & Verosub, K. L. (2000). First-order reversal curve420

diagrams: A new tool for characterizing the magnetic properties of natural421

samples. Journal of Geophysical Research: Solid Earth, 105 (B12), 28461–422

28475.423

Roberts, A. P., Zhao, X., Harrison, R. J., Heslop, D., Muxworthy, A. R., Rowan,424

C. J., . . . Florindo, F. (2018). Signatures of reductive magnetic mineral di-425

agenesis from unmixing of first-order reversal curves. Journal of Geophysical426

Research: Solid Earth, 123 (6), 4500–4522.427

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations428

by back-propagating errors. nature, 323 (6088), 533–536.429

Shcherbakov, V. P., & Fabian, K. (2005). On the determination of magnetic grain-430

size distributions of superparamagnetic particle ensembles using the frequency431

dependence of susceptibility at different temperatures. Geophysical Journal432

International , 162 , 736-746. doi: 10.1111/j.1365-246X.2005.02603.x433

Valdez-Grijalva, M. A., Muxworthy, A. R., Williams, W., Ó Conbhúı, P., Nagy, L.,434
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