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Abstract First-order reversal curve (FORC) diagrams are a standard rock magnetic tool for analyzing bulk
magnetic hysteresis behaviors, which are used to estimate the magnetic mineralogies and magnetic domain
states of grains within natural materials. However, the interpretation of FORC distributions is challenging due to
complex domain-state responses, which introduce well-documented uncertainties and subjectivity. Here, we
propose a neural network algorithm (FORCINN) to invert the size and aspect ratio distribution from measured
FORC data. We trained and tested the FORCINN model using a data set of synthetic numerical FORCs for
single magnetite grains with various grain-sizes (45—400 nm) and aspect ratios (oblate and prolate grains). In
addition to successfully testing against synthetic data sets, FORCINN was found to provide good estimates of
the grain-size distributions for basalt samples and identify sample size differences in marine sediments.

Plain Language Summary Magnetic minerals found in paleomagnetic and environmental samples
are typically sub-micron or micron in size, rendering direct observation challenging. Therefore, to determine the
grain-size properties, it has been standard practice for many decades to magnetically measure bulk samples, and
to interpret their response in terms of the grain-size magnetic characteristics. One of the most sophisticated
methods is the first-order reversal curve (FORC) diagram, which measures the change in net magnetization in a
varying external field. However, FORC diagrams can be complex for natural samples and interpretation remains
largely qualitative. This study proposes a machine-learning approach (FORCINN) to determine the size and
aspect ratio of magnetite grains from FORC distributions. A large numerical FORC data set is simulated for
magnetite grains of differing sizes and aspect ratios and is used to train the FORCINN model. We show that this
model effectively estimates the size distribution of magnetite grains in natural specimens. As data sets
encompassing diverse magnetic minerals are developed, this machine learning-based FORC inversion
technique is anticipated to advance the macroscopic interpretations of magnetic mineral assemblages.

1. Introduction

First-order reversal curve (FORC) diagrams are a standard magnetic tool used to characterize the magnetic grains
within samples, providing insights into their magnetic domain states and grain-sizes, their magnetic anisotropy
and mineral composition, plus the degree of magnetostatic interactions within a rock (Roberts et al., 2000, 2022).
FORC diagrams are constructed from partial magnetic-hysteresis loop data, by taking the mixed second deriv-
ative of the magnetization (Pike et al., 1999; Roberts et al., 2014). FORC diagrams have been used in many
geological and environmental studies to quantify paleo environmental changes (e.g., Chang et al., 2018; Channell
et al., 2016) and mineral-alteration processes (e.g., Chang, Pei, et al., 2023; Roberts et al., 2018). FORC diagrams
have also been used to determine paleomagnetic recording fidelity by determining the size and morphology of the
constituent magnetic grains (Carvallo et al., 2006; Paterson et al., 2010). However, the interpretation of FORC
data remains problematic due to our incomplete understanding of how individual domain-state FORC signals
combine and contribute to the total FORC distribution. The current approach of interpreting FORC observations
involves qualitative comparisons with published analytical (e.g., Newell, 2005), experimental (e.g., Krasa
et al., 2011; Zhao et al., 2017) and numerical FORC distributions (e.g., Amor et al., 2022; Carvallo et al., 2003;
Harrison & Lascu, 2014) for various magnetic domain structures. More complex analysis methods have been
employed to analyze the end-member components of FORCs, for example, principal component analysis (PCA)
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(Harrison et al., 2018; Lascu et al., 2015), but the interpretation of its decomposed components remains quali-
tative and subjective. Some micromagnetic simulation studies also help interpret the FORC characteristics of
specific types, morphologies, grain-sizes, and structures of magnetic minerals (Amor et al., 2022; Lascu
etal., 2018; Pei et al., 2022; Valdez-Grijalva et al., 2020; Wagner et al., 2021). However, there is a lack of direct
quantitative methods to directly link FORC signals with the physical parameters such as grain-sizes and shapes of
magnetic minerals.

A quantitative method is required to invert FORC data of natural samples to determine the magnetic grain-size
and morphology distribution. This requires detailed knowledge of the FORC response of grains as a function of
grain-size and shape. Due to the difficulties in experimentally isolating the magnetic response of individual grain-
sizes, forward micromagnetic modeling is key to determining the systematic FORC response of grains based on
their sizes and shapes. There has been a long history of using forward micromagnetic simulations to study the
FORC response of individual grains (e.g., Amor et al., 2022; Carvallo et al., 2003; Lascu et al., 2018; Valdez-
Grijalva et al.,, 2018; Wagner et al., 2021) and interacting clusters (e.g., Bai et al., 2021; Harrison &
Lascu, 2014; Muxworthy et al., 2004; Pei et al., 2022; Valdez-Grijalva et al., 2020); however, most of these
forward models are limited in scope, focusing only on specific grain-sizes, structures, and types of minerals, and
lack systematic FORC data under varying parameters. In this work, we use the Synth-FORC data set (Nagy
et al., 2024), which comprises over a thousand numerically calculated magnetite FORCs, with each simulated
grain having a different size and aspect ratio. These simulations, calculated using the MERRILL (O Conbhui
et al., 2018) micromagnetic software package, are combined with a machine learning approach that can directly
estimate the size and morphology distribution of non-interacting magnetite grains from experimentally measured
FORC data. This new tool is called FORCINN (FORC Inversion using Neural Networks).

2. Methods

The FORC distribution, represented as a two-dimensional matrix similar to an image (Berndt & Chang, 2019), has
prompted us to explore the application of classical machine learning-based computer vision algorithms for FORC
inversion. Convolutional neural networks (CNNs) are a classic algorithm for image processing, capable of
effectively capturing fundamental features of images with rapid convergence and easy generalization (LeCun
et al., 1998). ResNet improves upon CNNs by allowing deeper networks to extract more complex features (He
et al., 2016). Hence, we constructed the FORCINN framework, utilizing two neural network-based machine
learning algorithms, CNN and ResNet, to invert FORC data and determine the distribution of grain-sizes and
shapes (aspect ratio) of the magnetite assemblages in a sample (Figure 1). These models were trained using an
extended Synth-FORC data set described below, and tested against both synthetic and natural FORC data.

2.1. FORC Data Set

The extended Synth-FORC data set comprises micromagnetically generated FORCs for randomly oriented
magnetite grains with sizes varying between 45 and 195 nm equivalent spherical volume diameter (ESVD), and
aspect ratios between 0.125 and 6.0 (Nagy et al., 2024). These grains have prolate (aspect ratio > 1) and oblate
(aspect ratio < 1) shapes. Additional grain-sizes of 240, 280, 320, and 400 nm (ESVD) were included, with the
same aspect ratios as reported in Nagy et al. (2024). We utilized both lognormal and random distributions to
sample size and shape distributions. Specifically, we generated a lognormal distribution by selecting various
shape and scale parameters, and a random distribution by choosing different interval boundaries. These distri-
butions were subsequently employed to synthesize the corresponding FORCs. Our training data consisted of
400,000 FORC:s; our testing set consisted of 100,000 FORCs. Both data sets were derived from Synth-FORC and
sampled in the same way. All simulated and experimental FORC data used in this study are normalized raw FORC
magnetization M/ M;, along with additional finite difference approximations of d(M/ M,)/0B,, 0(M/M,)/0B, and
0*(M/M,)/0B,0B, where M is magnetization at field B with reversal field B,, normalized by the saturation
magnetization M;. We also included a white noise signal component accounting for 5%, 10%, and 20% of
magnetization to evaluate the robustness of our models.

In addition to testing the model against the synthetic test data, FORCINN was evaluated against five experimental
FORC data sets where the grain morphology distributions were independently measured. These data sets consist
of two basalt samples previously studied (Michalk et al., 2008; Muxworthy, 2010; Muxworthy et al., 2011): one
from the 1991 C.E. Hekla (Iceland) eruption (sample code HB91CY), and the other from the 1944 C.E. Vesuvius

PEIL ET AL.

20of 11

85UB0| 7 SUOWILLIOD BAIER10 8|qedl|dde auy Aq pausenob ae seole YO ‘88N JO San. 1o} A%eiq1 T 8Ul|UO AB|1M UO (SUOTPUO-PUE-SWR)ALID A8 |IMAIq 1[eul [U0//StY) SUORIPUOD pue swie 1 8 8eS *[5z0z/20/e2] Uo Areiqiauliuo Ao|im ‘dig subewpig a11ueD Jewelyl Aq 69.2TT 191202/620T 0T/I0p/L0d A8 M Areiq1jeul|uo'sgndnfey/sdny wouy pepeojumoa ' ‘520z ‘L008776T



A7 |
M\I Geophysical Research Letters 10.1029/2024GL 112769
AND SPACE SCIENCES
(a) (b) Size distribution Aspect ratio distribution
1.00+ ]
o
S 0.751 T 3.01
©
&N 0,501 =
o ‘B 0.021 1
S 0.25- S
g < 2.0
= 0.00 ) Z ]
N _0.251 § i
] 0.011
€ -0.50 < 1.0
5 a
Z 0.75- 1 | |
-1.00+ |
. . . . . . . . . 0.00- 0.0 .
020 -0.15 -0.10 -0.05 0.0 005 010 015 0.20 0 100 150 200 1 2 3
B (T) Size (nm) Aspect ratio
(c) l
0.0005 N NNN2 0 NNNR NnNNNA N NNNA 0 NNN2 a(IV”IVIS)IaBraB
0.001  0NNNA N NNNA nonnAs 0 NNN& | N NN1 a(M/Ms)/aBr
0.nn1 n nan1 N nnni < o(MI/M)loB (d) FORCNN framework
0.999 -0998 -0.998 ..  0.999 0.999 MM,
g Inversion model Output
-0.998 -0.998 -0997 ..  0.999 1 © o
0998 -0997 -0.996 L 2e
_ s s —> 8 wm=)  CNNor ResNet  wmm) g g
N &
£ ? 8
101x101x4 68x1
(e) CNN (f) ResNet
0.9 0.9
0.8 . MA e "* v A 0.8
0.7 ' 07
> 0.6 1 0.6
(&)
g
S 05 0.5
Q
[&]
< 0.4 0.4 - : :
Testing Validation Dataset :
031 —_ e Zero-noise 03 3 :
0.2 1 —_ e 5% noise 02 4:
—_ e 10% noise :
0.1 4 0.1 4
—_— e 20% noise
0.0 . . . . 0.0 : : . .
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Figure 1. Framework for FORC inversion based on neural networks (FORCINN) and training accuracy. (a) The original FORC data. (b) The corresponding size and
aspect ratio distribution used to determine (a). (c) The input for the FORCINN model, including the original normalized FORC magnetization M/ M, and its first-order
derivatives (3(M/M,)/dB, and 0(M/M,)/dB) and second-order derivatives (9? (M/M,)/9B,0B). (d) The inversion framework of the FORCINN using CNN and ResNet
models. Training results of CNN (e) and ResNet models (f) trained with zero-noise, 5% noise, 10% noise, and 20% noise, including the accuracy of the training set (solid
lines) and the validation set (dashed lines).

(Italy) eruption (VM1AX), with grain geometries recently determined using focused-ion beam nanotomography
(FIB-nt) (Gergov et al., 2024). Two magnetofossil-rich marine sediment samples (MD2361-125 and MD2361-
315) from the core MDO00-2361 from offshore North West Cape (Western Australia) were included, with
dimension data determined through transmission electron microscopy (TEM) after magnetic extraction (Chang,
Hoogakker, et al., 2023). It should be noted that Chang, Hoogakker, et al. (2023) did not conduct FORC mea-
surement for MD2361-315. Therefore, this study used FORC data from MD2361-285, located 30 cm above
MD2361-315, as a substitute due to their similar basic rock magnetic parameters. Finally, a synthetic Wright
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magnetite powder sample (W(0.3 pm)) with grain dimension data obtained via scanning electron microscopy
(Muxworthy & Dunlop, 2002), was also used to test FORCINN.

2.2. Model Construction

FORC inversion is a multi-regression problem where the input variable is the set of major and minor hysteresis
loops that make up FORC data (Figure 1a), and the output variables are the size and aspect ratio distributions. To
ensure efficient model convergence, we simplified the output variable to a histogram that represents the corre-
sponding size and shape distribution (Figure 1b): the size range of the output histogram (from 45 to 400 nm) is
split into 35 bins, and the aspect ratio range (from 0.166667 to 6.0) is split into 33 bins. In other words, we
simplified the FORC inversion from a multi-regression problem to a multi-class classification problem. Hence,
the model output layer is a SoftMax activation function (Bridle, 1989) consisting of a 1 X 68 vector, representing
the fractional contributions of size (35 bins) and aspect ratio (33 bins).

Each input value in our data set was encoded as an array of four two-dimensional “slabs” (101 X 101 X 4;
Figure 1c). The horizontal index of each slab corresponds to the B, field ranging from —0.2 to 0.2 T in steps of
0.004 T plus additional one-padding values—resulting in 101 sample points; this is the same for the vertical index
of each slab that corresponds to the B field. We included one-padding values due to the triangular array structure
that FORCs are measured (see Figure 1 in Nagy et al. (2024) for reference), where only the row corresponding to
the major hysteresis loop is fully populated. Each slab (indexed from O to 3) is derived from raw FORC
magnetization: the first slab is the magnetization normalized by the saturation value M;; slabs 1-3 are finite
difference approximations of the two first and mixed second partial derivatives of the normalized magnetization.

Neural network algorithms contain a number of hidden layers that non-linearly connect (map) the input and output
(Rumelhart et al., 1986). The hidden layers of CNN model mainly consist of convolutional layers and max-
pooling layers (Figure S1 and Table S1 in Supporting Information S1), which extract features from images
through local connections and weight sharing (LeCun et al., 2015). ResNet introduces residual blocks based on
CNN, which add shortcut connections to address the vanishing gradient problem in deep networks (Figure S2 and
Tables S2 and S3 in Supporting Information S1), making it possible to train deeper networks (He et al., 2016). The
detailed descriptions of the hidden layers in CNN and ResNet can be found in Text S1 of Supporting
Information S1.

2.3. Training and Testing Process

We adopted 75% of the training set for training and 25% for validation. The training data set was divided into
batches of size 32 during training, with each batch used to train the model in one iteration (Chollet, 2021). An
epoch is a complete pass of the learning algorithm over the entire training data set (Chollet, 2021). The model was
trained for a total of 100 epochs. To evaluate the model convergence performance, we recorded the training
accuracy, defined as the proportion of samples for which the model correctly predicted the highest probability
class (Chollet, 2021). Finally, the trained model was then tested on the testing set to evaluate its generalization
ability.

3. Training and Testing on Simulation Data Sets

Figures le and 1f show the accuracies of the CNN and ResNet algorithms on zero-noise, 5% noise, 10% noise, and
20% noise data sets after 100 epochs of training. The accuracies for the testing data set converged to approxi-
mately the same level, that is, 82%, 79%, 77%, and 76%, respectively for the CNN model; and 84%, 81%, 79%, and
78%, respectively for the ResNet model. The accuracy of the CNN model on the validation set is similar to that on
the training set, whereas the validation accuracy of the ResNet model shows significant fluctuations, which may
be due to the higher complexity of ResNet. For both networks, training accuracy slightly decreases with
increasing noise.

When applied to the simulation testing set, CNN models trained with zero-noise, 5% noise, 10% noise, and 20%
noise data sets consistently deliver precise predictions of the average size and aspect ratio, as indicated by R? >
0.98 (Figures 2a—2h). The predictive performance of the ResNet models trained with the high noise data set is
poorer, but still achieves R? > 0.79 for size and >0.94 for the aspect ratio. The ResNet models incorporating
instrumental noise consistently deviate from absolute accuracy, overestimating the size of small particles

PEIL ET AL.

4of 11

85UB0| 7 SUOWILLIOD BAIER10 8|qedl|dde auy Aq pausenob ae seole YO ‘88N JO San. 1o} A%eiq1 T 8Ul|UO AB|1M UO (SUOTPUO-PUE-SWR)ALID A8 |IMAIq 1[eul [U0//StY) SUORIPUOD pue swie 1 8 8eS *[5z0z/20/e2] Uo Areiqiauliuo Ao|im ‘dig subewpig a11ueD Jewelyl Aq 69.2TT 191202/620T 0T/I0p/L0d A8 M Areiq1jeul|uo'sgndnfey/sdny wouy pepeojumoa ' ‘520z ‘L008776T



Aru g
M\ Geophysical Research Letters 10.1029/2024GL112769
AND SPACE SCIENCES

CNN ResNet
size (nm) Aspect ratio size (nm) Aspect ratio
500 500 —
(a) . (b) 6.l () ot (d) !
4 re. it b s &
400+ eyl 400 6 gt
g S 3001 4]  d 3001 41
o ©
5 2 200 2001 1
o 4
N 2. / 2
100+ v 1001 ]
R2=0.99 R2=0.99 R2=0.99 R2=0.99
0 : ; : . 0 . . , 0 , ; . ; 0 , ; ;
0 100 200 300 400 500 O 2 4 6 0 100 200 300 400 500 O 2 4 6
500 500
(e) . ® () ’
400 1 400 :
O o ,
2 5 3001 4 P 3001
o =
c 8
2 B 2001 2001
o o 2
100 3 100+
R?=0.98 ’ R2=0.99 R2=0.87
0 : : ; . 0+~ ; ; ; 0 : , . .
0 100 200 300 400 500 O 2 4 6 0 100 200 300 400 500 O 2 4 6
500 500
0] o 0] (k) . 0] )
4001 4001 ot
o |, 4 . A
(%] 4
il S %00 41 ‘ 300 "
= ‘Q‘ i
X g 2007 200 1
S o 2
100 % 1004 iy 3
R2=0.98 ; R2=0.99 R2=0.79 i R2=0.94
0 T r T T 0 T T T 0 T T T T 0+ T T
0 100 200 300 400 500 O 2 4 6 0 100 200 300 400 500 O 2 4 6
500 500 T——
(m) o (n) (0). o 6 P)
400+ 400{ ™
o @ e
'S .S 300 4 N s 300+ i
= s . i
X B 200- 2001
S a
I3 2 2
100+ . 100
R2=0.98 A R?=0.99 R?=0.80 R?2=0.95
0+——— : : T 0 T T T 0 . . ; T 0 = T .
0 100 200 300 400 500 O 2 4 6 0 100 200 300 400 500 O 2 4 6
Ground truth Ground truth Ground truth Ground truth

Figure 2. FORCINN predicted versus ground truth for the simulation data set of CNN (a, b, ¢, f, i, j, m, n) and ResNet (c, d, g, h, k, 1, 0, p) models trained with zero-noise,
5% noise, 10% noise, and 20% noise data sets, including ground truth and predicted average of sizes (a, c, e, g, 1, k, m, 0) and aspect ratio (b, d, f, h, j, 1, n, p) distributions.
The black line represents where the ground truth and predictions are equal. Coefficient of determination R? represents the goodness of fit of the model (Draper, 1998).

(<100 nm) and misidentifying some weakly prolate particles (aspect ratios of 1-1.5) as oblates. This may be
attributed to the limited variation in the FORC distribution of magnetite within these size and aspect ratio ranges
(Nagy et al., 2024), increasing the sensitivity of ResNet models to noise interference during training. Figure 3
shows a clear correlation between the ground truth and predicted distributions of size and aspect ratio for the CNN
model trained with the zero-noise data set, with R* > 0.85. These results on synthetic FORCs indicate that well-
trained CNN and ResNet models have the potential to generalize to the size and aspect ratio inversion from the
FORC distribution observations on non-interacting magnetite.

4. Testing on the Experiment Data

4.1. Testing Results

The well-trained FORCINN model was used to invert the experimental FORC data of four natural samples and
one synthetic powder sample (Figure 4). The FORC inversion results of the basalt samples from Helka and
Vesuvius exhibit similar size distributions as those determined from FIB-nt with p-values >0.05 of Kolmogorov-
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Smirnov test (Dodge, 2008) (Figures 4a and 4c). The experimentally determined mean/median for the Hekla
sample was ~88/71 nm versus a prediction of ~111/100 nm, and for Vesuvius an experimental estimate of ~174/
136 nm versus a prediction of ~147/120 nm. In both cases the predicted size distribution underestimates the grain
content in the <80 nm range. This is likely due to relatively small variations in the hysteresis responses for grains
in the single-domain range, that is, 45-85 nm for equant grains, leading to insufficient differences in the FORC
signal within this size range (Nagy et al., 2024; Williams & Dunlop, 1989). The predicted aspect-ratio distri-
butions are relatively narrower compared to the experimental data (Figures 4b and 4d), in particular the number of
oblate particles is underestimated.
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In general, there are a number of other reasons why the predicted distributions do not match the experimental data:
(a) the experimental FORC data were acquired on bulk samples (~1 cm?), which likely include wider grain-size
distributions than the experimentally determined grain-size distributions, which are from much smaller sample
volumes, that is, ~107% cm?>. (b) There may be magnetostatic interactions in the experimental data; however, for
the basalt samples they are thought to be minimal (Gergov et al., 2024). (c) The FORC training data only extends
to 400 nm in size. (d) The morphologies of the real magnetic grains are more complex than the numerical models.
The training data set only considers grains with equal intermediate and minor axes, while the reconstructed data
has three different main axes. (¢) Thermal activation during FORC measurements is not considered in the
micromagnetic calculations of the FORC data (Berndt et al., 2018; Egli, 2021; Lanci & Kent, 2018). The ResNet
model trained on the 20% noise data set, which has the lowest accuracy in the micromagnetically generated testing
set, performs best in predicting experimental data (Figure 4d); this may be attributed to factors such as
magnetostatic interactions, thermal activation, and the limited size range discussed above, leading to in-
consistencies between the micromagnetic simulation-generated training set and the real experimental FORC data.
Consequently, models trained on low-noise data sets may have over-fitted, thereby reducing their ability to
generalize to experimental data predictions. Despite some limitations in the data set and predictions, the current
testing results have sufficiently demonstrated the potential of FORCINN in inverting FORC data of basalt
samples. These inverted morphological data can be utilized to evaluate the reliability of basalt paleointensity data
(e.g., Carvallo et al., 2006; Nagy et al., 2022).

The predicted size distributions of two marine sediment samples containing magnetofossils are larger than the
size distributions obtained from TEM imaging (Figures 4e and 4g). The predicted aspect ratios are also higher
(Figures 4f and 4h). These differences may be because only the morphological data of magnetofossils were
counted from TEM images, excluding the larger detrital magnetite in the sample (Chang, Hoogakker, et al., 2023).
Furthermore, some magnetofossils in sediments may also retain chain structures (Amor et al., 2022), which
exhibit strong interactions and result in an overestimation of inverted grain-size and aspect ratio. However, the
inverted results correctly identified that the size and high aspect ratio component of the glacial sediment sample
(MD2361-315) are both larger than those of the interglacial sample (MD2361-125; Figures 4e—4h). These size
and aspect ratio variations can be used to study past climate changes, such as past ocean oxygen changes (Chang,
Hoogakker, et al., 2023).

For the Wright powder sample, the grain-size mean/median predicted by FORCINN (~222/195 nm) is smaller
than the measured values of ~386/306 nm (Figure 4i). This difference is likely due to the training data set only
extending to 400 nm; whilst the sample has many grains >400 nm. Additionally, this powder sample was reported
by Muxworthy and Dunlop (2002) to contain magnetostatically interacting grains with angular geometries, which
would both contribute to the differences seen in Figure 4i. Mismatches between the measured and predicted aspect
ratios for the Wright powder sample are also seen in Figure 4j. As the micromagnetic data set of simulated FORCs
expands to encompass larger grains with more diverse shapes, we expect this mismatch to greatly improve.

4.2. Implications for Rock, Environmental, and Paleo- Magnetism

The ability to accurately estimate the magnetic grain-size distributions like we have achieved using FORCINN
(Figure 4), has been a long-standing problem in the rock magnetism community. Previous methods have focused
on determining coercivity distributions (e.g., Kruiver et al., 2001; Maxbauer et al., 2016), unmixing to produce
end-members, which themselves contain complex distributions (e.g., Harrison et al., 2018; Heslop & Dil-
lon, 2007), or have been based purely on single-domain theory, which limits their usefulness (e.g., Dunlop, 1976;
Shcherbakov & Fabian, 2005). FORCINN is the first method capable of rapidly inverting measured magnetic data
for their grain-size distribution, particularly suitable for grains that are larger than single-domain. FORCINN

Figure 4. Probability density versus grain-size (a, c, e, g, 1) or aspect ratio (b, d, f, h, j) for the FORCINN predicted (orange) and the experimental ground truth data (blue).
The experimental data are for (a, b) Hekla, (c, d) Vesuvius, (e, f) MD2361-125, (g, h) MD2361-315, and (i, j) Wright powder sample W(0.3 pm). For the Hekla and
Vesuvius samples the distributions were determined via FIB-nT (Gergov et al., 2024), whereas for MD2361-125, MD2361-315, and W(0.3 pm), the grain-size
distributions are determined from 2D images (Chang, Hoogakker, et al., 2023; Muxworthy & Dunlop, 2002). P-values were calculated by Kolmogorov-Smirnov test
(Dodge, 2008). If p > 0.05 this indicates that the FORCINN predictions are statistically indistinguishable from the ground truth distributions. The prediction results of all
models are presented in Tables S4—S8 of Supporting Information S1. This figure shows the results of the model with the best overall predictive performance, characterized
by a large p-value and mean/median values close to the experimental data, specifically the ResNet model trained with 20% noise data set (a—h) and the CNN model trained
with zero-noise data set (i, j). The mean and median are marked in the figure.
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marks an advancement in rock magnetic analysis with applications in areas of rock, environmental, and paleo-
magnetism. While FORCINN cannot perfectly invert all experimental data, it has a demonstrably high accu-
racy in size inversion for samples containing non-interacting magnetite. This provides the first evidence that the
neural network model can effectively perform FORC inversion. As training data sets with broader size ranges and
more mineral types are developed, the inversion performance of FORCINN will gradually improve to accom-
modate more complex samples.

Clearly, the training data set needs to be extended to include larger grain-sizes plus different mineralogies for
which micromagnetic models have already been made, for example, greigite (Valdez-Grijalva et al., 2018).
Ideally, magnetostatic interactions should also be included, but this is more challenging for magnetic particles,
which display non-uniform magnetic behavior due to computational limits (Valdez-Grijalva et al., 2020). It is
thought that magnetostatic interactions are not significant in many natural samples; however, strongly interacting
particles, such as magnetofossils, are also prevalent in some rock or sediment samples (Muxworthy, 2013).
Incorporating magnetostatic interactions into training data sets and model prediction parameters is a key area for
improvement in FORCINN. Additionally, thermal activation should also be considered in generating the training
data set to better approximate real FORC measurements.

5. Conclusions

We have developed a neural network-based FORC inversion model (FORCINN) that accurately predicts the size
and aspect ratio distribution of non-interacting magnetite from their measured FORC distributions. The trained
FORCINN model achieves precise predictions on a testing FORC data set generated from micromagnetic sim-
ulations of individual magnetite grains (Figures 2 and 3). FORCINN also shows promise in inverting FORC data
for their grain-size and aspect ratio distributions of five experimental data sets, for which the grain morphology
information had been previously determined independently using electron microscopic methods (Figure 4).

FORCINN provides CNN and ResNet models trained at different noise levels for comparison. For the micro-
magnetically generated non-interacting magnetite testing set, CNN outperforms ResNet with higher goodness of
fit. For natural basalt and marine sediment samples, we recommend using the ResNet model trained on the 20%
noise data set, as it demonstrated the best performance.

The current training data set only includes FORC data from single magnetite with sizes ranging from 45 to 400 nm
and aspect ratios from 0.166667 to 6.0, and lacks grains that exhibit triaxial morphological differences. This limits
the inversion capability on FORC data of complex natural samples. In the future, it is important to expand the
current data set to include larger grain-sizes, a broader range of minerals, and potentially magnetostatic in-
teractions and thermal activation.

Data Availability Statement

The data and code related to this study have been uploaded to the Zenodo repository (Pei et al., 2024), which
includes the codes for building, training, and testing the FORCINN model, data set processing codes, trained
CNN and ResNet models, and the raw data for the testing and training sets.
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