Supporting Information for "FORCINN: First-order reversal curve inversion of magnetite using neural networks"

Zhaowen Pei^{1,2}, Wyn Williams¹, Lesleis Nagy³, Greig A. Paterson³, Roberto

Moreno^{1,4}, Adrian R. Muxworthy^{5,6}, and Liao Chang²

¹School of GeoSciences, The University of Edinburgh, Edinburgh, UK

²Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, P. R. China

 3 Department of Earth, Ocean and Ecological Sciences, The University of Liverpool, Liverpool, UK

 $^4\mathrm{CONICET},$ Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina

 $^5\mathrm{Department}$ of Earth Science and Engineering, Imperial College London, London, UK

 $^6\mathrm{Department}$ of Earth Sciences, University College London, London, UK

Contents of this file

- 1. Text S1
- 2. Figures S1 to S2
- 3. Tables S1 to S8

Introduction This supplementary information contains the model description (Text S1), structure diagrams (Figures S1 and S2), and detailed parameter tables (Tables S1-S3) of the convolutional neural network (CNN) and residual neural network (ResNet) models

November 19, 2024, 8:39am

used in this study, as well as prediction results of models trained with different noise levels on five experimental FORC data (Tables S4-S8).

Text S1: Hidden layers of CNN and ResNet

The hidden layers of the CNN model consist of five sets of 3×3 padded convolutional (two 64-channels, two 128-channels, and one 256-channel) and 2×2 max-pooling layers, a flattening layer, and a 256-dimensional fully connected layer, all with rectified linear unit (ReLU) activation functions (Figure S1, Table S1)(LeCun et al., 2015).

The hidden layers of the ResNet model consist of a convolutional block, five ResNet blocks (two 64-channels, two 128-channels, and one 256-channel), and a global average pooling layer (Figure S2, Table S2) (He et al., 2016). The convolutional block starts with a 3×3 padded convolutional layer (64-channel), followed by a batch normalization layer, a ReLU activation function, and a 2×2 max-pooling layer (Figure S2, Table S2). Each ResNet block contains two 3×3 padded convolutional layer, each followed by a batch normalization layer (Figure S2, Table S3). ReLU activation function is used for the first convolutional layer and the shortcut connection layer. Each ResNet block is followed by a 30% dropout layer.

November 19, 2024, 8:39am

Figure S1. Model structure of the CNN model.

Figure S2. Model structure of the ResNet model.

November 19, 2024, 8:39am

Layer type	Output shape	Param #
Input	(101, 101, 4)	-
Conv2D	(101, 101, 64)	2368
MaxPooling2D	(51, 51, 64)	0
Dropout	(51, 51, 64)	0
Conv2D	(51, 51, 64)	36928
MaxPooling2D	(26, 26, 64)	0
Dropout	(26, 26, 64)	0
Conv2D	(26, 26, 128)	73856
MaxPooling2D	(13, 13, 128)	0
Dropout	(13, 13, 128)	0
Conv2D	(13, 13, 128)	147584
MaxPooling2D	(7, 7, 128)	0
Dropout	(7, 7, 128)	0
Conv2D	(7, 7, 256)	36928
MaxPooling2D	(4, 4, 256)	0
Dropout	(4, 4, 256)	0
Flatten	(4096)	0
Dense	(256)	1048832
Dropout	(256)	0
Dense	(68)	17476

 Table S1.
 Model summary and parameters of the CNN.

Table S2.Model summary and parameters of the ResNet. The details of the ResNet blockcan be found at Table S3.

Output shape	Param #
	1 arain //
(101, 101, 4)	-
(51, 51, 64)	2368
(51, 51, 64)	256
(51, 51, 64)	0
(26, 26, 64)	0
(26, 26, 64)	78784
(26, 26, 64)	78784
(13, 13, 128)	231026
(13, 13, 128)	313216
(7, 7, 256)	921344
(7, 7, 256)	1249024
(256)	0
(68)	17476
	$\begin{array}{c} (101, 101, 4) \\ (51, 51, 64) \\ (51, 51, 64) \\ (26, 26, 64) \\ (26, 26, 64) \\ (26, 26, 64) \\ (26, 26, 64) \\ (13, 13, 128) \\ (13, 13, 128) \\ (7, 7, 256) \\ (7, 7, 256) \\ (256) \\ (68) \end{array}$

Table S3. Model summary and parameters of the ResNet block. X is the input size. C_1 is

the number of input channels. C_2 is the number of convolution kernels in this block.

Layer	Output shape	Param #	Connected to
Conv2D_1	(X, X, C_2)	$(9C_1+1)C_2$	Input
$BatchNormalization_1$	(X, X, C_2)	$4C_2$	Conv2D_1
ReLU_1	(X, X, C_2)	0	$BatchNormalization_1$
Conv2D_2	(X, X, C_2)	$(9C_2+1)C_2$	ReLU_1
Conv2D_3	(X, X, C_2)	$(C_1 + 1)C_2$	Input
$BatchNormalization_2$	(X, X, C_2)	$4C_2$	Conv2D_2
BatchNormalization_3	(X, X, C_2)	$4C_2$	Conv2D_3
Add	(X, X, C_2)	0	[BatchNormalization_2, BatchNormalization_3]
ReLU_2	(X, X, C_2)	0	Add
Dropout	(X, X, C_2)	0	ReLU_2

Table S4. Prediction results of trained CNN and ResNet models at different noise levels for Hekla sample. The mean/median size of sample is 87.60/70.73 nm, and the mean/median aspect ratio is 1.24/1.21.

Model N	Noiso	Predicted size (nm)		Predicted aspect ratio	
	NOISE	Mean/median	P-value	Mean/median	P-value
CNN	0	88.95/85	0.0011	1.45/1.45	0.0504
CNN	5%	88.22/85	0.0001	1.46/1.45	0.0048
CNN	10%	83.42/80	0.0011	1.46/1.45	0.1729
CNN	20%	92.75/90	0.0011	1.53/1.50	0.1729
ResNet	0	82.80/80	0.0000	1.53/1.50	0.0965
ResNet	5%	96.80/90	0.0153	1.81/1.80	0.0007
ResNet	10%	119.68/105	0.8745	1.57/1.50	0.0247
ResNet	20%	111.34/100	0.9794	1.53/1.50	0.0247

Table S5. Prediction results of trained CNN and ResNet models at different noise levels for Vesuvius sample. The mean/median size of sample is 174.35/135.90 nm, and the mean/median aspect ratio is 1.37/1.36.

Model	Noiso	Predicted size (nm)		Predicted aspect ratio	
Model 1	TIOISE	Mean/median	P-value	Mean/median	P-value
CNN	0	100.83/95	0.0000	2.19/2.25	0.4535
CNN	5%	85.85/85	0.0000	1.39/1.40	0.0019
CNN	10%	86.88/85	0.0000	1.38/1.35	0.0048
CNN	20%	93.17/90	0.0000	1.35/1.35	0.0001
ResNet	0	103.77/85	0.0000	1.71/1.70	0.1729
ResNet	5%	92.66/85	0.0000	2.15/2.00	0.0048
ResNet	10%	130.58/90	0.0011	1.45/1.45	0.0000
ResNet	20%	146.57/120	0.3235	1.42/1.40	0.0048

Table S6. Prediction results of trained CNN and ResNet models at different noise levels for MD2361-125 sample. The mean/median size of sample is 67.95/65.17 nm, and the mean/median aspect ratio is 1.46/1.14.

Model N	Noiso	Predicted size (nm)		Predicted aspect ratio	
	Noise	Mean/median	P-value	Mean/median	P-value
CNN	0	98.25/95	0.0153	1.37/1.35	0.6543
CNN	5%	94.56/95	0.0153	1.45/1.45	0.6543
CNN	10%	94.35/95	0.0153	1.02/1.00	0.6543
CNN	20%	96.97/95	0.0153	1.25/1.30	0.6543
ResNet	0	92.37/90	0.0153	1.31/1.30	0.2899
ResNet	5%	95.41/95	0.0153	1.71/1.60	0.0247
ResNet	10%	97.23/95	0.0153	1.66/1.60	0.0965
ResNet	20%	90.81/90	0.0153	1.47/1.45	0.6543

Table S7. Prediction results of trained CNN and ResNet models at different noise levels for MD2361-315 sample. The mean/median size of sample is 71.88/69.28 nm, and the mean/median aspect ratio is 1.42/1.21.

Model	Noice	Predicted size (nm)		Predicted aspect ratio	
Model No	noise	Mean/median	P-value	Mean/median	P-value
CNN	0	111.30/110	0.0153	1.15/1.10	0.6543
CNN	5%	101.42/100	0.0153	1.93/1.85	0.2899
CNN	10%	102.06/100	0.0153	1.66/1.60	0.0247
CNN	20%	106.12/105	0.0153	1.91/1.80	0.1729
ResNet	0	108.40/105	0.0153	1.37/1.30	0.6543
ResNet	5%	100.13/100	0.0153	1.90/1.80	0.2899
ResNet	10%	101.31/100	0.0153	1.92/1.85	0.4535
ResNet	20%	93.10/95	0.0153	1.80/1.75	0.4535

Table S8. Prediction results of trained CNN and ResNet models at different noise levels for powders sample. The mean/median size of all grains in sample is 385.92/305.76 nm, and the mean/median aspect ratio is 1.36/1.22 The mean/median of <400 nm grains in sample is 223.30/216.20 nm, and the mean/median aspect ratio is 1.28/1.13.

Model Noise		Predicted size (nm)		Predicted aspect ratio		
Model No.	Noise	Mean/median	P-value	Mean/median	P-value	
CNN	0	221.65/195	0.0000	2.65/2.50	0.0113	
CNN	5%	162.09/150	0.0000	2.24/2.25	0.0113	
CNN	10%	143.19/140	0.0000	2.44/2.25	0.0113	
CNN	20%	146.74/140	0.0000	2.72/2.50	0.0113	
ResNet	0	200.46/240	0.0000	2.21/2.25	0.0113	
ResNet	5%	163.67/150	0.0000	2.50/2.50	0.0113	
ResNet	10%	159.77/150	0.0000	2.59/2.50	0.0113	
ResNet	20%	159.77/155	0.0000	2.81/2.75	0.0113	

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.