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20 ABSTRACT

21 Knowledge of sex ratios of species with temperature-dependent sex determination (TSD) is key to 

22 provide baseline information which can be used to inform management strategies and predictions of 

23 how climate change can affect populations. In marine turtles, increased incubation temperatures can 

24 lead to extreme biases in sex ratios and reduced hatching success. Here we present a long-term 

25 analysis (34 years) of incubation durations of leatherback turtles (Dermochelys coriacea) in Brazil, 
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26 the only population of this species breeding in the Southwest Atlantic, and estimate offspring sex 

27 ratios. We deployed data loggers recording nest temperatures in 2015, 2016, 2017 and 2019 (n = 28 

28 clutches), to predict offspring sex ratios based on incubation temperatures during the thermosensitive 

29 period when sex is determined. The overall mean incubation duration for leatherback turtle clutches 

30 in Brazil (1988-2021) was 66.3 days (range 52-91, SD = 6.4, n = 867), decreasing by 4.4 days between 

31 the first and last 10 years of monitoring and varying latitudinally across the nesting range of the 

32 population. When modelled to the overall nesting season and accounting for nesting seasonality, we 

33 estimated the current (2012-2021) mean season-wide primary sex ratio to be 66.5% female (range 

34 55.4% to 90.2%). Hindcasting for the first ten years of monitoring (1988-1997) showed the average 

35 predicted offspring sex ratios would have been 58.4% female (range 41.3-79.9). This population has 

36 not shown a phenological shift in the timing of nesting over the period 1988-2021. These findings 

37 suggest that, although the primary sex ratio of this population has likely become more female-biased 

38 in recent decades, the spatial and temporal variation observed demonstrates resilience to the effects 

39 of increasing temperatures under climate change. 

40

41 Keywords: incubation duration, sex ratios, thermal ecology, reptile, Dermochelys coriacea

42

43 INTRODUCTION

44 Knowledge of primary sex ratios is key to assessing population viability and resilience (Melbourne 

45 and Hastings 2008, Mitchell et al. 2010). In species with temperature-dependent sex determination 

46 (TSD), offspring sex is determined by the incubation temperature during the thermosensitive period 

47 (TSP; Bull 1983, Binckley et al. 1998). Temperature is known to be the main environmental driver 

48 of sexual differentiation in many reptiles (Wyneken and Lolavar 2015), including alligators (Yatsu et 

49 al. 2015), most turtles (Pieau et al. 1994) and some lizards (Charnier 1966). In marine turtles, all 

50 species exhibit temperature-dependent sex determination with females produced at warmer 
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51 temperatures (Wibbels 2003), usually above 29ºC, within a thermal range of 23 - 35 ºC (Ackerman 

52 1997, Godley et al. 2001, Howard et al. 2014). The adaptive significance of TSD is not fully 

53 understood, and theoretical models suggest that such environmental sex determination would be 

54 favoured by selection over genotypic sex determination (chromosome-based) when the environment 

55 during development distinctly influences fitness of females and males (Charnov-Bull model; Warner 

56 & Shine 2008). A more recent study suggests that TSD could be selected over genotypic sex 

57 determination simply if there are demographic differences in age at maturity (Schwanz et al. 2016).

58

59 Primary sex ratio in marine turtles is determined by the incubation temperature, and thus the factors 

60 that influence this parameter play a central role in the dynamics of marine turtle populations (Hays et 

61 al. 1999). Extreme temperatures could result in the production of hatchlings of a single sex, making 

62 marine turtles particularly vulnerable to the impacts of projected global warming (Poloczanska et al. 

63 2009, Fuentes et al. 2010, Mitchell and Janzen 2010, Fuentes et al. 2011). Most studies at marine 

64 turtle rookeries have estimated female-biased hatchling sex ratios, which are expected to be 

65 exacerbated under current predictions of climate change (Hawkes et al. 2007, Patino-Martinez et al. 

66 2012, Fuentes and Porter 2013, Hays et al. 2014, Marcovaldi et al. 2016). Few studies have reported 

67 male-biased or balanced primary sex ratios (Steckenreuter et al. 2010, Esteban et al. 2016, Patrício et 

68 al. 2017, Laloë et al. 2020), and highlight the importance of these rookeries for the future conservation 

69 of marine turtles. It is yet uncertain how well marine turtles will be able to adapt to the pace of future 

70 climate change. Highly female-skewed sex ratios being produced across several generations could 

71 lead to adaptive responses which would allow population persistence, or lead to population extinction 

72 (Mitchell and Janzen 2010). Many marine turtle populations have been reported to have increasing 

73 or stable population trends (Mazaris et al. 2017), many recovering from past overexploitation 

74 (McClenachan et al. 2006). However, impacts of climate change may act in combination with other 
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75 threats, such as fisheries bycatch, pollution and coastal development (Soykan et al. 2008, Wallace et 

76 al. 2010b, Duncan et al. 2017), hampering population growth (Saba et al. 2012).

77

78 To understand the potential impacts from climate change and increased temperatures on species with 

79 TSD, more research is required to describe and predict the primary sex ratios of marine turtle 

80 populations (e.g. Hamann et al. 2013). Whilst there are a growing number of studies involving TSD 

81 and marine turtles (reviewed by Patrício et al. 2021), there are still several basic and applied research 

82 questions concerning TSD which remain unanswered for leatherback turtles (Dermochelys coriacea). 

83 Few studies of this species have considered long-term data to reconstruct past sex ratios, with most 

84 research using data that spans no more than one or two seasons (but see Sieg et al. 2011, Santidrían 

85 Tomillo et al. 2015). Studies describing the TSD curve and presenting pivotal temperatures and the 

86 range of intermediate temperatures producing both sexes, called the transitional range of temperatures 

87 (TRTs), are described from only three leatherback turtle rookeries: French Guiana in the Atlantic 

88 Ocean (Rimblot-Baly et al. 1987), Costa Rica in Eastern Pacific (Binckley et al. 1998) and Malaysia 

89 in the Western Pacific (Chen and Liew 1995). Recent studies have highlighted that research into 

90 thermal conditions in nests from additional rookeries is needed to understand TSD in leatherback 

91 turtles (Binckley & Spotila 2015). 

92

93 Marine turtles have a wide geographical distribution, however the pivotal temperature (where a 1:1 

94 sex ratio is produced) is believed to be relatively conserved among species and geographic locations, 

95 ranging from 28°C to 30°C (Mrosovsky 1994, Wibbels et al. 1998, Godley et al. 2002). For 

96 leatherback turtles, studies have shown a conservative range of pivotal temperatures (within 29.4-

97 29.8 °C) in the Atlantic Ocean, Eastern Pacific and Western Pacific. Chevalier et al. (1999) suggested 

98 that the pivotal temperatures in the Atlantic and East Pacific rookeries were not significantly different, 
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99 but the TRT was significantly narrower for the French Guiana population, with other research 

100 showing that TRT becomes wider in cooler areas (Bentley et al. 2020).

101

102 In Brazil, leatherback turtles nest mainly along the northern coast of Espírito Santo state, in eastern 

103 Brazil (Thomé et al. 2007, Colman et al. 2019). Nesting also occurs, in smaller numbers, on the 

104 northeast coast, in Piauí (Magalhães et al. 2021) and sporadic nesting occurs along a large range of 

105 the Brazilian coastline (Soto et al. 1997, Barata and Fabiano 2002, Loebmann et al. 2008, Bezerra et 

106 al. 2014, Gandu et al. 2014). The rookery in Espírito Santo is an unique Regional Management Unit 

107 (Wallace et al. 2023), genetically distinct from other rookeries in the Atlantic (Dutton et al. 2013, 

108 Vargas et al. 2017) and is currently classified as Critically Endangered by the IUCN (Wallace et al. 

109 2013). In Brazil, the species is included on the federal government’s official list of endangered fauna 

110 (Machado et al. 2008). Despite its small population size - on average < 100 clutches laid per year 

111 (Colman et al. 2019) – this rookery is key, since it is located on the southernmost end of the species 

112 range in the Western Atlantic Ocean. Studies have investigated the sand temperatures and the primary 

113 sex ratios of loggerhead turtles (Caretta caretta) being produced in Espírito Santo and highlight the 

114 importance of these male-producing beaches for the species (Baptistotte et al. 1999, Marcovaldi et al. 

115 2016). Considering the predicted scenarios of climate change, this region may also become 

116 increasingly important for leatherback turtles, as other areas may become extremely female-biased or 

117 too hot to sustain hatchling production (Hays et al. 2017). 

118

119 To date, no studies have investigated the offspring sex ratios produced by the southwest Atlantic 

120 leatherback turtle population. Gonadal histology is currently the only reliable method to determine 

121 hatchling sex (but see Bozak et al. (2020) for recent developments), however it raises ethical concerns 

122 for studies of very small population units. Incubation duration has often been used as an alternative 

123 to infer hatchling sex ratios, as the metric is highly correlated with incubation temperature 
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124 (Marcovaldi et al. 1997, Marcovaldi et al. 2016, Fuentes et al. 2017). A study by Thomé et al. (2007) 

125 presented the incubation duration parameters for this population between 1988 and 2003 but did not 

126 estimate hatchling sex ratios. Here we build on this dataset, provide further ecological information 

127 regarding this parameter, and explore whether it has changed over time. We used indirect estimation 

128 methods based on the temperature-sex ratio relationship determined in the laboratory for leatherback 

129 turtles (Binckley et al. 1998). Finally, we discuss the resilience of this rookery to predicted rising 

130 temperatures and the conservation implications for the population.  

131

132 METHODS

133 Study site and nest monitoring

134 The state of Espírito Santo is located on the coast of Brazil between latitudes -19.6667 and -18.4167 

135 (Figure 1a). The leatherback turtle nesting areas comprise 160 km of dynamic, high-energy beaches, 

136 with coarse sand influenced by discharge from the Doce River in its southern extent (Figure 1b). 

137 There is no natural shading along the beach and virtually no human occupation or anthropogenic 

138 structures. Most nests (~ 80%) are laid on the southernmost 80 km between September and March, 

139 with the main nesting activity concentrated between October and January and hatching occurring 

140 from November to March (Colman et al. 2019). As nesting seasons span two calendar years, we refer 

141 to a season as occurring in the first of those two years, e.g. the season 2005-2006 is called the 2005 

142 season. Leatherback turtle nesting activity on northern Espírito Santo has been monitored since 1982, 

143 systematically since 1988 (Marcovaldi and Marcovaldi 1999, Thomé et al. 2007). Early-morning 

144 patrols of the 160 km area using quadbikes are conducted daily from 1st September to 31st March. 

145 Nest locations are recorded and marked with a numbered wooden stake, monitored during the entire 

146 incubation period, and excavated after most hatchlings have emerged. Incubation duration (ID) was 

147 calculated as the number of days between oviposition and the emergence of the first hatchlings 

148 (Thomé et al. 2007). The climate in the area is predominantly tropical with hot and rainy summers 
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149 and the dune vegetation mainly includes low-lying grasses and bayhops Ipomea pes-caprae 

150 (Baptistotte et al. 2003). 

151

152 Field data

153 During the 2015, 2016, 2017 and 2019 nesting seasons, a sample of 28 clutches were individually 

154 monitored to gather baseline data on incubation temperature, duration and hatching success. In each 

155 monitored clutch, hourly nest temperatures were recorded with a temperature datalogger (Tinytag, 

156 TGP 401, TGP 4005, Gemini Dataloggers Ltd, Chichester, UK; ± 0.2°C accuracy, 0.1°C resolution). 

157 Data loggers were deployed in the centre of the clutch during oviposition, at beaches on the 

158 southernmost 60 km of the study area (Comboios and Povoação beaches, Figure 1b) and retrieved 

159 post-hatching upon nest excavation. The initial four hours of temperature records were not included, 

160 to enable data loggers to equilibrate with the surrounding sand (Broderick et al. 2001). All data 

161 loggers were compared to a calibrated datalogger in a constant temperature room. For each nest we 

162 also recorded clutch size (by counting eggshells and unhatched eggs, with shelled albumin gobs 

163 (SAGs) frequently found in leatherback turtle nests, counted separately from yolked eggs and not 

164 considered in clutch size) and estimated hatching success (percentage of yolked eggs that produced 

165 live hatchlings, including live hatchlings encountered in the nest during excavation; Thomé et al. 

166 2007).

167

168 Incubation duration analysis

169 Only in situ nests laid between 1988 to 2021, where both oviposition and hatching dates were 

170 recorded, were used in this analysis. During that period, 22.3% of nests were translocated, however 

171 those translocated nests were not included in the incubation duration analysis as translocation can 

172 impact this metric (Pintus et al. 2009). The variation of incubation duration over the years was 

173 analysed with a generalized additive model (GAM), using the R-package mgcv (Wood 2017). To test 
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174 for the difference among years, a Kruskall-Wallis test for non-parametric data was used (Hollander 

175 & Wolfe 1999). To analyse the relationship of incubation duration with geographical location of nests 

176 and the day in the season, we used loess regressions (Cleveland et al. 1993). Generalized Linear 

177 Models (GLMs) with Gaussian error structure and identity link function were used to test for the 

178 effect of clutch size (independent variable) on (1) mean TSP temperature and (2) hatching success 

179 (response variables). Estimates are presented as mean ± SD unless stated otherwise. 

180

181 Reconstructing current nest temperatures 

182 Daily nest temperatures were reconstructed for Espírito Santo between January 1979 and June 2021 

183 using a correlative approach with sea surface temperature and air temperature (Girondot and Kaska 

184 2015, Monsinjon et al. 2017b, Laloë et al. 2020). Sea surface and air temperatures were extracted 

185 from the European Centre for Medium-Range Weather Forecasts (ECMWF) climate reanalysis v5 

186 (ERA5; Hersbach et al. 2020) for the Southwest Atlantic region. A linear mixed-effect model was 

187 fitted to the nest temperature data using the R package nlme (Pinheiro et al. 2022), with an ARMA 

188 correlation structure and nest identity as random effect. To estimate metabolic heating (i.e., the 

189 difference in nest temperature compared to the surrounding sand), we used the proportion of 

190 incubation time as an additional predictor. This produces a proxy for metabolic heating specific to 

191 this nesting site (Monsinjon et al. (2017a) for details). The best model was selected based on the 

192 lowest AICc (Burnham and Anderson 2002) from models using a daily lag with air or sea temperature 

193 varying from 0 (i.e., synchronous relationship with nest temperature) to 5 days (i.e., lagged 

194 relationship with nest temperature at day+5). We used the standard deviation of the coefficients of 

195 the random effect as a proxy of nest thermal heterogeneity at the nesting beach scale (Monsinjon et 

196 al. 2019). The coefficients of each predictor (sea surface temperature, air temperature and proportion 

197 of incubation time) were estimated for the selected model within a standard generalized linear model 

198 framework and with Gaussian link function. Daily thermal fluctuations were reconstructed by 
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199 computing daily maximum and minimum temperatures as the average daily temperature +/- average 

200 daily amplitude (as defined by daily maxima – daily minima). Those values were set at the average 

201 time of day when they occurred. Metabolic heating, which is the difference between nest temperature 

202 and the surrounding sand, attributed to the heat produced by the incubation of marine turtle clutches 

203 (Broderick et al. 2001) was accounted for, and daily thermal fluctuations were estimated.

204

205 Modelling embryonic development 

206 Embryo development and the dates of each embryonic stage (Miller 1985) across the nest temperature 

207 time series were estimated using the thermal reaction norm of embryonic growth rate and a growth 

208 function of incubation time (Supplemental Figure S1; Girondot and Kaska 2014, Fuentes et al. 2017, 

209 Monsinjon et al. 2017b, Girondot et al. 2018). Those were implemented with the R package 

210 embryogrowth (Girondot, 2022). We used hatchling measurements from the literature (mean SCL = 

211 59.2  2.4 mm; Banerjee et al. 2020), assumed a Gompertz model for embryo growth and estimated 

212 model parameters using maximum likelihood (Girondot and Kaska 2014). To compute confidence 

213 intervals, we identified the posterior distributions using Bayesian MCMC with the Metropolis-

214 Hasting algorithm (Chib and Greenberg 1995) on 10,000 iterations, assuming a uniform distribution 

215 for priors. To ensure an optimal acceptance rate across iterations, we applied the adaptive proposal 

216 distribution procedure described in Rosenthal (2011) and implemented in the R package HelpersMG 

217 (Girondot 2022). Once calibrated, we ran the embryonic growth model along reconstructed nest 

218 temperatures to estimate, for any given day a clutch would be laid, the duration of incubation (i.e., 

219 when embryo size reaches hatchling size) and the point of the thermosensitive period of development 

220 for sex determination (Girondot et al. 2018).

221

222 Estimating primary sex ratios in study years
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223 We estimated the sex ratio thermal reaction norm (i.e., the temperature response curve for offspring 

224 sex ratios calculated using constant temperature during incubation) using data from constant 

225 temperature experiments for leatherback turtles conducted in the Atlantic Ocean (Rimblot-Baly et al. 

226 1987) and Eastern Pacific (Binckley et al. 1998) (Supplemental Figure S2). We used logistic models 

227 fitted using maximum likelihood (Abreus-Grobois et al. 2020), implemented with the R package 

228 embryogrowth (Girondot 2022). The nest temperature profiles from in situ monitored nests were used 

229 to estimate sex ratios. We accounted for the nonlinear development within incubation (Fuentes et al. 

230 2017) by calculating a Constant Temperature Equivalent (CTE), which is the mean temperature 

231 weighted by the differential embryo growth during the TSP (Monsinjon et al. 2019). 

232

233 Predicting season-wide sex ratios 

234 To scale up incubation temperatures and predicted sex ratios at the scale of a clutch to the whole 

235 nesting season, we estimated the overall nesting dynamics based on series of nest counts. We 

236 standardised the nesting distribution (number of nests per day) between 0 and 1 to have a daily 

237 proportion of nesting. We calculated the mean predicted Sex Ratio (SR) as being the mean sex ratio 

238 during a nesting season, corrected by the mean hatching success and weighted by the proportion of 

239 nests laid (Eq. (1)). 

240

241 𝑆𝑅 =  ∑𝑁
𝑖=𝑘 𝑆𝑅𝑖 X 𝑃𝑟𝑜𝑝.𝑁𝑒𝑠𝑡𝑖 X 𝐻𝑆  (1)

242

243 SRi is the sex ratio (male proportion) for nests laid at the day i of the season with k being the first date 

244 of the season. Prop.Nesti is the proportion of nests laid at the day i of the season. HS is the mean 

245 hatching success for nests laid at Espírito Santo (67.1%). N is the last date of the season. 

246
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247 Air temperature data was extracted from the European Centre for Medium-Range Weather Forecasts 

248 (ECMWF) climate reanalysis v5 (ERA5; Hersbach et al. 2020) for the Southwest Atlantic region. We 

249 then determined the relationship between air temperature and the parameters: predicted proportion of 

250 female offspring, mean incubation duration, annual onset of nesting (5th percentile nesting) and year. 

251 We used the mean temperature in December since this month has the greatest proportion of incubating 

252 clutches.

253

254 RESULTS 

255 Incubation duration

256 The overall mean incubation duration for in situ clutches between 1988 and 2021 (34 years) was 66.3 

257 ± 6.4 days (range 52-91, n = 867 clutches, Figure 2, 3a). Mean annual incubation durations ranged 

258 from 61.5 days (in 1994, n = 4 and 2015, n = 49) to 78 days (in 1988, n = 1; Supplemental Table S1). 

259 Incubation duration was significantly different among years (Kruskal-Wallis test, n = 867, p < 0.001) 

260 with a significant decline across the 34 years (F = 11.96, p < 0.001, n = 867; Figure 3b). The annual 

261 mean incubation duration was 69.5 ± 7.4 days (range 56-76, n = 75) during the first ten years (1988-

262 1997), and 65.1 ± 5.7 days (range 53-91, n = 505) during the last ten years (2012-2021) of the study 

263 period. The incubation duration varied significantly with the day in the season, as no horizontal line 

264 (representing a constant mean incubation duration in the period) can be placed inside the 0.95 

265 simultaneous confidence band in Figure 3c. Considering the geographic location of nests, the 

266 incubation duration significantly increased with latitude (considered from south to north), as no 

267 horizontal line (representing a constant mean incubation duration in the area) can be placed inside the 

268 0.95 simultaneous confidence band in Figure 3d. 

269

270 Nest temperatures  
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271 For clutches with temperature data loggers (n = 28), the mean growth-weighted TSP temperature 

272 (CTE) varied between 28.4°C in 2019 and 30.3°C in 2015. (Table 1). The CTE varied slightly with 

273 the date during the nesting season, being relatively constant until mid-November, increasing until 

274 mid-December and then decreasing (Figure 4). Clutch size (72.0 ± 13.6 eggs, range = 36-94, n = 28; 

275 F1,26 = 0.9, p = 0.8) was found to be a poor predictor of CTE. 

276

277 Hatching success

278 Hatching success in nests with monitored temperature varied between 38.3 and 98.3%, with a mean 

279 of 74.9 ± 18.7% and we found no significant relationship with clutch size (F1,26 = 2.0, p = 0.2, n = 

280 28). Hatching success was higher when CTEs were between 30 and 30.5 °C (Supplemental Figure 

281 S3), although the relationship was not significant (F1,26 = 1.4, p = 0.3, n = 28).

282

283 Predicted sex ratios 

284 The mean seasonal predicted primary sex ratio (proportion of males) for nests with monitored 

285 temperature varied between 0.1 in 2015 and 0.9 in 2019 (Table 1). The season starts with nests that 

286 are likely to be 100% males, peaks when approximately 60% males are expected, and ends when 

287 nearly 100% females are expected (Figure 5). When accounting for nesting seasonality, we estimated 

288 the season-wide leatherback turtle mean sex ratio to currently be 66.5% female (during the period 

289 between 2012-2021, representing the current scenario (most recent ten years of monitoring), varying 

290 between 55.4% females in 2019 and 90.2% in 2015. When hindcasting to the period between 1988-

291 1997 (first ten years of monitoring), the overall predicted sex ratio would have been 58.4% female, 

292 varying between 41.3% females in 1992 and 79.9% in 1997. 

293

294 There has not, however, been phenological adaptation at this site. The annual median day of nesting 

295 showed no significant trend (Supplemental Figure S4; linear regression, F1,32 = 0.53, R2 = -0.02, P = 
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296 0.5), similarly to the onset of nesting (5th percentile ordinal day) (Supplemental Figure S4; linear 

297 regression, F1,32 = 0.72, R2 = -0.01, P = 0.4). There was also no significant trend of nesting season 

298 duration (days elapsed between first and last nest) throughout the study period (Supplemental Figure 

299 S4; linear regression, F1,32 = 3.52, R2 = 0.07, P = 0.07). 

300

301 December mean air temperature was significantly positively correlated with the proportion of female 

302 offspring produced (Supplemental Figure S5a; Pearson’s coefficient of correlation = 0.75, t = 6.36, df 

303 = 31, p < 0.001; ), significantly negatively correlated with the incubation duration (Supplemental 

304 Figure S5b; Pearson’s coefficient of correlation = -0.66, t = −4.94, df = 31, p < 0.001) and not 

305 significantly correlated with the annual onset of nesting (Supplemental Figure S5c; Pearson’s 

306 coefficient of correlation = -0.17, t = −0.97, df = 31, p = 0.34). The mean December air temperature 

307 showed an increasing trend throughout the period (Figure 6; linear regression, F1,31 = 4.60, R2 = 0.10, 

308 P = 0.04).

309

310 DISCUSSION

311 Small populations are of conservation concern; however, it can be challenging to research key life-

312 history parameters due to limited data volume and concerns regarding invasive research methods. 

313 Here we use long-term leatherback turtle nesting data to gain insights into predicted hatchling sex 

314 ratio production at the main nesting ground for the Critically Endangered Southwest Atlantic Ocean 

315 leatherback turtle subpopulation (Wallace et al. 2013). Our major findings offer clear insights that 

316 lead to recommendations on how to augment this work going forward to better understand the scope 

317 of population recovery, resilience and potential for adaptation in the face of climate change.

318

319 Leatherback turtle nesting populations worldwide are believed to vary greatly in the primary sex 

320 ratios produced. While the populations in the Pacific Ocean produce overall female-biased sex ratios 
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321 (83.2% females estimated in Costa Rica from 1998 to 2007, Sieg et al. 2011), a well-studied 

322 leatherback turtle nesting colony in the western Atlantic Ocean, Suriname, when researched two 

323 decades ago, was estimated to be producing modestly female-biased sex ratios (60.5 - 69.4% females, 

324 Godfrey et al. 1996, Mrosovsky et al. 1984). Our estimates of 66.5% female hatchling sex ratios are 

325 more similar to the ones reported in Suriname. Incubation studies suggest that most field temperatures 

326 produce either all females or males, given the narrow TRT of leatherback turtles (Binckley & Spotila 

327 2015). This could also be the case for leatherback turtles in Brazil, where most nests were estimated 

328 to have produced predominantly female or male hatchlings with few nests producing balanced sex 

329 ratios. 

330

331 The increase seen on leatherback turtle nesting numbers in Espírito Santo is encouraging (Colman et 

332 al. 2019). The decrease in mean incubation duration, together with a modestly female-biased 

333 hatchling sex ratio estimated over the decades may be influencing the recovery of this population. 

334 The female-biased sex ratios could contribute to population growth, since it would ultimately increase 

335 the number of nesting females (Hays et al. 2017, Patrício et al. 2017). A highly biased sex ratio could 

336 however decrease the effective population size (the adults that effectively contribute to the next 

337 generations).

338

339 Incubation duration varied both temporally and spatially, with the decrease in the mean annual 

340 incubation duration throughout the years being suggestive of potential future feminization of the 

341 population. The lack of a significant trend on the phenology of nesting suggests this population is not 

342 yet adjusting its time of breeding to recent increases in sea surface temperature (Neeman et al. 2015), 

343 or that population growth makes it more challenging to detect trends. The spatial variability in 

344 incubation duration indicates the potential for leatherback turtles to use nest-site selection to produce 
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345 a broader range of offspring sex ratios and consequently be more resilient to climate change (Fuentes 

346 et al. 2013, Abella Perez et al. 2016). 

347

348 The decrease in incubation durations seen towards the northern part of the nesting beach could be 

349 caused by variation in  sediment characteristics, such as colour and grain size (Hays et al. 1999, Fadini 

350 et al. 2011). The fact that our monitored nests were all in the southernmost part of the nesting beach 

351 could add a modest bias, considering that the northern part probably produces less males most likely 

352 due to differences in sand properties such as grain size. That could have influenced our temperature 

353 logger estimates of female production. It is also important to consider that other factors such as nest 

354 moisture can also influence sexual determination (Wyneken & Lolavar 2015) likely due to 

355 evaporative cooling, not a direct effect of moisture on gene expression.

356

357 In the present study, we used models considering the stages of embryonic development in response 

358 to temperature to estimate the mean growth-weighted incubation temperatures during the TSP 

359 (Girondot & Kaska 2014, Fuentes et al. 2017, Girondot et al. 2018). The lack of locally derived 

360 empirical data from constant temperature incubation experiments studying the effects of temperature 

361 on sex ratios and hatching success currently limit the reliability of future predictions for this region. 

362 It also hampers our ability to estimate how much of phenological change would be needed in order 

363 to keep current sex ratios considering predicted scenarios of climate change (Fuentes et al. 2023). 

364 Further research with more representative sample sizes and spanning more seasons, together with 

365 information on other important Atlantic rookeries such as Gabon, in Central Africa (Witt et al. 2009), 

366 would help us to better understand patterns of primary sex ratios for leatherback turtles across the 

367 Atlantic. Furthermore, novel methods to estimate the sex of hatchlings based on blood samples (Tezak 

368 et al. 2020) are promising and should contribute to more reliable long-term sex ratio predictions. 

369
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370 Better knowledge of beach temperatures and records of incubation duration contribute to an increase 

371 in our understanding of natural sex ratios for marine turtle populations and have implications for 

372 conservation practices (Mrosovsky and Yntema 1980), such as the potential effects of nest relocation. 

373 This practice could interfere with the incubation process and embryonic development, altering the 

374 sex ratios produced (Sieg et al. 2011). For a Critically Endangered subpopulation as the one in the 

375 present study, such conservation practices, when used cautiously, are still valuable as they reduce the 

376 loss of egg clutches and potentially contribute to population recovery. Future studies should assess 

377 the primary sex ratios of relocated nests to better understand the impacts of this management strategy 

378 over the nesting population (e.g Sieg et al. 2011). Irrespective, our results present baseline data on 

379 nest temperatures and estimated sex ratios for the region and are important to guide future 

380 management decisions for the southwestern Atlantic leatherback turtle population. 

381
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666 Figures and tables

667

668 Figure 1. (a) Map of Brazil: the leatherback turtle nesting areas in Espírito Santo state are depicted 

669 by the black frame. (b) Map of the coast of Espírito Santo state, Brazil. Black circles represent the 

670 TAMAR stations where the data were collected. From south to north: CB = Comboios, PV = 

671 Povoação, PG = Pontal do Ipiranga, GU = Guriri. Rio Doce = Doce River.
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676

677 Figure 2. Incubation duration (days) of in situ leatherback turtle nests from Espírito Santo, Brazil 

678 (1988- 2021). The black vertical lines represent median values (50th percentile). The grey boxes 

679 contain the 25th to 75th percentiles of dataset. The black whiskers mark the 5th and 95th percentiles, 

680 and values beyond these upper and lower bounds are considered as outliers, represented by black 

681 open circles. The mean annual predicted proportion of females is shown by blue filled circles.
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691

692 Figure 3. Incubation duration (days) of in situ leatherback turtle nests from Espírito Santo, Brazil 

693 (1988- 2021). (a) Proportion of nests and incubation duration (n = 867). (b) Incubation duration by 

694 year, 1988-2021 (n = 867). The blue curve is a GAM regression, and the grey area delimits a 0.95 

695 simultaneous confidence band. In the graph, to increase clarity, the data points were jittered on the 

696 y-scale. (c) Incubation duration by day in the season (July 1 = day 1). (d) Incubation duration by 

697 geographical location. In c-d) The blue line curve is a loess regression, grey shaded show 

698 approximate pointwise 95% confidence intervals. These are truncated so as only to include 

699 categories with sufficient data points c) n = 866; d) n = 836.
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703

704 Figure 4. Mean growth-weighted TSP temperature for leatherback turtle nests from Espírito Santo, 

705 Brazil, with monitored temperature by day of the year (n = 28). The solid line curve is a loess 

706 regression and outer curves (dashed lines) show approximate pointwise 95% confidence intervals. 

707 The loess regression curve was calculated with the 2015 data points only (n = 19). 
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719

720 Figure 5: Current sex ratios estimates (quantiles at 50%, black line) throughout the year with lower 

721 and upper quantiles (at 2.5% and 97.5% respectively, shaded in grey) for the leatherback turtle 

722 population nesting in Espírito Santo, Brazil. Quantiles were calculated based on 1979–2020 time 

723 series. Standardized nesting activity (proportion of nests laid throughout the season based on the 

724 description of nesting activity) is indicated by the blue line.
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734

735 Figure 6. Annual December mean air temperature at a leatherback nesting site, in Espírito Santo, 

736 Brazil (1988-2020). Green line: linear regression. Grey shaded areas: 95% CI.
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750 Table 1. Summary incubation temperatures and estimated primary sex ratios of leatherback turtle 

751 nests with monitored temperature per year in Espírito Santo, Brazil, between 2015 and 2019. TSP 

752 = thermosensitive period.

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

Year Mean Range ± SD Mean Range ± SD n

2015 30.3 29.5-31.7 ± 0.6 0.1 0.0-0.6 ± 0.2 19

2016 29.6 28.5-31.1 ± 1.2 0.6 0.0-1.0 ± 0.5 5

2017 28.8 28.1-29.5 ± 0.7 0.8 0.6-1.0 ± 0.2 2

2019 28.4 27.4-29.3 ± 1.0 0.9 0.8-1.0 ± 0.1 2

Overall 29.9 27.4-31.7 ± 1.0 0.3 0.0-1.0 ± 0.4 28

TSP Temperature Sex ratio (male
proportion )
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769 Supplemental Material

770

771 Supplemental Figure S1: Growth rate thermal reaction norm (GRTRN). Fitted growth rate r(T) of 

772 straight carapace length (SCL) of leatherback turtles depending on incubation temperature T. The 

773 area with the dashed lines shows the 95% confidence interval. The histogram shows the density of 

774 temperatures within 28 monitored nests in Espírito Santo, Brazil.
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787

788 Supplemental Figure S2: Relationship between constant incubation temperature and sex ratio 

789 modelled as a logistic equation for leatherback turtles using data from: Atlantic Ocean (Rimblot-

790 Baly et al. 1987) and Eastern Pacific (Binckley et al. 1998). The solid line represents the mean 

791 expected sex ratio and dashed lines display the 95% confidence interval. Black filled circles are the 

792 observed sex ratios from constant temperature experiments and error bars indicate their 95% 

793 confidence intervals. The darker grey area between the vertical dotted lines indicates the transitional 

794 range of temperatures (TRT) defined as the temperatures that produce sex ratio between 5% and 95% 

795 males. The vertical dash-dot-dashed line within the TRT indicates the pivotal temperature (P). The 

796 lighter grey areas indicate the 95% credibility region of TRT limits and P obtained from the 

797 maximum likelihood method. 
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799

800 Supplemental Figure S3: Relationship of hatching success of leatherback turtle nests with mean 

801 TSP incubation temperature for monitored nests in Espírito Santo (n = 28). Curves show fitted 

802 polynomial regression and dashed lines represent 95% confidence interval (CI). Significance of 

803 fit: p = 0.48.

804

805

806

807

808

809

810

811

812

813

814

815

816

27 28 29 30 31

0

20

40

60

80

100

Mean TSP temperature  C

H
at

ch
in

g
su

cc
es

s
(%

)
2015

2016

2017

2019

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4984157

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



37

817

818 Supplemental Figure S4: Phenology of leatherback turtles in Espírito Santo, Brazil, 1988-2021. 

819 (a) 5th percentile day of annual nesting onset , (b) Population annual median day of nesting (c) 

820 nesting season duration in days.
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828

829 Supplemental Figure S5:  Responses of leatherback turtles to mean December air temperature at 

830 the nesting site and demography. (a) predicted proportion of females, (b) mean annual incubation 

831 duration and (c) onset of nesting (5th percentile of nesting) per year. Coloured lines: fit of respective 

832 models. Grey shaded areas: 95% CI.

833

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4984157

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



39

834 Supplemental Table S1. Incubation duration of leatherback turtle nests per year (1988- 2021, n = 
835 867). 

Season Incubation Duration 
(days) n

predicted 
sex ratios 

(% 
female)

1988-1989 78.0 ± NA 1 61.7
1989-1990 72.0 ± 9.7 (58-85) 7 48.3
1990-1991 64.0 ± NA 1 46.9
1991-1992 67.6 ± 4.6 (56-76) 19 56.2
1992-1993 74.4 ± 7.8 (61-89) 14 41.3
1993-1994 77.5 ± 9.2 (71-84) 2 58.1
1994-1995 61.5 ± 4.8 (57-68) 4 76.8
1995-1996 67.5 ± 4.5 (61-76) 11 55.9
1996-1997 70.0 ± 5.9 (62-79) 9 59.0
1997-1998 67.0 ± 10.6 (60-90) 7 79.9
1998-1999 71.3 ± 9.9 (58-86) 9 69.1
1999-2000 68.9 ± 8.2 (58-90) 19 56.5
2000-2001 66.1 ± 7.4 (56-82) 11 64.9
2001-2002 69.2 ± 6.8 (61-82) 9 41.5
2002-2003 64.2 ± 6.0 (52-89) 43 70.9
2003-2004 68.0 ± 3.7 (63-76) 21 56.2
2004-2005 69.4 ± 7.1 (55-82) 13 67.3
2005-2006 67.4 ± 7.9 (59-81) 8 62.2
2006-2007 68.8 ± 7.2 (58-87) 45 55.1
2007-2008 65.0 ± 2.7 (60-73) 34 49.5
2008-2009 69.0 ± 6.9 (59-82) 20 61.8
2009-2010 62.5 ± 3.9 (58-71) 11 89.1
2010-2011 64.6 ± 2.1 (61-66) 5 64.3
2011-2012 70.3 ± 7.4 (58-87) 39 36.7
2012-2013 63.5 ± 5.4 (55-79) 118 68.9
2013-2014 69.9 ± 7.3 (55-91) 53 57.3
2014-2015 62.4 ± 5.1 (54-75) 32 63.7
2015-2016 61.5 ± 2.4 (57-69) 49 90.2
2016-2017 64.0 ± 5.5 (57-80) 28 76.2
2017-2018 65.7 ± 6.3 (53-77) 20 63.9
2018-2019 65.9 ± 5.2 (55-85) 65 62.8
2019-2020 66.6 ± 3.8 (59-75) 30 55.4
2020-2021 64.6 ± 4.1 (56-73) 64 57.9
2021-2022 68.8 ± 5.6 (58-81) 46 68.2

836
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