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29 Abstract

30 The blue mussel is one of the major aquaculture species worldwide. In France, this 

31 species faces a significant threat from infectious disease outbreaks in both mussel 

32 farms and the natural environment over the past decade. Diseases caused by various 

33 pathogens, particularly Vibrio spp., have posed a significant challenge to the mussel 

34 industry. Genetic improvement of disease resistance can be an effective approach to 

35 overcoming this issue. In this work, we tested genomic selection (GS) in the blue 

36 mussel (Mytilus edulis) to understand the genetic basis of resistance to one pathogenic 

37 strain of Vibrio splendidus (strain 14/053 2T1) and to predict the accuracy of selection 

38 using both pedigree and genomic information. Additionally, we performed a genome-

39 wide association study (GWAS) to identify putative QTLs underlying disease 

40 resistance. We conducted an experimental infection involving 2,160 mussels sampled 

41 from 24 half-sib families containing each two full-sib families which were injected with 

42 V. splendidus. Dead and survivors mussels were all sampled, and among them, 348 

43 dead and 348 surviving mussels were genotyped using a recently published multi-

44 species medium-density 60K SNP array. From potentially 23.5K SNPs for M. edulis 

45 present on the array, we identified 3,404 high-quality SNPs, out of which 2,204 SNPs 

46 were successfully mapped onto the recently published reference genome. Heritability 

47 for resistance to V. splendidus was moderate ranging from 0.22 to 0.31 for a pedigree-

48 based model and from 0.28 to 0.36 for a genomic-based model. GWAS revealed the 

49 polygenic architecture of the resistance trait in the blue mussel. The GS models studied 

50 showed overall better performance than the pedigree-based model in terms of 

51 accuracy of breeding values prediction. This work provides insights into the genetic 

52 basis of resistance to V. splendidus and exemplifies the potential of genomic selection 

53 in family-based breeding programs in M. edulis.
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56

57

58 1. Introduction

59 Aquaculture is a rapidly growing food production industry globally, supplying 

60 over 50% of aquatic protein sources and having a lower carbon footprint compared to 

61 terrestrial animals (Norman et al., 2019). Mussels are one of the major aquaculture 

62 species worldwide, with France being the second European producers, with around 

63 65,000 tons in 2021 (FAO, 2023). Two species as well as their hybrids are cultivated 

64 in France: the blue mussel Mytilus edulis, and the Mediterranean mussel Mytilus 

65 galloprovincialis. Production is distributed along the English Channel to the southwest 

66 coastline of France, and Mediterranean shores (FAO, 2023; Prou and Goulletquer, 

67 2002). This species has been widely cultured due to its strong environmental 

68 adaptability, high nutritious value, and consumer preference (Prou and Goulletquer, 

69 2002; Suplicy, 2020).  French mussel production entirely relies on wild spat collection, 

70 mainly in Pays de Loire and in Nouvelle-Aquitaine regions (Prou and Goulletquer, 

71 2002). Consequently, the French cultivated mussels are not genetically selected 

72 through selective breeding programs.

73 Recurrent mass mortality outbreaks of bivalves reduce production, cause 

74 economic losses, and negatively impact the ecosystem of natural bivalve populations 

75 as well as terrestrial food web (Bódis et al., 2014; Soon and Ransangan, 2019). Mass 

76 mortality of various cultured mussels have been reported worldwide such as in blue 

77 mussels (Capelle et al., 2021; Lupo et al., 2021), Mediterranean mussels (Avdelas et 
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78 al., 2021; Lupo et al., 2021), green-lipped mussels (Ericson et al., 2023), and 

79 pheasantshell mussels (Putnam et al., 2023), and their occurrence seems to increase 

80 in the context of global warming. Since 2014, French mussel farms have been 

81 vulnerable to abnormal mussel mortality (AMM) with a mortality rate varying from 30 to 

82 100% depending on sites, years or seasons (Normand et al., 2022; Polsenaere et al., 

83 2017). Peak of mortality outbreaks generally occurs during spring (Charles et al., 

84 2020a; Degremont et al., 2019). Various studies are being conducted to identify the 

85 cause(s) of AMM outbreaks in France and to propose solutions for reducing mass 

86 mortalities in mussel farms and wild stocks. Until now, the etiology of AMM outbreaks 

87 remains unclear, but it could be linked to environmental pollutions, seawater 

88 characteristics, mussel characteristics, culture practices, and climate change (Lupo et 

89 al., 2021; Polsenaere et al., 2017). Pathogens could also be involved in mortality 

90 outbreaks, with the pathogenic bacteria Vibrio splendidus being found in large 

91 abundance in moribund mussels during AMM outbreaks (Bechemin et al., 2015; Ben 

92 Cheikh et al., 2016) . V. splendidus is a complex species comprising multiple strains, 

93 ranging from highly virulent to relatively innocuous (Ben Cheikh et al., 2016). Some 

94 virulent strains have been shown to be highly pathogenic to blue mussels, causing high 

95 mortality rates up to 90% within a week in experimental challenges (Ben Cheikh et al., 

96 2017; Ben Cheikh et al., 2016; Oden et al., 2016). The virulence of these strains can 

97 vary based on factors such as mussel physiology, environmental conditions, and 

98 seasonal changes (Charles et al., 2020b). While V. splendidus is not the direct cause 

99 of AMM, its consistent association with mortality outbreaks suggests it may play a 

100 contributory role under specific conditions. Recent studies on bivalve immune 

101 responses often lack a validated understanding of immune effectors or pathways, 
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102 reflecting their reliance on innate rather than adaptive immunity, limiting the efficacy of 

103 vaccination strategies (Allam and Raftos, 2015; Rey-Campos et al., 2019). 

104 Selective breeding could be a useful approach to enhance the innate immune 

105 responses in bivalves (Dégremont et al., 2015; Hollenbeck and Johnston, 2018). 

106 Understanding genetic basis of disease resistance is critical for its improvement 

107 through selective breeding. The potential for genetic improvement through mass 

108 selection is well documented in many bivalve species during the past decades, 

109 particularly due to their short generation intervals and their high reproductive capacity 

110 allowing the possibility of applying high selection pressures (Gjedrem and Rye, 2018; 

111 Tan et al., 2020). Mass selection has been carried for growth traits in Chilean blue 

112 mussel Mytilus chilensis (Toro et al., 2004a; Toro et al., 2004b), and ploidy status for 

113 Mediterranean mussel M. galloprovincialis (Ajithkumar et al., 2024a). Lately, a mass 

114 selection scheme implemented for resistance to AMM outbreaks in the blue mussel M. 

115 edulis resulted in a 34–48% increase in survival after one generation of selection 

116 (Degremont et al., 2019). Although mass selection is effective, it may quickly lead to 

117 inbreeding if genetic diversity is not properly monitored (Hu et al., 2022). However, as 

118 an alternative strategy to individual selection, family based selective breeding 

119 programs have been initiated to estimate breeding values by combining phenotypic 

120 information and pedigree. These programs have targeted various traits across different 

121 mussel species, such as growth in M. edulis (Mallet et al., 1986), M. galloprovincialis 

122 (Díaz-Puente et al., 2020; Nguyen et al., 2014; Pino-Querido et al., 2015), M. chilensis 

123 (Alcapán et al., 2007; Guiñez et al., 2017), Hyriopsis cumingii (Bai et al., 2017; Jin et 

124 al., 2012), Perna calaniculus (Camara and Symonds, 2014); shell nacre color in H. 

125 cumingii (Bai et al., 2017); toxin accumulation and mantle color in M. galloprovincialis 

126 (Pino-Querido et al., 2015); and survival in M. edulis (Mallet et al., 1986).
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127 Accurate estimations of breeding values are essential for developing a breeding 

128 program and predicting the responses of traits of interest to selection. Recent 

129 developments of high throughput genotyping technology now enable the 

130 implementation of genomic selection (GS) (Boudry et al., 2021). GS is particularly 

131 suitable for traits that are expensive or difficult to measure (e.g. resistance to diseases, 

132 meat quantity) because less phenotypic data is needed to obtain similar accuracies 

133 from estimated breeding values (EBV) resulting from pedigree-based selection (Regan 

134 et al., 2021; Yáñez et al., 2023). GS can improve the genetic gain by capturing both 

135 within and between family genetic variation components (Boudry et al., 2021). Next-

136 generation sequencing (NGS) and genotyping-by-sequencing (GBS) tools have been 

137 developed for oyster, clam, abalone and scallop (Jiao et al., 2014; McCarty et al., 2022; 

138 Nie et al., 2017; Ren et al., 2016; Wang et al., 2016; Yang et al., 2022). However, they 

139 do not provide the same set of markers from one population to another (e.g. between 

140 training population and breeding population) and are dependent on DNA quality, which 

141 limits their potential to develop repeatable genomic analyses. Alternatively, SNP arrays 

142 have been developed in some commercially important bivalve species such as the 

143 silver-lipped pearl oyster Pinctada maxima, with an Illumina ~3k iSelect custom array 

144 (Jones et al., 2013a), the Pacific oyster (Crassostrea gigas), with a 190K SNP array 

145 (Qi et al., 2017), the medium density bi-species (Pacific oyster C. gigas and European 

146 flat oyster Ostrea edulis) 57K SNP array (Gutierrez et al., 2017), the Eastern Oyster 

147 (C. virginica), with a high density 566K and 66K SNP array (Guo et al., 2023), or 

148 medium density multi-species (M. edulis, M. galloprovincialis, M.  trossulus, and 

149 M. chilensis) 60K SNP array (Nascimento-Schulze et al., 2023). SNP arrays have been 

150 used for various applications in aquaculture species, including identification of genetic 

151 architecture of traits, genomic selection (GS), characterization of genetic resources, 
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152 pedigree monitoring, sex-determination and inbreeding management, but have rarely 

153 been used in bivalves (Gutierrez et al., 2020; Jourdan et al., 2023). 

154 In aquaculture, the salmon industry has been leading the way in GS for several 

155 years (Ajasa et al., 2024; Correa et al., 2017; Odegård et al., 2014; Robledo et al., 

156 2018; Tsai et al., 2015). To date, more and more aquaculture species are following this 

157 trend such as rainbow trout, European sea bass, sea bream, Nile tilapia, Channel 

158 catfish or whiteleg shrimp (see for review (Boudry et al., 2021; Houston et al., 2020; 

159 Song et al., 2022; Yáñez et al., 2023)). The recent development of genotyping tools in 

160 bivalves has so far resulted in a relatively limited number of studies on the potential of 

161 genomic selection. GS has been investigated in the Portuguese oyster for 

162 morphometric traits, edibility traits and disease traits (Vu et al., 2021), in the American 

163 oyster for low salinity tolerance (McCarty et al., 2022) and in the silver-lipped oyster for 

164 pearl quality traits (Zenger et al., 2019) and growth traits has been studied in the 

165 triangle sail mussel (Wang et al., 2022), European flat oyster (Penaloza et al., 2022) 

166 and Pacific oyster (Gutierrez et al., 2018; Jourdan et al., 2023). A few studies have 

167 been conducted in oysters showing the increase in accuracy of GS over pedigree-

168 based approaches notably for difficult to measure traits, such as disease resistance 

169 (Gutierrez et al., 2018; Gutierrez et al., 2020; Jourdan et al., 2023). To date, trials with 

170 low-density panels to reduce genomic evaluation costs have been conducted in 

171 several aquaculture species, indicating that developing cost-effective strategies for 

172 genomic selection will be pivotal in shaping modern aquaculture breeding programs 

173 (Penaloza et al., 2022).

174 The aim of our study was to assess the potential of genomic selection for 

175 resistance to one pathogenic strain of V. splendidus in M. edulis. Using a multi-species 

176 Axiom Affymetrix 60K SNP array (Nascimento-Schulze et al., 2023), we first 
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177 characterized the genetic structure and linkage disequilibrium of the blue mussel 

178 population. We then estimated genetic parameters for resistance to V. splendidus and 

179 performed GWAS to investigate its genetic architecture. Finally, we compared the 

180 accuracies of genomic selection and pedigree-based selection to provide 

181 recommendations for optimizing selective breeding programs.

182

183 2. Material and Methods

184 2.1 Family production

185 The 48 families of M. edulis used in this study are detailly described in 

186 (Ajithkumar et al., 2024b). Briefly, three wild mussel populations (OLE-PON, WIM, and 

187 YEU_001) were sampled and transferred to the Ifremer hatchery in La Tremblade in 

188 the fall of 2016. Each mussel population was cleaned and placed in separate tanks 

189 containing unheated UV-treated, and filtered seawater (400 L per hour). To favor 

190 gametogenesis, mussels were fed a cultured phytoplankton diet (Isochrysis galbana, 

191 Tetraselmis suecica, and Skeletonema costatum). Two sets of crosses were 

192 performed in January 2017 (set 1) and in February 2017 (set 2). For each population, 

193 100 mussels were individually placed in 400 mL beakers, and spawning was triggered 

194 by alternating cold (10°C) and warm seawater (20°C). Depending on the ripeness of 

195 the mussels and the sex ratio, 4 males for OLE-PON, and 11 males for YEU_001 were 

196 used in set 1, while 9 males were used for WIM in set 2. Within population, each male 

197 was mated with two females, producing in total 24 half-sib families, each containing 

198 two full-sib families. Each family was grown separately in 30 L tanks filled with filtered 

199 and UV-treated seawater at 20°C until the pediveliger stage. Then, downwelling 

200 system were used until mussels reached 1 cm. At that size, they were transferred to 
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201 our nursery in Bouin in April and May 2017 for set 1 and set 2, respectively. For each 

202 family, 1000 spat were maintained in 15 L SEAPA© baskets, and all families were 

203 raised in a 20 m³ concrete raceway until the start of the experiment, which occurred in 

204 July 2018. More detailed on the larval and nursery culture are provided in (Ajithkumar 

205 et al., 2024b).

206

207 2.2 Experimental infection and phenotyping

208 Detailed step-by-step protocol of the experimental infection is given in 

209 Ajithkumar et al. (2024b). Briefly, two experimental infections (EI_1 and EI_2) were 

210 conducted in July 2018, each using 24 families randomly sampled among the 48 

211 families (mean individual total weight of approximately 5 g). Additionally, a third 

212 experimental infection (EI_3) was performed, involving 12 families from each of the 

213 first two experiments, to increase the phenotype and genotype sample size. To 

214 investigate their resistance to V. splendidus, a highly pathogenic strain (strain 14/053 

215 2T1) isolated during AMM outbreak in 2014 was injected in 30 mussels per family. 

216 First, mussels were anesthetized using MgCl2 (50 g per L), and 50 μL of bacterial 

217 solution (109 bacteria/mL) was injected into the muscle. Then, ten injected mussels per 

218 family, for all the 24 families of one set were hold in one 120 L tank containing UV-

219 filtered seawater. Three replicate tanks were used and, in each tank, water 

220 recirculation was maintained using a TECO®pump (Ravenna, Italy), which also 

221 maintained the seawater temperature at 17°C. Dead mussels were counted and 

222 sampled daily up to 72 h post-injection. The adductor muscle/gills of the dead mussels 

223 during the experiment and the surviving mussels at the end of the experiment were 

224 collected using scalpels disinfected with 70% ethanol and stored in 1.5 ml sterile tubes 

225 at room temperature. Individuals for genotyping were randomly sampled from the 
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226 challenge experiments (EI_1, EI_2, and EI_3), including both dead and alive mussels, 

227 with 13 to 16 individuals sampled from each of the 48 families (Table 1).

228

229 2.3 Genotyping and quality control

230 Among the 2160 individuals from the 48 families, a total of 768 were sent for 

231 DNA extraction and genotyping to the Gentyane INRAE Platform (Clermont-Ferrand, 

232 France) using the multi species medium-density 60K SNP-array, Axiom_Myt_v1_r1 

233 (Thermo Fisher Scientific, Waltham, Massachusetts, USA), which comprises 23,252 

234 markers for M. edulis (Nascimento-Schulze et al., 2023). Among the 768 individuals 

235 genotyped, 348 were from the dead group, 348 were from the alive group, and the 

236 remaining 72 were their parents (48 dams and 24 sires). Quality controls on the 60K 

237 SNPs from the SNP array and genotyped individuals were performed as described in 

238 D'Ambrosio et al. (2019). Firstly, genotypes of all individuals were analyzed using the 

239 Axiom Analysis Suite software (AxAS; v.4.0.3.3) with the default best practice workflow 

240 suggested by the manufacturer, with few threshold modifications, which includes 

241 individual quality control (QC) and SNP quality control analysis (DQC ≥ 0.20; QC call 

242 rate ≥ 85; percent of passing samples ≥ 98; average call rate for passing samples ≥ 

243 92%; call rate cutoff ≥ 95; FLD ≥ 2.6). Consequently, 7,476 polymorphic SNPs were 

244 retained for further analysis. Subsequently, final quality control was performed using 

245 PLINK v1.9 software (Chang et al., 2015). Two individuals with an identity-by-descent 

246 value over 0.90 were considered as duplicated and both individuals were removed 

247 from the analysis. Only SNPs with a minor allele frequency (MAF) higher than 0.01 and 

248 those passing the Hardy-Weinberg equilibrium test (p-value < 0.0000001) in the 

249 genotyped mussels were retained. After the quality control, data comprised of a total 

250 of 766 genotyped individuals for 3,406 SNPs. 
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251

252 2.4 Parentage assignment

253 Parentage assignment was performed in the R package APIS (Griot et al., 2020) 

254 with a mismatch number set to 5%. The best 1471 SNPs (Supplementary Table 1), 

255 selected with call rate greater than 90% and MAF value greater than 0.1 were used. 

256 Parentage assignment allowed the reconstruction of the pedigree of 647 offspring with 

257 assignment rates reaching 93.2% of the mussels having both parents assigned, while 

258 the remaining 47 mussels potentially from outside the cross-mating design, which were 

259 excluded from following analyses.

260

261 2.5 Genetic structure of the population

262 To evaluate potential genetic sub-structuring of populations and any associated 

263 biases, a principal component analysis (PCA) was performed using PLINK 1.9 (Chang 

264 et al., 2015) and the genetic structure was visualized using in RStudio (Team, 2024). 

265 Three individuals were identified as outliers beyond the population structure and were 

266 subsequently excluded from further analysis. Genetic differentiation between 

267 populations was measured through pairwise fixation index (FST) estimates using PLINK 

268 1.9 (Chang et al., 2015).

269

270 2.6 SNP mapping, genome coverage and linkage disequilibrium estimation 

271 All markers of the array along with their flanking regions were blasted using a 

272 BLASTn® procedure on the reference genome (Mytilus edulis genome assembly, 

273 xbMytEdul2, GenBank accession number: GCA_963676595.2). To map SNPs, 
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274 considering the high polymorphism in the mussel genome, four mismatches were 

275 allowed over a length of around 71 base pairs. Only SNPs mapping to a unique position 

276 on the reference genome were retained for the subsequent stage of quality control as 

277 mentioned in previous section. Out of the 3406 SNPs, only 2204 matched our mapping 

278 criteria and were successfully positioned on the reference genome (Supplementary 

279 Tables 1 & 2). 

280 The pairwise linkage disequilibrium (LD) analysis was performed between all 

281 SNPs and adjacent markers for each linkage group and population to determine LD 

282 decay within the genome of M. edulis using Plink 1.9 (Chang et al., 2015).

283

284 2.7 Estimation of genetic parameters 

285 2.7.1 PBLUP

286 Estimated breeding values, variance components, and heritability were 

287 calculated using the BLUPF90 software package (Misztal et al., 2014) through two 

288 different approaches: a linear mixed model with AIREMLF90 (Misztal et al., 2014) for 

289 assessing the trait on the observed scale, and a Gibbs analyses with THRGIBBS1F90 

290 (Tsuruta and Misztal, 2006) for evaluating it on the underlying scale, based on 

291 pedigree-based relationship.

292 Y𝑖 = X𝑖𝛽𝑖 + 𝑍𝑖𝜇𝑖 + 𝑒𝑖

293 where Y𝑖 is the binary mortality outcome at the end of the experiment (1 = dead, 2 = 

294 alive) of mussel, 𝛽𝑖 is the vector of fixed effects, including set of crosses (set 1, set 2), 

295 population origins (OLE-PON, WIM, YEU_001), and replication of the experimental 

296 infection (EI_1, EI_2 and EI_3). 𝜇𝑖 is the vector of additive genetic effect of the animal, 
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297 following a normal distribution 𝜇 ∼ 𝑁 (0, 𝐴𝜎2
𝑎), where A is the pedigree relationship 

298 matrix, and 𝜎2
𝑎 is a matrix of additive genetic variance. 𝑒𝑖 is the vector of random 

299 residuals, assumed to be distributed as 𝑒 ∼ 𝑁 (0, 𝐼𝜎2
𝑒), where I is an identity matrix and 

300 𝜎2
𝑒 is a matrix of the residual variance.  X𝑖 and 𝑍𝑖 are known incidence matrices relating 

301 observations to the fixed and random effects mentioned above. 

302 The EBV were estimated using BLUPF90 package and the variance components using 

303 AIREMLF90 and THRGIBBS1F90 programs. With the threshold model, the variance 

304 components were estimated using a Gibbs sampler with 100,000 iterations, 10,000 of 

305 burn-in and one sample was kept every 10 iterations for posterior analysis. Variance 

306 components were estimated using the average information restricted maximum 

307 likelihood algorithm (Gilmour et al., 1995). 

308 Heritability (ℎ2) was estimated as: ℎ2 = 
𝜎2

𝑎

𝜎2
𝑎 +  𝜎2

𝑒
  

309 2.7.2 GBLUP

310 The GBLUP model uses the same approach as the PBLUP model, but with 𝜇 

311 replaced by 𝑔 and 𝐴 replaced by 𝐺. Here, 𝑔 is the vector of additive genomic effects, 

312 and 𝐺 is the genomic relationship matrix. The matrix 𝐺 was computed as described by 

313 VanRaden (2008).

314 𝐺 =  
𝑍𝑍′

∑𝑚
𝑖 2𝑝𝑖(1 ― 𝑝𝑖)

315 where 𝑍 is a matrix of centered genotypes (0 ― 2𝑝 =  homozygous, 1 ― 2𝑝 =  

316 heterozygous, 2 ― 2𝑝 =  homozygous), 𝑝𝑖 is the frequency of the reference allele for 

317 the 𝑖𝑡ℎ marker, and m is the total number of markers.
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318 Heritability (ℎ2) was estimated as: ℎ2 = 
𝜎2

𝑔

𝜎2
𝑔 +  𝜎2

𝑒
  

319 2.7.3 ssGBLUP

320 The single-step GBLUP (ssGBLUP) model enhances the PBLUP and GBLUP 

321 model by fitting the H matrix, which integrates both genomic and pedigree data (Aguilar 

322 et al., 2010). The inverse of the H matrix was constructed as follows:

323 𝐻
―1

  =  𝐴―1 + [0 0
0 (0.95𝐺 + 0.05𝐴22)―1 ―  𝐴―1

22 ]
324 where G is as described above and A22 is the pedigree-based relationship matrix for 

325 genotyped animals.

326 Heritability (ℎ2) was estimated as: ℎ2 = 
𝜎2

ℎ

𝜎2
ℎ +  𝜎2

𝑒
  

327

328 2.8 Genome wide association study

329 To identify SNPs associated with resistance to V. splendidus, a genome wide 

330 association study (GWAS) was performed using a mixed linear model association 

331 through ssGBLUP analysis. The postGSF90 module (Misztal et al., 2014) from the 

332 BLUPF90 package was used to estimate the effects of the SNPs (𝑎𝑖) based on the 

333 genomic breeding values 𝑔𝑖 predicted for the genotyped animals. The SNP effects 

334 were estimated according to the following equation: 

335 𝑎𝑖 = 𝑑𝑍′[𝑍𝑑𝑍′]―1𝑔𝑖

336 where d is the vector of weights associated with the SNP effects and Z is the incidence 

337 matrix relating SNP effects to genomic breeding values.
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338 A linear mixed model was applied to assess resistance to V. splendidus on the 

339 observed scale, incorporating the genotype of an individual SNP as a fixed effect. The 

340 p-values for each SNP were computed using the POSTGSF90 module.

341 For the GWAS, a Bonferroni correction with 𝛼 = 5% was used to determine the 

342 genome-wide significance threshold [ ― 𝑙𝑜𝑔10(𝛼/𝑛)], where 𝑛 = 2,204 (total number of 

343 SNPs genome-wide) and the chromosome-wide suggestive threshold [ ― 𝑙𝑜𝑔10(𝛼/𝑚)]

344 , where 𝑚 = 157 (average number of SNPs per chromosome). Only the SNPs with a 

345 ―𝑙𝑜𝑔 𝑃(𝑣𝑎𝑙𝑢𝑒) over the chromosome wide threshold were considered to detect QTL 

346 associated with the resistance. Genome-wide significant threshold used in this study 

347 was considered to ―𝑙𝑜𝑔 𝑃(𝑣𝑎𝑙𝑢𝑒) =  4.64, while chromosome-wide significant 

348 threshold was opted to ―𝑙𝑜𝑔 𝑃(𝑣𝑎𝑙𝑢𝑒) =  3.49.

349 For each QTL, the additive effect (a) of the top SNP was used to estimate the 

350 proportion of genetic variance explained by this peak SNP using: 

351 %𝑉𝑔 =
2p(1 ― p)𝑎2

σ2
𝑔

∗ 100

352 with σ2
𝑔 the total genetic variance estimated using the linear mixed model with 

353 PROGSF90 and p the minor allele frequency of the target SNP. 

354

355 2.9 Prediction accuracy 

356 Prediction accuracy for the BLUP, GBLUP, and ssGBLUP models was 

357 assessed using the ‘leave-one-out’ method. In this approach, each observation is 

358 systematically excluded one at a time. The model is then trained on the remaining data, 

359 and the (G)EBV for the excluded individual is predicted by masking its phenotype.
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360 The accuracy (r) of prediction was computed as the correlation between the (G)EBVs 

361 and the corrected phenotype (𝑦) of the mussel divided by the square root of the 

362 heritability, using the formula:

363 𝑟 =
[(G)EBV, 𝑦]

ℎ2

364 The heritability value (ℎ2) used in this analysis was calculated using the variance 

365 components (𝜎2
𝑎 and 𝜎2

𝑒) from the ssGBLUP model.

366 2.9.1 Evaluation of the effect of SNP density and training population size on 

367 genomic predictions

368 SNP panels of varying densities were assessed by selecting subsets from the 

369 full QC-filtered SNP panel for each dataset. Panels of the following densities were 

370 tested: 500 SNPs, 1,000 SNPs, 1,500 SNPs, annotated SNPs (~2,200), and all high-

371 quality SNPs (~3,400). SNPs for each panel were selected randomly within each 

372 chromosome, with the number of SNPs chosen from each chromosome being 

373 proportional to the total number of high-quality SNPs per chromosome. Different 

374 training population sizes were evaluated by randomly selecting subsets from the 

375 population. Training population of 100, 300, 500, and all individuals were tested using 

376 annotated SNPs panel information. The analysis performed only with the ssGBLUP 

377 model, which is known for its effectiveness in genomic selection. To mitigate biases, 

378 we generated five different SNP panels for each SNP density randomly, and similarly 

379 five subsets randomly selected for each training population to address size-based 

380 selection biases.

381

382 3. Results
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383 3.1 Vibrio challenge

384 The cumulative mortality rate 72 hours post-injection was 47%. At endpoint, 

385 mortality rates were 63% for EI_1, 41% for EI_2, and 37% for EI_3. Among mussel 

386 populations, the WIM population (54%) showed higher susceptibility to V. splendidus 

387 compared to the YEU_001 (45%) and OLE-PON (37%) populations. Mortality rates 

388 varied significantly among families upon exposure to V. splendidus, ranging from 17% 

389 to 83%. The mean mortality rates for all families are depicted in Figure 1.

390

391 3.2 Population structure 

392 Figure 2 illustrates the results of the principal component analysis (PCA), 

393 revealing the population structure of the mussel population. The first two PCA axes 

394 collectively account for over 15% of the total genetic variation. The populations were 

395 generally homogeneous, with the exception of two families whose offspring showed 

396 greater isolation from others. FST analysis revealed low genetic differentiation between 

397 populations. The mean genetic distances between populations are shown in Table 2, 

398 with FST values ranging from 0.02 to 0.03, suggesting genetic similarity across all three 

399 populations (Figure 3). Overall, the absence of significant genetic differentiation 

400 between populations provides favorable conditions to merge data from all the 

401 populations for performing genomic selection analysis. 

402

403 3.3 SNP mapping and genome coverage

404 In fact, 2,204 SNPs were positioned on the reference genome, resulting a loss 

405 of 1,202 SNPs. The positions of markers on the chromosomes is illustrated in Figure 
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406 4. The average SNP density per megabase (Mb) ranges from 0.57 to 2.37, varying 

407 among chromosomes and within chromosome (Supplementary Table 2). 

408 Approximately, only 9% of all 1 Mb segments contain more than 5 SNPs. SNP density 

409 exhibits non-uniformity throughout the genome, with each chromosome demonstrating 

410 varying densities. The lower marker density results in greater mean average distances 

411 between adjacent SNPs, ranged from 421 kb to 1739 kb depending on the 

412 chromosome. 

413

414 3.4 Linkage disequilibrium analysis

415 Figure 5 illustrates that linkage disequilibrium (LD) decreases sharply as the 

416 distance between pairs of SNPs increases, with the most rapid decline occurring within 

417 the first 100 kb. Beyond this range, LD continues to decline and becomes more 

418 variable. The OLE-PON population consistently shows higher LD throughout the 

419 genome compared to other populations. On average, the LD values (r²) for SNPs less 

420 than 15 kb apart are 0.12 for OLE-PON, 0.10 for WIM, and 0.06 for YEU. Linkage 

421 disequilibrium values are generally low between adjacent SNPs for all the 

422 chromosomes, where distances between adjacent SNPs are larger.

423

424 3.5 Heritability 

425 The estimates of heritability using the linear and Gibbs sampling models are 

426 summarized in Table 3. Pedigree-based heritability estimates for resistance to V. 

427 splendidus in M. edulis ranged from 0.22 to 0.31. Genomic heritability was slightly 

428 higher, varying between 0.33 and 0.36. The ssGBLUP based estimated heritability 

429 ranging from 0.28 to 0.33, which combines genomic and pedigree information 
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430

431 3.6 Genetic architecture

432 GWAS for resistance to V. splendidus identified only one significant SNP 

433 surpassing the genome-wide threshold on chr 2, and seven significant SNPs 

434 surpassing the suggestive chromosome-wide threshold on chr 2, chr 4, chr 7, chr 9, 

435 chr 12, and chr 13 (Figure 6 and Table 4). However, none of these markers explained 

436 more than 1.06% of genetic variance (Figure 7 and Table 4). 

437

438 3.7 Prediction accuracy

439 Accuracy with all data are 0.36, 0.43, 0.43 for BLUP, GBLUP and ssGBLUP, 

440 respectively. Genomic selection (GBLUP and ssGBLUP) is better than BLUP by 19%.  

441 Overall, prediction accuracy for GS increased with the density of markers (Figure 8). 

442 Incorporating genomic information generally enhanced accuracy compared to 

443 pedigree-based estimation, except with 500 SNPs where PBLUP exhibited higher 

444 accuracy than GBLUP (Figure 8). With maximum training population and SNP subsets, 

445 genomic evaluation improved accuracy by 17%, 19%, 25%, and 19% for 1,000, 1,500, 

446 annotated (2,204), and all SNPs (3,400), respectively, compared to PBLUP. When 

447 comparing GBLUP and ssGBLUP models, the prediction accuracy was consistently 

448 favored the ssGBLUP model, except when using annotated SNPs in the GBLUP model 

449 (Figure 8). In evaluating the size of the training population, accuracy ranged from 0.50 

450 to 0.36 in BLUP, and from 0.47 to 0.45 in ssGBLUP with sizes from 100 to all 

451 individuals, respectively (Figure 9). 

452
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453 4. Discussion

454 In our study, we aimed to demonstrate the feasibility of genomic selection in a 

455 mussel breeding program in France. We used a recently developed multi species 

456 medium-density 60K SNP-array (Nascimento-Schulze et al., 2023) to perform genomic 

457 analysis. 

458

459 4.1 Genotyping quality and genome covering by selected SNPs

460 To the best of our knowledge, our study is the first to use the multi species 

461 medium-density 60K SNP-array (Nascimento-Schulze et al., 2023) to estimate genetic 

462 parameters in blue mussel (M. edulis). Following the AxAS software's best-practice 

463 workflow with minor adjustments to thresholds, we identified 7,476 poly high-quality 

464 SNPs from 23,252 initially screened SNPs across 768 individuals. The necessity for 

465 stringent filtering of genotyping data is highlighted by the prevalence of poor-quality 

466 markers. After quality control using plink, we retained 3,406 SNPs, representing only 

467 15% of the total SNPs designed for M. edulis. This reduction may be attributed to the 

468 polymorphic nature of mussel species or limited number of individuals used to 

469 construct the SNP array design (Gerdol et al., 2020; Nascimento-Schulze et al., 2023).  

470 The Mytilus genus exhibits a complex evolutionary history characterized by 

471 extensive gene flow among congeneric species, and its genome is known for its 

472 complexity and high degree of polymorphism (Gerdol et al., 2020; Smietanka et al., 

473 2014). The array used in the present study was developed using a whole-genome low 

474 coverage approach. Out of 23,253 poly high SNPs identified in M. edulis, only 16,213 

475 (70%) were annotated on the recently published reference genome of M. edulis. 

476 Assembly errors in the reference genome may rise from several factors, such as 
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477 exceptionally high genetic polymorphism levels, non-Mendelian segregation of marker 

478 loci in paired crosses, and a significant occurrence of null alleles in genetic markers 

479 (Hedgecock et al., 2015). While a moderate proportion of our selected markers (3,406 

480 out of 23,252) aligned well with the latest reference genome (2,204 SNPs; 65%), we 

481 observed a sparse distribution of SNPs across the linkage map. This limited coverage 

482 and sparse SNP distribution could potentially lead to the omission of QTLs in specific 

483 regions, suggesting the necessity for developing an optimized SNP array to address 

484 these challenges effectively. The bi-species Axiom Affymetrix 57K SNP array has been 

485 used in Pacific oysters, where applying the AxAS software's best practice workflow led 

486 to a notable reduction in the number of informative SNPs. Specifically, Gutierrez et al. 

487 (2018) reported 23,000 informative SNPs from 820 individuals, Vendrami et al. (2019) 

488 identified 21,499 SNPs from 232 individuals, and Jourdan et al. (2023) obtained 14,500 

489 SNPs from 2,420 individuals. This reduction is largely attributed to the complex genetic 

490 structure of molluscs, stemming from the highly polymorphic nature of their genomes 

491 (Jiao et al., 2021; Song et al., 2021), and is further influenced by the genetic 

492 relationship between the training population used for array design and the breeding 

493 candidates in selective program (Houston et al., 2020). However, recent studies on 

494 bivalves have demonstrated that a moderate number of high-quality markers (1,000 - 

495 3,000) could suffice for accurate predictions (Gutierrez et al., 2018; Kriaridou et al., 

496 2020; Penaloza et al., 2022).

497

498 4.2 Linkage disequilibrium

499 Linkage disequilibrium (LD) at the genome level plays a crucial role in the 

500 efficacy of breeding programs, influencing genetic variance and the accuracy of 
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501 association analyses (Goddard and Hayes, 2009; Siol et al., 2017). In our study, values 

502 for r2 ranged between 0.07 and 0.09 for SNPs within a distance of 10 kb and from 0.03 

503 to 0.08 within 50 kb across the studied populations. However, LD levels decreased to 

504 less than 0.05 at 100 kb in two populations. Overall, LD between adjacent markers 

505 within each population was predominantly less than 0.1 within 2 kb, indicating a rapid 

506 decline in LD within the blue mussel genome. This swift decay suggests a historically 

507 large effective population size and high recombination rate, reflecting substantial 

508 genetic diversity within the population (Ellegren and Galtier, 2016). Moreover, LD 

509 values are population-specific, and influenced by evolutionary factors such as natural 

510 selection, mutation, genetic drift, line origin and migration, as well as molecular forces 

511 including historical recombination events, and breeding history such as historical 

512 effective population sizes, intensity and direction of artificial selection, population 

513 admixture, and mating patterns (Du et al., 2007). Our findings confirm the low LD in M. 

514 edulis populations, consistent with previous studies on bivalves (Jones et al., 2013b; 

515 Jourdan et al., 2023; Vera et al., 2022). 

516

517 4.3 Population structure 

518 FST is widely applied to evaluate genetic differentiation between/among 

519 populations (Hu et al., 2022). The low FST values (FST < 0.03) observed in our study 

520 suggest minimal genetic differentiation among mussel populations, indicating a lack of 

521 significant genetic structure. This phenomenon may be attributed to similar selection 

522 pressure and limited gene flow among the mussel populations, irrespective of 

523 geographic location. Similar findings have been reported in other studies, such as 

524 pairwise FST (< 0.02) among wild edible cockle using SNPs information (Vera et al., 
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525 2022) and among wild populations of Pacific oyster using allozymes and microsatellites 

526 markers (Appleyard and Ward, 2006). 

527 PCA provided robust evidence supporting the classification of mussels into the 

528 same groups, consistent with the low FST values observed. The PCA did not reveal 

529 population genetic stratification except in two families in WIM population, suggesting 

530 that the observed genetic variation is homogeneous and indicative of genetic proximity 

531 among populations. The two families whose offspring showed greater isolation from 

532 others in the WIM population may be due to due to the peculiar characteristics of the 

533 parents, which drive the first axis of the PCA. 

534

535 4.4 Heritability

536 Our study presents the first report of heritability estimates for resistance to V. 

537 splendidus experimental infection in M. edulis based on genome-wide SNPs. We 

538 observed moderate heritability for V. splendidus resistance (0.22–0.36), which are 

539 higher compared to our previous study using the same population. This increase may 

540 be attributed to the inclusion of a third experimental infection in this study, despite the 

541 overall lower mortality rate (Ajithkumar et al., 2024b). Disease resistance to pathogens 

542 in bivalves seems to be a heritable trait, with moderate to high heritability in oysters, 

543 clams, and abalone, ranging from 0.21 to 0.63 (Brokordt et al., 2017; Dégremont et al., 

544 2015; Smits et al., 2020). Studies on oysters have shown varying levels of heritability 

545 (h2: 0.09-0.54) against different Vibrio spp. pathogens at different life stages (Azema 

546 et al., 2017; Dietrich et al., 2022; Nordio et al., 2021; Zhai et al., 2021). Comparing 

547 heritability estimates among methods, both GBLUP and ssGBLUP consistently 

548 showed higher heritability compared to pedigree-based methods. This difference is 
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549 likely due to the genomic relationship matrix constructed based on genome-wide SNPs 

550 information can capture both within and between-family genetic variance, whereas 

551 traditional pedigree selection only captures genetic variance between families (Boudry 

552 et al., 2021). To date, numerous studies across aquaculture species have similarly 

553 demonstrated that GBLUP methods provide higher estimated heritability and greater 

554 accuracy compared to PBLUP (Gutierrez et al., 2018; Tsai et al., 2015). These results 

555 underscore the presence of genetic variation for resistance to V. splendidus in our 

556 mussel populations, and highlight significant opportunities for enhancing disease 

557 resistance through selective breeding programs, whether using pedigree-based or 

558 genomic selection strategies. 

559

560 4.5 Genome wide association study

561 QTL detection in our populations posed challenges due to limited number of 

562 markers and individuals. Given the data in the current study do suggest a polygenic 

563 nature of resistance to V. splendidus, utilizing all markers to calculate genomic 

564 breeding values for resistance may be the most effective approach. Our association 

565 analyses suggest that resistance against V. splendidus exhibits a polygenic 

566 architecture without major QTLs. Similar findings have been reported for bacterial 

567 disease resistance in various aquaculture species including, Atlantic salmon (Correa 

568 et al., 2015), Coho salmon (Barría et al., 2018), Gilthead Sea Bream (Palaiokostas et 

569 al., 2016), European seabass (Oikonomou et al., 2022), and Pacific Oyster (Yang et 

570 al., 2022). For instance, a study on catfish identified four QTLs associated with 

571 columnaris resistance using a high-density SNP array  (Geng et al., 2015), highlighting 

572 the importance of high-density SNP array for GWAS studies. Our study used 2,204 

573 SNPs, which may not provide sufficient coverage given the rapid LD decay, potentially 
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574 leading to the omission of important QTLs. This underscores the need for increased 

575 SNP coverage to ensure robust association analyses (Jones et al., 2013b). 

576 Additionally, a larger number of individuals (> 1,000) would be beneficial for enhancing 

577 overall QTL detection (Barría et al., 2018). Future studies could benefit from using a 

578 greater number of markers and phenotypes, as well as by creating resistant and 

579 susceptible lines in the F2 generation. These approaches can exploit more genetic 

580 variation and assist in identifying potential QTLs (Geng et al., 2015).

581

582 4.6 Prediction accuracy

583 The accuracy of genomic selection is affected by several factors, including the 

584 relationship between training and validation animals, sample size in the reference 

585 population, marker density, effective population size, LD structure, underlying trait 

586 architecture and heritability of trait (Yáñez et al., 2023). Therefore, the lower range of 

587 the prediction accuracies estimated here may reflect the underlying trait architecture 

588 or marker density. The choice of genomic selection model for breeding programs 

589 requires a prior understanding of the genetic architecture of the selected trait(s). In the 

590 current study on M. edulis populations, the genetic contribution to the observed 

591 variation in resistance to V. splendidus was largely polygenic in nature. For the 

592 improvement of polygenic traits, GBLUP is the most reliable model and typically 

593 provides the highest prediction accuracy for highly polygenic traits, while the Bayesian 

594 models are preferable for traits controlled by few large effect loci in genomic selection 

595 (Legarra et al., 2015; Yáñez et al., 2023)

596 Genomic selection improves accuracy of up to 19% compared to pedigree 

597 selection. A key consideration for the commercial implementation of genomic selection 
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598 in shellfish aquaculture is the high cost of genotyping. Reference population size and 

599 marker density are two key factors for effectively reducing the cost of genomic selection 

600 (Song et al., 2022). Applying a low density SNP panel is one way to increase economic 

601 viability of genomic selection (Kriaridou et al., 2020). The prediction accuracies for 

602 genomic models in our study ranged from 0.32 to 0.48 for resistance to V. splendidus 

603 (with SNP densities ranging from 500 to ~3400), whereas the accuracy of PBLUP was 

604 0.36. This result is slightly lower than the ranges reported for disease-related traits in 

605 other bivalve species. For instance, genomic selection prediction accuracies from 

606 GBLUP models for resistance to Ostreid herpesvirus (OsHV-1-lvar) ranged from 0.68 

607 to 0.76 in the Pacific oyster (Gutierrez et al., 2020). Prediction accuracies for growth-

608 related traits using the GBLUP model in other bivalves are relatively similar, e.g., 0.52-

609 0.73 in the Pacific oyster (Gutierrez et al., 2018; Jourdan et al., 2023), 0.67-0.79 in the 

610 Portuguese oyster (Vu et al., 2021), and > 0.83 in European flat oyster (Penaloza et 

611 al., 2022). Other reports on genomic prediction accuracies for disease-related traits in 

612 finfish aquaculture species show the prediction accuracies as low as 0.21, reviewed in 

613 Houston et al. (2020) and 0.25 - 0.48 for growth related-traits in the Zhikong scallop 

614 (Wang et al., 2018). However, this result highlight that genomic selection is a useful 

615 approach to increase resistance to V. splendidus in our blue mussel populations.

616 Overall, our results showed that genomic methods predict better accuracy (25 - 

617 33%) for resistance to V. splendidus using ~2000 SNPs in a family-based design 

618 compared to pedigree-based estimation. This indicates that substantial improvements 

619 in the rate of genetic gain can be achieved through genomics-based selection 

620 techniques. It also increases the possibility of a low-density genomic selection 

621 approach for Vibrio resistance in mussel breeding, as low-density genotyping can be 

622 substantially cheaper than high-density SNP arrays. Furthermore, studies on disease 
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623 resistance in the Pacific oyster, growth traits in the European flat oyster, and heat 

624 tolerance in the Pacific abalone have shown that low-density SNP panels of around 

625 1000-2000 SNPs can achieve EBV accuracies similar to those obtained with medium-

626 density arrays (Gutierrez et al., 2020; Kriaridou et al., 2020; Liu et al., 2022; Penaloza 

627 et al., 2022). Similar findings in multiple aquatic species have shown that low-density 

628 panels can achieve higher accuracies than the pedigree-based approach, making 

629 them a feasible alternative for identifying candidates with the highest genetic merit for 

630 complex traits such as growth and disease resistance (Kriaridou et al., 2020). 

631 Although the mussel genome is 1.4 Gb in size, our study suggests that a 

632 relatively low number of genetic markers can still achieve high prediction accuracy, 

633 with a rapid LD decay observed across all populations. Additionally, both the training 

634 and validation datasets comprised closely related animals (half-sibs/full-sibs). These 

635 individuals will share large genomic segments, which can be capture by few markers. 

636 However, as the genetic distance between the training and validation sets increases, 

637 genomic prediction accuracy is likely to decrease (Palaiokostas et al., 2019). 

638 Therefore, regular mating among close relatives of breeding candidates is required to 

639 maintain prediction accuracy (Gutierrez et al., 2020). Moreover, additional populations 

640 with different effective population sizes, genetic backgrounds, and degrees of 

641 relatedness should be assessed to obtain estimates expected in practical breeding 

642 programs. 

643 Although our results highlight the possibility of reducing the genotyping costs 

644 associated with genomic prediction approaches, caution should be exercised 

645 regarding the smallest marker density. Our study found that using only 500 SNPs in 

646 the GBLUP model resulted in an estimated decrease in the accuracy of genomic 

647 breeding values (GEBVs) for resistance to V. splendidus by 11% compared to PBLUP. 
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648 It’s important to note that when both pedigree information and genotypes are available, 

649 using ssGBLUP is preferable, as it demonstrates superior accuracy compared to 

650 PBLUP. Furthermore, our findings emphasize that annotated SNPs on the M. edulis 

651 genome provided more information about the studied population and led to higher 

652 prediction accuracy than using all SNPs in either the GBLUP or ssGBLUP model. This 

653 difference could be due to even distribution of phenotypes among genotyped 

654 individuals (50% mortality), or unannotated markers may introduce noise, thereby 

655 affecting the accuracy of GEBV estimation. Further investigations using more SNPs, 

656 and larger reference population hold potential for genomic selection to further increase 

657 the prediction accuracy for host resistance to V. splendidus in farmed mussel 

658 populations. 

659

660 5. Conclusions

661 Our study estimated moderate heritability for resistance to V. splendidus in blue 

662 mussel populations using both pedigree and genomic data from a challenge 

663 experiment. GWAS analysis suggests that the trait is polygenic, indicating that 

664 genomic selection is more effective than marker-assisted selection. We found that 

665 genomic selection can improve accuracy by up to 19% compared to pedigree-based 

666 selection. Additionally, our results show the potential for reducing the number of 

667 markers, which could make genomic selection more cost-effective. Overall, selective 

668 breeding appears to be a promising approach to enhance resistance to V. splendidus 

669 in blue mussels, and genomic selection could significantly increase genetic gains.
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Figure 1: Final cumulative mortality 72 hours post-injection for each family. Each 
bar represents a family and each color represent a population.
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Figure 2: First two axes and associated variances of the principal component analysis 
(PCA) of the genetic diversity among the three populations of Mytilus edulis. The 
ellipses are constructed with axes defined as 1.5 times the standard deviation of the 
projections of individual coordinates on the axes. PCA was performed with 644 
individuals and 3096 SNPs.
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Figure 3: Genomic distribution of fixation index (FST) values as a function of 
chromosome position in the mussel genome for different studied population
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Figure 4: Identification of high-quality SNPs and their distribution across the 14 
chromosomes of M. edulis. The gradient colors from yellow to red denote the increase 
of SNP density within 1 Mb interval. 
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Figure 5: Linkage disequilibrium (r2) decay with physical distance between markers in 
each population and overall challenged to V. splendidus. The X-axis is the physical 
location, and the Y-axis is the linkage disequilibrium value (r2).
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Figure 6: Manhattan plot of GWAS with p-values distributed across different 
chromosomes. Horizontal red line represents the 5% genome-wide significance 
threshold and the green line is the 5% chromosome-wide significance threshold 
calculated with the Bonferroni correction.
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Figure 7: Manhattan plot of genetic variance explained by each SNP for resistance to 
V. splendidus in M. edulis using ssGBLUP approach. In X axis SNP per chromosome 
and Y axis percentage of genetic variance explained per each SNP.
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Figure 8: The estimated prediction accuracy of Vibrio splendidus resistance in Mytilus 
edulis using PBLUP, GBLUP and ssGBLUP across different marker densities. Each 
point is the average of 5 replicates. Error bars represent the standard error of the mean 
of 5 replicates. PBLUP - Pedigree based breeding values using all phenotyped 
animals, respectively. GBLUP - Genomic breeding values from only genotype animals, 
and ssGBLUP - Genomic breeding values from all genotyped and phenotyped animals 
obtained with a combined relationship matrix (H).
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Figure 9: The estimated prediction accuracy of Vibrio splendidus resistance in Mytilus 
edulis using different training population size and fixed SNP density (annotated SNPs, 
~2,400). Each point is the average of 5 replicates. Error bars represent the standard 
error of the mean of 5 replicates. 
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Table 1: Summary of the experimental infection using the pathogenic strain 14/053 
2T1 of Vibrio splendidus in Mytilus edulis 

Phenotyped Genotyped
Number of families 48 48
Total number of mussels 2160 768
Mean number of 
mussels/family

45 14.5 (Min:13; Max:16)

Mean mortality 47.3%  50% 

Table 2: Pairwise FST between populations of Mytilus edulis

WIM YEU_001
OLE-PON 0.03 0.03 
WIM 0.02

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4935288

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Table 3: Variance components and genetics parameters for V. splendidus resistance 
in M. edulis 

Method Model Relationship 
matrix

h2 (± se)

Linear A 0.22 (0.06)PBLUP

Gibbs sampling A 0.31 (0.05)

Linear G 0.33 (0.11)GBLUP

Gibbs sampling G 0.36 (0.05)

Linear H 0.28 (0.08)ssGBLUP

Gibbs sampling H 0.33 (0.05)

𝜎2
𝑎: Additive genetic variance; 𝜎2

𝑒: Residual variance; 𝜎2
𝑝: Phenotypic variance; A: 

Pedigree based relationship matrix; G: Genomic based relationship matrix; H: genomic 
and pedigree combined relationship matrix; Linear: Linear mixed model; h²: heritability. 
The h² for linear model on observed scale transferred into underlying scale using the 
formulae from Dempster and linear (1950). 

Table 4: The significant SNPs detected in GWAS analysis (ssGBLUP) ranked with 
respect to level of significance. Position = Physical position of SNP on the 
chromosome; A1 & A2 = Minor & major alleles, respectively; MAF = Minor allele 
frequency; P =Significance value; varG = percentage of genetic variance explained by 
SNP

SNP_ID Chromosome Position A1 A2 MAF P-
value

VarG 
(%) 

AX-604335979 2 61,614,609 A C 0.07 5.21 0.10
AX-603804982 2 91,444,473 A T 0.04 4.22 0.04
AX-604452846 4 74,391,047 C T 0.04 4.11 0.04
AX-603077107 13 50,001,059 A T 0.11 3.9 0.04
AX-604514378 2 12,942,241 T C 0.25 3.83 0.77
AX-604131039 12 33,942,361 G A 0.06 3.79 0.09
AX-604710899 9 3,56,838 A T 0.32 3.74 1.06
AX-604289929 7 30,079,060 C T 0.09 3.64 0.22

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4935288

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed


