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Abstract : 

Energy content has long been proposed as a fundamental, integrated, and reliable indicator of the 
condition of individuals as it reflects past bioenergetics and influences future life-history traits. There is a 
direct biochemical link between energy density and body composition described by four main compounds 
in fish (protein, lipid, ash, and water), with proteins and lipids being the sources of energy. If relationships 
between water content, or lipid content, and energy density have been well described in relative terms, 
the absolute mass variations in the proximate composition have been overlooked and thus their 
interpretation is often equivocal. In our study, based on a large and unique dataset on the proximate 
composition and energy density of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) 
from sampling in the Bay of Biscay and the English Channel, we aimed to better explain the patterns 
between water content and other proximate components or energy density, based on the dynamics of 
proteins, lipids, and water absolute masses. For the first time, we defined good, intermediate, and poor 
condition states in wild fish, based on water content, corresponding to the different dynamics of lipids and 
proteins in the metabolism of individuals. Anchovy and sardine exhibited remarkably similar patterns of 
variation in the compounds and in the limits between the condition states with respect to water content. 
Those patterns revealed that water mass remained constant for a given fish size whatever its condition 
state, and that variability in water content only resulted from the variation in lipid and protein masses. 
Furthermore, the differential dynamics of proteins and lipids, with only lipids mobilized in the good 
condition state, only proteins in the poor condition state, and both proteins and lipids in the intermediate 
condition state, elucidates the nonlinear pattern observed in the relationship between energy density and 
water content. Overall, our results highlight the importance of monitoring the intraspecific variations in 
water content to predict the proximate composition and energy content in small pelagic fish and better 
assess individual and population conditions in changing ecosystems as well as to better parameterize 
bioenergetic models. 
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water  content  only  resulted  from  the  variation  in  lipid  and  protein  masses.  Furthermore,  the

differential dynamics of proteins and lipids, with only lipids mobilised in the good condition state,

only proteins in the poor condition state, and both proteins and lipids in the intermediate condition

state,  elucidates  the non-linear  pattern observed in the relationship between energy density  and

water  content.  Overall,  our  results  highlight  the  importance  of  monitoring  the  intraspecific

variations in water content to predict the proximate composition and energy content in small pelagic

fish and better assess, individual and population conditions in changing ecosystems as well as better

parameterise bioenergetic models.

Key words: Bay of Biscay, condition, energy, lipid, protein, water content, small pelagic fish.

1. Introduction

Energy content has long been proposed as a fundamental, integrated and reliable indicator of the

condition of individuals  (Molnár et al., 2009), populations  (Pagano  et al., 2018), and ecosystems

(Benoit-Bird, 2004; Spitz and Jouma’a, 2013; Pothoven and Fahnenstiel, 2014). Energy content is

key to the understanding of the observed variability in animal life history traits such as growth,

reproduction  and  mortality  and  is  biochemically linked  to  body composition.  As  such,  body

composition has been studied for a long time in both farmed and wild mammals  (Moulton, 1923;

Noren et al., 2003), birds (Eits et al., 2002; Rivera-Torres et al., 2011; Guglielmo, 2018) and fish

(Groves, 1970), for its large significance in various aspects of individual physiology, biology and

ecology. Body composition mostly varies in response to feeding  (Gerking, 1955; Bonvini  et al.,

2015) and ontogeny (Wuenschel et al., 2006; Bakhtiarvandi et al., 2014). It can give insights into

the well-being or condition of the animal through the amount of lipid or protein reserves (McCue,

2010). 
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Lipids are the most variable component within an animal's body, serving as the primary energy

reserve to  be catabolised  (McCue,  2010).  Their  quantity  is  regarded as a  good indicator  of an

organism's condition (Lloret, 2014) and can vary significantly, not only between individuals, but

also  throughout  an  individual  life  cycle,  due  to  both  internal  factors,  reproductive  status  and

ontogeny,  and environmental  variations,  ranging from 2% to  20% in fish for  example  (Lloret,

2014). Proteins usually represent the dominant component of animals weight, after water, with their

quantity being relatively stable (approximately 20% of wet mass in fish, Lloret, 2014), although

they can be catabolised to provide energy when lipids are depleted (Savitz, 1971; Black and Love,

1986). While both proteins and lipids serve as sources of energy, proteins primarily contribute to

structural components, whereas lipids represent mobilisable energy reserves. Ash is a highly stable

component, as it constitutes inorganic molecules (scales, skeleton) and is strongly correlated with

the  organism’s  length  (McComish  et  al.,  1974).  In  fish  studies,  four  components  are  typically

considered:  water,  ash,  protein  and  lipid.  Carbohydrates  are  generally  not  considered,  as  they

constitute a very small proportion of wet mass (<0.14%; Brett and Groves, 1979). As water and ash

are not energetic, energy content is intrinsically linked to protein and lipids content and can then be

assessed using the energy density of these components (Breck, 2008, 2014; Schloesser and Fabrizio,

2015). 

In nature, all animals can face periods of food deprivation, and some, such as fish, can cope with

long periods of starvation  (McCue, 2010).  During these periods,  proximate  composition  varies,

eventually reaching energy depletion. For an animal with plenty of reserves,  food deprivation is

usually followed by three phases for birds (Le Maho et al., 1981; Robin et al., 1988; Groscolas and

Robin, 2001), mammals (Cherel et al., 1988, 1991, 1992; Caloin, 2004) and fish (Bar, 2014). Phase

1 is short and characterised by the mobilisation of protein and/or lipids to produce energy, phase 2

lasts longer and involves lipids catabolisation, until phase 3 where lipids are depleted and proteins

become the main source of energy (Bar, 2014). Studying the effect of starvation on animals has

been mainly assessed in controlled environments, following individuals in longitudinal experiments.
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Identifying  condition states and understanding the respective contributions of lipids and proteins

when reserves are catabolised in wild organisms remains challenging. The scarcity of extensive in-

situ datasets documenting fish proximate composition and energy density, over a wide range of fish

condition, has limited our understanding of the variations in wild fish condition.

Water content (or dry mass content), which shows a strong relationship with energy density (R2 >

0.90) for many  taxa (Ciancio  et  al.,  2007),  provides  a quick and reliable  method for assessing

energy density. This relationship is mainly related to the catabolism of lipids, which once mobilised

lead to a relative increase of water content and a decrease in energy density.  For fish, numerous

studies  have  explored the  correlation  between water  content (or  dry mass  content)  and energy

density  (Hartman and Brandt, 1995; Tirelli  et al., 2006; Dubreuil and Petitgas, 2009; Gatti et al.,

2018). However,  Hartman  and  Brandt,  (1995)  and  Gatti  et  al  (2018)  have  shown  that  this

relationship  was nonlinear.  This non linearity  was discussed with respect  to  size and ontogeny

effects  (Wuenschel  et al., 2006). Although energy density and proximate composition have been

extensively  studied in  fish,  their  interdependent  variations  still  remain  misunderstood.  We here

suggest that the usual representation of proximate composition, water content and energy density in

relative  terms,  has maintained confusion in  the interpretation  of  the absolute  variation  of  these

variables  along a gradient  of fish condition.  Specifically,  a change in the relative value of one

component will inevitably affect the relative value of another component, even if the absolute term

remains constant. Unraveling the patterns in their absolute variations would therefore benefit the

community.

Small pelagic fish (SPF) are high-fat, high-energy forage species, that play a key role in pelagic

ecosystems, transferring energy from plankton to higher trophic levels (Cury, 2000). In temperate

shelf ecosystems, such as the Bay of Biscay or the English channel, SPF energy density displays

large variations, with low energy density in winter and spring after overwintering and high energy

density in summer and autumn during and after the feeding season (Spitz and Jouma’a, 2013; Gatti

et al., 2018). Because farming small pelagic fish remains challenging (but see Bandarra et al, 2018

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106



Queiros et al., 2019, 2021), no SPF proximate composition has been studied in vivo. These fish

species  are  hence absent  from existing reviews of experimental  studies  exploring  strategies  for

dealing with starvation and biochemical processes at stake (McCue, 2010; Bar, 2014).

Our study was based on a large and unique dataset of proximate composition and energy density of

European  anchovy  Engraulis  encrasicolus (Linnaeus  1758),  hereafter  anchovy,  and  European

sardine Sardina pilchardus (Walbaum 1792), hereafter sardine, sampled in the Bay of Biscay and

the English Channel. We aimed to provide new insights on the link between proximate composition,

state in fish condition and associated energy density. First, we characterised the patterns of variation

of protein and lipid contents over the observed range of water content, to derive distinct condition

states. Second, we tested the effect of internal (reproductive status and length) and external (season

and region)  factors  on the individuals  condition  state.  Third,  we checked if  the  water  mass  in

absolute terms was varying across the different condition states in response to the variations of

proximate composition. Fourth, we assessed the respective contributions of proteins and lipids to

energy  supply  in  each  condition  state,  when  energy  has  to  be  mobilised.  Finally,  we  further

investigated the non linearity  in the well-known relationship between energy density and water

content, in light of lipid and protein content variations.

 2. Material and methods

2.1. Study area and sampling

Juvenile and adult anchovy and sardine were collected from 2014 to 2017 in the Bay of Biscay and

the English Channel (Figure 1). All the data used in this study were made available in Huret et al.

(2024). Fish were sampled during the PELGAS (Doray et al., 2000; 2018b), EVHOE (Laffargue et

al, 1987), CGFS (Giraldo et al, 1988) and CAMANOC (Travers-Trolet and Verin, 2014) scientific

surveys conducted by IFREMER on the RV “Thalassa”, during the JUVENA survey conducted by

AZTI (Boyra et  al,  2003),  and from commercial  landings  within the European Data Collection
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Framework (DCF). The PELGAS integrated pelagic survey monitors small pelagic fish and their

ecosystemin spring, while EVHOE bottom trawl survey evaluates demersal fish communities in

autumn, both in the Bay of Biscay. The CGFS and CAMANOC bottom trawl surveys evaluate

demersal fish communities and their environment in the English Channel in autumn. Despite their

focus on demersal fish communities, EVHOE, CGFS and CAMANOC surveys catch small pelagic

fish in sufficient numbers to get samples representative of the fish condition in autumn (Gatti et al,

2018). JUVENA survey monitors the abundance of juvenile anchovy in early autumn in the Bay of

Biscay.  Samples  from  commercial  landings  were  obtained  as  part  of  the  national  CAPTAIN

research project. 

A total of 503 anchovies and 976 sardines sampled between 2014 and 2017 were used in this study

(Table 1). Sampling locations were representative of the species core distribution areas in the Bay

of Biscay and the English Channel (Figure 1). Each fish was individually measured to the nearest

tenth of a centimeter and weighed to the nearest tenth of a gram. Maturity stages were determined

following ICES guidelines (ICES, 2008) based on macroscopic gonads observation and using a six-

stage  key  as  follows:  stages  1  &  2  indicate  immature  and  developing  individuals,  stages  3–5

indicate three steps of increasing gonad development and the spawning period (stage 3: partial pre-

spawning; stage 4: spawning (hydrated); stage 5: partial post-spawning), and stage 6 features the

final post-spawning period. Fishes characterised by maturity stages 3, 4 or 5 were considered as

being in an active reproductive period as opposed to fishes in stages 1, 2 or 6. These measurements

were taken either at sea or later in the laboratory. A wide range of body lengths (4.7 – 19.1 cm for

anchovy and 8 – 26.8 cm for sardine) and masses (0.5 – 50.2 g for anchovy and 3.4 – 162.2 g for

sardine) was available, representing the size spectrum of the two species across juvenile and adult

stages. The collected fish were frozen individually at -20°C before laboratory processing.
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Figure 1: Sampling locations and associated seasons, for anchovy (left) and sardine (right) from the

six data sources considered: PELGAS (spring in the Bay of Biscay), JUVENA and EVHOE (autumn

in the Bay of Biscay) and CGFS/CAMANOC (autumn in the English Channel) surveys, as well as

commercial landings (CAPTAIN project, several seasons and both regions). Black lines represent

isobaths of 100, 200 and 1000 meters. 

2.2. Water content

In the laboratory, fish were unfrozen, ground and freeze-dried for at least 48 hours. Water content

of the entire fish was determined from dry  mass (MD) and wet  mass (MW) ratio. Then, fish were

ground again to obtain fine homogeneous dry powder for subsequent analysis. In this study, the

term “content” refers to the relative proportion of the component on the total fish mass. It will be

used for ash, lipid, protein and water components. 
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2.3. Proximate composition analysis

Ash content  was determined gravimetrically  by combusting  dried tissue in  a  muffle  furnace  at

550°C  for  six  hours.  Lipids  and  proteins  were  analysed  by  a  certified  laboratory  (Labocea,

Plouzané,  France).  Protein content  was estimated using the Kjeldahl method  (Sáez-Plaza  et al.,

2013).  It  consists  in  first  determining the quantity  of nitrogen contained in  the sample,  and to

convert it into protein content using a conversion factor (6.25 here, Sáez-Plaza et al., 2013). Lipid

content was determined by hydrolysis, using petroleum ether as an organic solvent. Carbohydrates

represent  less than 1% of fish mass  and were thus neglected  as  in  previous  studies  (Brett  and

Groves, 1979; Craig, 1977; Craig et al, 1978). Protein, lipid and ash content did not exactly sum to

1 in  dry weight (DW,  anchovy: mean = 0.91, sd = 0.04;  sardine: mean = 0.90, sd = 0.04). This

discrepancy may arise from residual water,  measurement  uncertainties,  or  to a lesser extent the

exclusion  of  carbohydrates.  Body component  contents  have  been  normalised  by  dividing  each

component by the sum of  lipids, proteins and ash content, to sum to one, enabling comparisons

between fishes, assuming proportional errors across the components (Breck, 2014). Values of water,

protein, lipids and ash masses were calculated by multiplying the fish body mass by the normalised

percentages  of  fish components.  A total  of  104 and  116 proximate  composition  analyses  were

performed for anchovy and sardine, respectively (Table 1).

2.4. Energy density 

Energy density measurements were performed following the protocols of  Dubreuil and Petitgas,

(2009) and Spitz and Jouma’a, (2013). Two subsamples of fish powder were placed in an adiabatic

bomb  calorimeter  (IKA C-4000  adiabatic  bomb  calorimeter,  IKA-WerkeGmbh  & co.  KG)  for

energy measurements. The energy density (ED, kJ.g-1 dry mass) was determined by measuring the

heat  released  through  the  combustion  of  a  small  subsample,  approximately  200  mg.  If  the

coefficient  of variation  between the two measurements  exceeded 3%, a third measurement  was

made. Finally, ED subsamples measurements were averaged and assigned to each individual fish.
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Energy density analyses were conducted on 503 individuals for anchovy and 976 individuals for

sardine (Table 1).

Table 1: Sampling design: data sources, region, season, number of samples per species for energy

density and proximate composition analysis. 

Data sources Region Season
Energy density Proximate composition

Anchovy Sardine Anchovy Sardine

PELGAS Bay of Biscay
Spring
(May)

186 204 17 17

EVHOE Bay of Biscay
Autumn

(Oct-Nov)
130 91 31 12

CGFS/
CAMANOC

English Channel
Autumn

(Sept-Oct)
91 164 24 25

JUVENA Bay of Biscay
Autumn
(Sept)

22 0 0 0

CAPTAIN
Bay of Biscay,

English Channel
All 74 517 32 62

Total 503 976 104 116

2.5. Statistical analysis

The contents of proximate components,  namely  lipids,  proteins and ash, were used as response

variables and water  content as the  explanatory variable (Breck, 2008, 2014) in segmented linear

models (Muggeo, 2008). Segmented linear models (SLM) are linear regression models where the

relationships  between the response and one or more explanatory variables  are  piecewise linear,

represented by two or more straight lines connected at unknown values, referred as breakpoints.

SLM were used to identify breakpoints delimiting intervals  in the relationship between proximate

components and water content.  These intervals were assumed to represent fish  condition states,

defined by thresholds in water content. 

Multinomial logistic regression (Starkweather and Moske, 2011) analysis were used to examine the

influence of both internal (length and reproductive status) and external factors (season and region)

on the condition states, the response variable comprising three categories: poor, intermediate, and
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good.  This  regression  method  extends  the  binomial  logistic  regression  to  situations  where  the

dependent variable is nominal with more than two categories. The intermediate state was chosen as

the reference category, representing the state with the most available data, while good and poor

states were the alternative categories. The optimal model for each species was determined through

stepwise analysis based on the Akaike Information Criterion (AIC). Odds ratios (ORs) with 95%

confidence  intervals  (CI)  and  associated  p-values  were  used  to  display  the  results.  The  OR

represents the likelihood of the independent variable to belong to a specific category relative to the

reference category. The OR is therefore greater than 1 if the individual has a higher probability to

be in the considered category than in the reference category,  and less than 1 if  it  has a  lower

probability to be in the considered category.

Breck (2008) showed that proteins  are closely linked to water content. The loss of protein during

starvation was shown to be accompanied by water  losses. Thus,  we investigated the effect of the

content in proximate components other than water on the water mass, independently of fish length,

using the following multiple linear regression model: 

W ~ L+p+l+a+ϵ (1)

With W the mass of water in gram, L the fish length in cm, p,  l and a the protein, lipids and ash

contents, respectively and ε the residuals term. 

Log-log linear relationships were fitted with proximate components masses as response variables,

and water mass as  explanatory variable, for  each condition state determined from the segmented

regression, for anchovy and sardine. Additionally, a covariance analysis (ANCOVA) was applied to

assess  if  the relationships  between water  mass  and proximate  component  mass  differed among

condition states. 

The respective  contributions  and their  associated  uncertainties  of  lipids  and proteins  to  energy

mobilisation were calculated using the variation of each component (i.e. regression slopes) within

the  different  intervals  (i.e.  condition state).  Considering  the  higher  energy  content  of  lipids
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compared to proteins, we assessed energy contributions in terms of both mass and energy. Usually,

energy density of lipids ranges from 34.7 to 39.5 kJ.g-1 (Schloesser and Fabrizio, 2015), and energy

density of proteins is taken as 23.6 kJ.g-1 (Paine, 1971; Beamish et al,  1975; Brett and Groves,

1979). Consequently, we used the value of 23.6 kJ.g-1 for protein and 38.5 kJ.g-1 for lipids, based on

the measurement of mesenteric fat of sardine using bomb calorimetry (n=4, CV = 1.2%) which fits

in the range of the literature. Calculations of the respective contributions based on the regressions

are detailed in appendix A.

Finally, the relationship between energy density and water content was further investigated. The

former was used as the response variable and the latter as the explanatory variable using two linear

regression models. The standard one was fitted to all individual data together. An alternative model

was a segmented linear model between water content and energy fitted over each condition state. 

Linear  models  goodness  of  fit  was  assessed  using  classical  diagnosis  tools  (coefficients  of

determination  (R2),  residuals  Q-Q plots,  residuals  versus  fitted  values  plots,  standard  error  and

confidence  interval  at  95%  of  regression  coefficients).  Statistical  tests  were  performed  at  a

significance level of 0.05. Analyses were performed using the statistical R software (R Core Team,

2023).  Segmented  regression  analysis  was performed  using  the  package  segmented (Muggeo,

2008).  Multinomial  logistic  regression  models  were performed  using  the  function  multinom in

package nnet.

2.6. Ethical statement

Ethical review and approval were not required for this study because it did not involve animal

experimentation or harm. No animals were involved in the conduct of this study as the analysis was

done on previously collected data on wild-caught fish that were sampled within the European Data

Collection Framework. 
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3. Results

3.1. Fish condition states from proximate composition

Strong relationships  were found between contents  of  water  and proximate  components,  namely

proteins  and  lipids  (Figure  2).  The  segmented  regression  analysis  identified  two  breakpoints,

characterising a change in the regression slopes between water content and contents in proximate

components for both anchovy and sardine (Figure 2, Table 2  and Table A1). Variation in water

content explained a great proportion of lipid content variation in the segmented regression (R2 equal

to 0.90 and 0.91 for anchovy and sardine, respectively). Water content variation explained a lower

proportion of protein variation (R2 equal to 0.52 and 0.50 for anchovy and sardine, respectively).

Six among eight breakpoints were significant. Only the second lipid breakpoint of anchovy and the

second protein breakpoint for sardine had p-values higher than 0.05 (0.32 and 0.12, respectively,

Table 2).  Despite this non significance, these breakpoints have been considered in the rest of the

results  as  their  complementary  breakpoints  (2nd protein  breakpoint  of  anchovy  and  2nd lipid

breakpoints for sardine), as well as their counterparts in the other species, are significant, which

suggests two changes in the pattern of proximate composition against water content that appeared

interesting to further investigate in our study.

For anchovy and sardine, the first lipid breakpoint occurred respectively at 68.4% and 66.2% of

water content, and the second at 75% and 74.5%. Similarly, the first protein breakpoint occurred

respectively at 68.4% and 69.4% of water content, and the second at 75.5% and 75.6%.  For each

species, the two protein and lipid breakpoints were close, the maximum difference being 3.2% of

water content between the first breakpoints for sardine. Considering these similarities, and in order

to isolate three distinct composition intervals for each species, we used the average breakpoints

calculated over the corresponding protein and lipid breakpoints as common breakpoints, for each

species (Table 2). Based on these average breakpoints we identified three  condition states, which

exhibited remarkable similarities between the two species (Figure A1, Table 2). In the first state,
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fish water content was lower than 68.4% and 67.8% for anchovy and sardine, respectively, and lipid

content was higher than 5% in wet mass for both species. Here, we assumed that the higher the lipid

content,  the better  the condition state.  Within this ‘good condition’  state,  lipid content strongly

decreased as water content increased,  while protein content slightly increased.  The second state

extended from 68.4% to 75.2% and from 67.8% to 75% in water content for anchovy and sardine,

respectively.  Both  lipid  and protein  contents  decreased  with  increasing  water  content,  albeit  at

different  rates in this  ‘intermediate  condition’ state.  In the third state,  fish water contents were

above 75.2% and 75% for anchovy and sardine, respectively. Lipid content reached a minimal value

“threshold” of ca.  1% suggesting exhaustion of lipid reserves, while protein levels significantly

decreased. Fish were considered in a ‘poor condition’ state. 
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Figure 2: Observed contents of proteins (blue dots), lipids (purple dots) and ash (green

dots) in  anchovy and sardine body composition, as a function of water content. Solid

lines: segmented regression models for proteins (blue lines), and lipids (purple lines).

The dotted vertical lines represent the mean values of the breakpoints identified from

proteins and lipids segmented regressions. 

Table 2: Breakpoint values for lipids and proteins, defining condition states in anchovy

and sardine. Slope coefficient, associated standard error and confidence intervals for

each segment are presented in Table A1

Anchovy Sardine

Protein Lipid Mean Protein Lipid Mean

Value P-value R2 Value P-value R2 Value Value P-value R2 Value P-value R2 Value

Breakpoint 1 0.684 3.3.10-5 0.52 0.684 1.6.10-4 0.90 0.684 0.694 6.7.10-5 0.50 0.662 3.4.10-3 0.91 0.678

Breakpoint 2 0.755 2.3.10-2 0.52 0.750 3.2.10-1 0.90 0.752 0.756 1.2.10-1 0.50 0.745 2.6.10-3 0.91 0.750
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3.2. Effect of length, season, reproductive status and region on the condition state

Through multinomial logistic regression analyses, we explored the impact of season, region, length

and  reproductive  status  on  the  condition  states  of  anchovy and  sardine,  with  the  intermediate

condition state serving as the reference category (Figure 3, Table A2, Table A3). For anchovy, the

optimal  model,  as  determined  by  the  AIC,  included  all  variables  (season,  reproductive  status,

region, and length). In contrast, for sardine, the reproductive status variable was excluded from the

best model, while season, region, and length variables were retained. 

For  anchovy,  seasonal  variations  significantly  influenced  its  condition  state  (Figure  3).  During

summer [OR = 6.91.101, 95% CI = 2.27 - 2.10.103] and autumn, they were more likely to be in good

condition than in winter, whereas in spring, the likelihood decreased. Conversely, for all seasons,

the likelihood of being in a poor condition was lower than in winter. Similar patterns are observed

for  sardine,  despite  non  significant  ORs  for  summer  and  autumn,  for  poor  condition  state.

Regarding region, both species exhibited comparable patterns although significance was not always

verified. Anchovy and sardine from the English Channel were more likely to be in good condition

(p-value  =  0.052  for  anchovy  and  0.061  for  sardine),  and  less  likely  to  be  in  poor  condition

compared to those  from the Bay of Biscay (p-value  < 0.001 for anchovy and p-value = 0.54 for

sardine).  Both species also displayed size-related  patterns (Figure 3). Larger sardine  were more

likely to be in good (OR > 1 and p-value < 0.001) and poor (OR > 1 and p-value < 0.001) condition

state than smaller sardine. Results are similar for anchovy with larger individuals more likely to be

in good (OR > 1 and p-value < 0.05) and poor (OR > 1 but p-value > 0.05) condition state than

smaller ones. Graphical representation supports these results (Figure A2). For anchovy, being in

good condition was unlikely during reproduction, whereas being in poor condition was more likely

(Figure 3).  ORs, associated 95% CIs and p-values are available  in Table A2 and Table A3. A

graphical representation of individual condition states for anchovy and sardine considering each

explanatory variable is provided in Figure A2.
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Figure 3: Summary of multinomial logistic regressions for anchovy (a) and sardine (b). Odds ratios

and 95% confidence intervals for explanatory variables associated with condition states. The inter-

mediate condition state served as the reference group. Filled dots indicate significance (p-value <

0.05) and empty dots indicate non-significance (p-value > 0.05).

3.3. Variation in water mass

The influence of proximate component  content on water mass independently of fish length was

explored using a multiple linear regression (Eq.1) (Table 3). First, length had a significant effect on

water mass (p-value < 2.10-16) for both species, explaining 88% of the variance for anchovy and

94% for sardine. Second, protein or lipid content had no significant effect on water mass (p-value >

0.05) for both anchovy and sardine. Third, ash content had a significant effect on water mass for

anchovy (although explaining only 2.21% of the variance) but not for sardine. 

Table 3: Results of the multiple regression of water mass as a function of proximate component

content and length, for anchovy and sardine.

Anchovy Sardine

Coefficient p-value
Explained
variance

Coefficient p-value
Explained
variance

Intercept -23.0 ± 3.5 3.6.10-9 -56.0 ± 8.0 2.2.10-10

Length 3.0 ± 0.1 < 2.10-16 88% 5.6 ± 0.2 < 2.10-16 94%

Protein 3.6 ± 13.5 0.80 0.002% -30.0 ± 28.3 0.29 0.06%
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Lipids 9.8 ± 6.0 0.10 1.44% -3.7 ± 11.4 0.74 0%

Ash -234.1 ± 44.8 9.9.10-7 2.21% -67.3 ± 105.0 0.52 0.02%

3.4. Relationships between mass of water and proximate components

Strong  log-log  linear  relationships  were  found  between  protein  and  water  masses,  as  well  as

between ash and water masses, for  anchovy and  sardine (Table A4). R2 were similar for protein

(0.93  and  0.95  for  anchovy  and sardine,  respectively)  but  differed  for  ash  (0.89  and  0.96  for

anchovy and sardine, respectively). Lipid mass exhibited higher variability for a given water mass,

with a low associated R2 (< 0.3) for both species.

The relationships between the mass of lipids, of proteins, of ash and that of water were investigated

for each of the three condition states (Figure 4). Log-log linear model relating lipid to water masses,

segmented by condition state, displayed higher explained variance (R2 > 0.7) for individuals in good

state for both  anchovy and  sardine (Table A4).  Significant differences in intercepts  were found

between condition states in the segmented linear models of protein and water masses and lipids and

water mass (all P-values < 0.001 for  anchovy and  sardine in ANCOVA results), but not in the

model relating ashes to water (ANCOVA P-values = 0.21 for anchovy and 0.36 for sardine, Figure

4, Table 4). The interaction between the condition state and water mass had also a significant effect

on proteins and lipids (all ANCOVA P-values < 0.001 for anchovy and sardine) but not on ashes

(ANCOVA P-value = 0.16 for anchovy and 0.14 for sardine, Table 4).
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Figure 4: Observed mass (y-axis) of proteins (blue dots), lipids (purple dots) and ash (green dots)

in  anchovy  and  sardine  body  composition,  as  a  function  of  water  mass  (x-axis).  Solid  lines:

regression models for the three condition states for proteins (blue lines), lipids (purple lines) and

ash (green lines). 

Table 4: P-values of ANCOVA testing the effect of the condition state on the proximate components

mass versus water mass relationship for anchovy and sardine. 

Anchovy Sardine

Proteins Lipids Ashes Proteins Lipids Ashes

Water mass < 2.10-16 < 2.10-16 < 2.10-16 < 2.10-16 1.10-13 < 2.10-16

State < 2.10-16 < 2.10-16 0.207 < 2.10-16 < 2.10-16 0.357

Water mass * State 1.2.10-4 1.10-13 0.163 2.1.10-7 4.10-14 0.143

3.5. Lipids and proteins contribution to energy mobilisation

Based on the slope coefficients estimated within the three intervals, we determined the contributions

and associated uncertainties  of lipids and proteins  to energy mobilization in terms of mass and

energy (Figure 5, Table A5, Table A6). Within the  good  condition state, lipids emerged as the

primary source of energy mobilisation in both anchovy and sardine, representing nearly all energy

mobilized (94% and 96% in mass and energy, for anchovy and 93% and 96% in mass and energy,

for sardine). In the intermediate condition state, lipids and proteins contributed roughly equally to

energy utilization in terms of mass for both species (53% lipids and 47% proteins for anchovies;

52% lipids and 48% proteins for sardines). However,  given the higher energy density of lipids

compared to proteins, lipids remained the dominant contributor to energy in terms of energy (65%

lipids  and 35% proteins  for anchovies;  64% lipids  and 36% proteins for sardines).  In the poor

condition state, proteins supplanted lipids as the primary source of energy for both species, due to

lipid depletion (94% in mass and 90% in energy for anchovies; 86% in mass and 79% in energy for

sardines).
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Figure 5: Relative contribution to energy  mobilisation of lipids (purple area) and proteins (blue

area) with associated uncertainty, expressed in terms of mass (a) and energy (b), for anchovy and

sardine according to the condition states (good, intermediate or poor). 

3.6 Relationship between fish water content and energy density

The linear models between energy density and water content, segmented or not by condition state,

are presented in Figure 6a.  Significant differences in regression slopes (Table A7) were observed

between unsegmented and segmented linear  regression, particularly for states of good and poor

conditions. The regression slopes for good condition (-46.3±3.74 for anchovy and – 43.5±1.15 for

sardine) were higher, while the slopes for poor condition (-18.8±1.14 for anchovy and -28.6±1.29

for sardine) were lower than the regression slopes of unsegmented models (-31.2±0.53 for anchovy

and -39.8±0.26 for  sardine).  Using both  segmented  and unsegmented  regression equations  (for

good, intermediate, and poor states), we predicted energy density based on water content for both

anchovy and sardine. Energy density predictions from the unsegmented linear model were more

accurate for sardine (R² = 0.959) than for anchovy (R² = 0.874), primarily due to poor predictions of
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extreme energy density values for anchovy (Figure 6b). Using a linear model segmented by each

condition state (Figure 6c) improved the accuracy of energy density predictions for fish in good and

poor condition, and also globally, particularly for anchovy (R² = 0.913). 
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Figure 6: (a) Measured energy density as a function of water content (x-axis) and associated linear

models based on all individuals (black line), individuals in good (green dots and line), intermediate

(orange dots and line) and poor (red dots and line) condition states. Measured energy density (y-

axis) as a function of predicted energy density (x-axis) from a linear models fitted to all individuals

(b) and from segmented linear models fitted to individuals in good (green), intermediate (orange)

and poor (red) condition state (c). 

4. Discussion

Based on a unique dataset of energy density and proximate composition measured on almost 1500

anchovy and sardine sampled over a large region encompassing the Bay of Biscay and the English

Channel, we derived original patterns of variation and dependency between energy, water, lipid and

protein content. Working on wild individuals preclude any longitudinal studies in which individuals

and their condition are followed through time. Instead, we developped a cross-sectional approach

on a large number of individuals over a large range of size and from different seasons to uncover

those interesting patterns.We defined for the first  time different  condition states  in wild fishes,

corresponding to different levels of lipid and protein contents, as well as to different contribution of

those metabolites when the lack of direct energy from food requires body reserves to be mobilised.

Following the identification of those condition states, we were able to i) assess that absolute water

mass, unlike relative water content, does not vary with fish condition, and ii) improve the modelling

of the non-linear relationship between energy density and water content.

4.1. Three condition states based on relative proximate composition

We identified three distinct  condition states in wild anchovy and sardine, based on their lipid and

protein  composition,  relative  to  water content.  Our  finding  is  consistent  with  previous  studies

describing three phases of starvation for mammals (Cherel et al., 1988, 1991, 1992; Caloin, 2004),

birds (Le Maho et al., 1981; Robin et al., 1988; Groscolas and Robin, 2001) and fish (Bar, 2014).

We can not however ascertain that fish between good and intermediate states were starving, as we

did not follow individuals in a controlled longitudinal experiment. Instead, we may consider that the
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three  condition  states  identified  in  our study  correspond  to  three  different  phases  of  energy

mobilisation or reserve constitution. The patterns of variation in the proximate composition were

strikingly  similar  between  anchovy  and  sardine.  Breck  (2014)  have  also  represented  lipid  and

protein variations relative to water content for five fish species (no small pelagic fish) but without

demonstrating  different  condtion  states.  Investigating  these  variations in  other  fish  species,  in

particular small pelagics, would allow to investigate the genericity of these three condition states or

phases of energy mobilisation.

Our results confirmed that fish in good condition have high lipid (> 5%) and protein (> 20%) and

low water (< 68 %) contents. While some studies indicated that fish may use protein as primary

energy source (Marqueze et al., 2017) or a combination of lipid and protein (Van Dijk et al., 2005;

Gunasekera et al., 2001.),  we showed that  anchovy and sardine primarily used lipids as source of

energy which was also described for other fish species  (Savitz, 1971; Hung  et al., 1997). In the

intermediate condition state, fish exhibited lower lipid levels (< 5%), high yet decreasing protein

levels (> 20%), and average water content ranging from 68 to 75%. Within this state, fish continued

to utilise lipids as a source of energy but started to consume proteins, which is in agreement with

observations  from  other  studies  (Bar,  2014).  Within  the  poor  condition  state, fish  had  nearly

depleted all lipids and only relied on protein mobilisation for energy production (Black and Love,

1986). We considered that the remaining ~1% lipids were structural (Bayse et al., 2018; Biro et al.,

2021) and could not be mobilised. De Leonardis and Macciola (2004) showed that the difference of

total lipid between lean and fat sardine were exclusively due to increase of reserve lipid and not

affecting structural lipids. Fish in poor condition exhibited high water content in our study (>75%),

consistent  with  Breck’s  (2008)  model  results.  Because  protein  metabolism  is  energetically

demanding (Schmidt-Nielsen., 1997; Anthony et al., 2000), poor condition state impacts metabolic

rates (Queiros et al., 2021) and is likely brief and critical. However, Queiros et al. (2021) showed

that some sardine were able to survive 57 days without food in-vivo. Survival time when starving

should be even shorter  in-situ, as poor condition can impact swimming capacity  (Martínez  et al.,
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2003; Faria et al., 2011), and reduce predator escapement capacity (Biro et al., 2021). Reversibility

from poor to intermediate condition state has been observed in controlled environments (Marqueze

et al., 2017), but has never been documented in the wild so far. 

4.2. What determines the fish condition state?

We identified three condition states along the gradient of water content corresponding to different

utilisation strategies (when water content increases), or creation (when water content decreases), of

lipid reserves or proteins. Since we were not in a starvation experiment framework, we explored the

internal and external drivers that could explain the position of the fish in a given state. 

We found that season strongly influenced  anchovy and  sardine condition state. Our results are in

agreement with other studies studying anchovy and sardine condition in the Bay of Biscay through

energy density (Gatti et al, 2018; Rosa et al, 2010) or Le Cren body condition index (Véron et al,

2020). They found minimum energy density (or Le Cren index) in winter and spring when food is

limiting and a peak in summer and autumn after energy storage during the feeding season. Same

patterns  have been  shown for  the  Northwest  Atlantic  forage  species  (Wuenschel  et  al,  2024).

Seasonality in energy density in small pelagic fish has also been demonstrated in Mediterranean

sea, although the peak of energy density was in spring for anchovy and in autumn for sardine (Albo-

Puigserver et al., 2017; Campanini et al, 2021; Schismenou et al, 2024).The seasonal effect under

environmental variability could also influence the lipid and fatty acid composition (Bandarra et al,

1997 ; Biton-Porsmoguer et al, 2020), affecting the fish physiology as some fatty acid are important

components for growth, survival and egg quality (Almansa et al; 1999; Bruce et al; 1999; Garrido et

al, 2007; Tocher, 2003). However, variations in energy density are mainly due to changes in total

lipid content  varying between 36.2 to 39.5 kJ.g-1 (Schloesser and Fabrizio,  2015).  Despite this

strong effect of season on the condition state, we found some fish in very poor condition in autumn,

i.e. two large sardines in reproduction. Conversely, no fish in good condition were found in winter

when food was limited, nor in spring when reserves did not have time to replenish. 
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Region has also an important impact on condition state with anchovy and sardine in good condition

mostly sampled in the English Channel, in agreement with other studies (Gatti et al., 2018; Menu et

al., 2023) which is most likely explained by more abundant food (Menu et al., 2023), and can be

generalised along a latitudinal gradient in temperate systems (Huret et al., 2019; Ljungström et al.,

2023). 

For both species, length significantly influenced the condition state, with larger individuals of both

anchovy and  sardine more likely to be in good condition, yet also more prone to being in poor

condition (though not significant for anchovy). Larger individuals seemed capable of accumulating

substantial reserves (Albo-Puigserver et al., 2017) but also mobilizing proteins when lipid reserves

are depleted, in agreement with Gatti et al. (2018), who observed a decrease in energy density in

larger size classes of sardine. Conversely, the prevalence of smaller individuals in the intermediate

state suggested limited reserves and their absence in the poor condition state indicate an inability to

utilize protein for energy mobilization.  These may use protein to prioritize rapid growth, but if

unsuccessful, they may succumb quickly when facing adverse conditions such as during winter

(Dubreuil and Petitgas, 2009).

The influence of reproductive status on fish condition has been extensively discussed (Pethybridge

et al., 2014; Brosset et al., 2015a; Albo-Puigserver et al., 2017; Campanini et al., 2021). In our

study, reproductive status was only retained in the anchovy’s model, indicating that anchovies were

less likely to be in good condition and more likely to be in poor condition during reproduction. 

Working on two species with two different spawning strategies highlighted that the main pattern of

variability in energy or proximate composition in our temperate study area was driven by external

factors (i.e. season and region). The significant effect of internal factors was mostly driven by their

interaction with external factors. Indeed, spawning sardines could be in poor or good condition,

mostly  depending  on  their  reproduction  timing  in  spring  or  autumn,  but  not  because  of  their

reproductive status. However some studies have demonstrated that reproduction has an effect on

lipid content and composition in the Mediterranean Sea (Vila-Belmonte et al, 2024). We were not
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able to highlight this effect for sardine in the Bay of Biscay. We mention that our dataset, although

extensive,  is  not  fully  representative  of  all  variable  combinations  (season,  region,  length,  and

reproductive  status).  This limitation  was mainly  due to species  phenology as well  as migration

patterns, e.g., anchovy being distributed in the North Sea and not in the English Channel during

spring and summer (Huret et al., 2020).

4.3. Water mass does not vary with body proximate composition

We showed that length had a significant effect on water mass,  unlike the proportions of lipid or

protein.  Therefore, water mass  primarily relies on  fish ontogeny  rather than its lipid and protein

content. Although a significant negative correlation exists between lipids and water, it is only valid

in relative content. As lipid content decreases, water content increases but only in relative terms, not

in mass. These results did not agree with previous fish studies, which stated that fish replaced the

loss of lipids or protein with water to maintain osmotic pressure, cell size, and body shape (Love,

1970; Pangle and Sutton, 2005; McCue, 2010; Rosa et al., 2010; Bar, 2014; Nemova et al., 2021) or

on  the  opposite  found  that  water  did  not  replace  lipid  (Savitz,  1971;  Breck,  2008)  but  rather

decreased together with lipids explaining the largest part of weight loss (Niimi, 1972; Breck, 2008

but see Collins and Anderson, 1995). Focusing on small pelagic fish, Dubreuil and Petitgas, (2009)

stated that anchovy replaced water with organic matter during feeding season and replaced organic

matter  with water in winter. Breck (2008) argued that proteins are strongly associated with water,

leading to a loss of water when proteins are consumed. Groves (1970), suggested that proteins are

lost more rapidly than water and argued that a fish in starvation will have a lower protein:water

ratio than a fish in good condition, for the same length. We also showed that fish in poor condition

state exhibited a lower protein:water ratio, or lipid:water ratio, although we showed, thanks to an

analysis  based  on  absolute  mass  rather  than  relative  content,  that  this  discrepancy  is  only

attributable to protein and lipid loss and not variation in water mass.
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4.4. Differential use of lipids and proteins among condition states explain the non

linear relationship between water content and energy density

The strength of the relationship between water content (or dry content) and energy density has been

extensively documented  (Hartman and Brandt,  1995; Tirelli  et al.,  2006; Dubreuil  and Petitgas,

2009; Gatti et al., 2018). Non-linearity has been reported in this relationship (Hartman and Brandt,

1995; Gatti et al., 2018), often attributed to ontogenetic and size-related effects (Wuenschel et al.,

2006) but without clear consensus on the mechanisms at stake. In our study,  we showed that the

well-established relationship between water content and energy density varies for both anchovy and

sardine in response to fish  condition state and body composition. Non-linearity in the energy to

water relationship can be modelled by applying a piece-wise regression, over each condition state

derived from proximate  composition  vs.  water  content  models.  The regression  slopes  for  good

condition  were  steeper  while  the  slopes  for  poor  condition  were  flatter  as  compared  to  the

regression slopes of unsegmented models. A pronounced negative slope means a more pronounced

reduction in energy as water content increases, consistent with the initial loss of lipids with higher

energy density than proteins, followed by the loss of proteins within the poor state. Our findings

increase the predictability of energy density based on a water content proxy. The absence of non-

linearity in this relationship reported in some studies  (Tirelli  et al., 2006; Dubreuil and Petitgas,

2009)  may have stemmed from two main reasons. First, the relationship may not be nonlinear if

most fish are in the same condition state, e.g. in the case of reduced sample size and/or space-time

range. Second, differences in the contributions of lipids and proteins may be difficult to detect in the

case of lean fish with low lipid content (Anthony et al., 2000). However, the genericity of this non-

linearity across species and beyond small pelagic species only (Hartman and Brandt, 1995) calls for

consideration of segmented regressions in future studies before using it to predict energy density.

4.5. Conclusion
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This study highlights the importance of  monitoring and predicting the  intraspecific variations  in

water  content,  proximate  composition  and  energy  content  in small  pelagic  fish.  We  revealed

striking  similarities  between anchovy and  sardine,  suggesting  that  similar  studies should  be

conducted on other small pelagic fish species to verify the larger genericity of the observed patterns.

However,  before  doing  so,  these  relationships  should  be  determined on  a  case  by  case  basis

(McPherson) to validate the use of proxy such as water content or fatmeter measurements, despite

some limitations of this device  (Brosset et al, 2015, Schismenou et al, 2024).In particular, lipid

storage organs may vary from one species to another (e.g. muscle, liver, gonads), which should

influence  the generalisation  of this  relationship.  Integrating  water  content  measurements  during

surveys could provide new insight on individual and population conditions, especially in the context

of the decline condition in the European Atlantic (Doray et al., 2018a; Véron et al., 2020; Taboada

et al., 2024) and Mediterranean areas (Brosset  et al., 2017). Sardine spawners in better  condition

have higher reproduction outcomes,  i.e.  more batches and more viable eggs (Rosa  et al.,  2010;

Brosset  et al., 2016), potentially impacting recruitment.  Monitoring changes in the proportion of

fish in good and poor condition states could offer insights into the evolution of natural mortality

rates, which may be increasing in the Bay of Biscay (Véron et al., 2020) but considered as invariant

in  stock assessment  models  (ICES,  2023).  Finally,  our  observation  of  individuals  in  very poor

condition in the wild raises the following questions: Is this state reversible? If so, what proportion

of  individuals  survives  annually?  Is  it  a  common state in  the  fish  life  cycle?  A  better

characterisation of the overwintering dynamics, especially the survival of individuals, and of the

interplay  with  reproductive  strategies  would  certainly  bring  important  knowledge  for  a  better

understanding of the recruitment process. Furthermore, our research improved our understanding of

the  dynamics  of  reserves  (lipids  and proteins)  that  should  be taken  into  account  for  improved

realism of bioenergetic models (Breck, 2008; Gatti et al., 2017).
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Appendix A. Calculation of lipid and protein contributions to the variation in

fish mass 

The contribution of lipid and protein, in both mass and energy, to  energy mobilisation has been

estimated as the mass variation of each of the two components in relation to the variation in total

body mass. As we did not follow individuals through time like in experimental studies, we had to

assume that the patterns of variation between the body components explored in our study based on

our  field  sampling  is  representative  of  the  patterns  of  variation  of  these  components  for  an

individual through time. 

The starting point is thus the segmented regressions between the lipid or protein content and water

content and its associated slope (equation 1A), which we had to transform in order to obtain a

contribution in absolute mass of lipid or protein to the total body mass variation (equation 8A).

d (
W C

W T
)

d (
W W

W T
)
=aC                                                        (1A)

With Wc the component (lipid or protein) mass, WW the water mass, WT the fish body mass and a the

component slope of the segmented regression.

Using ( u
v ) '=

u ' v− uv '
v ²

we can transform equation (1A) into equation (2A)

dW C ∗W T − W C ∗dW T

W T
2

dW W ∗W T − W W ∗ dW T

W T
2

=aC                                            (2A)

This can be simplified as:

dW C ∗W T −W C ∗ dW T

dW W ∗W T −W W ∗ dW T

=aC                                             (3A)

Then, as we demonstrated (see our result section) that water mass does not vary, dWw = 0  : 

dW C∗ W T −W C ∗ dW T=− aC∗ W W ∗ dW T                                    (4A)

Dividing both terms by dWT we obtain: 

dW C ∗W T

dW T

−W C=− aC ∗W W                                              (5A)
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Or:

dW C ∗W T

dW T

=− aC ∗ W W+W C                                                (6A)

Dividing both terms by WT we obtain:

dW C

dW T

=
−aC ∗ W W +W C

W T

                                                   (7A)

Finally, simplifying WW/WT and WC/WT we obtain:

ContribC=
dW C

dW T

=− aC ∗%W +%C                                            (8A)

With  ContribC the mass contribution of the component  C to energy mobilisation,  %W the water

content and %C the component (lipid or protein) content determined from the mean of all individual

data on considered interval. Since the contributions are based on independent regressions, we do not

obtain contributions somming to 1. Thus we normalised protein and lipid contribution.

Finally,  to  consider  the  energy  contribution  of  each  component,  we  had  to  weight  the  mass

contributions by the energy density of both components (equation 10A).

ContribLEnergy=
ContribLnorm∗ 38.5

ContribLnorm∗ 38.5+ContribPnorm∗ 23.6
                         (9A)

With ContribLEnergy the lipid energy contribution to energy mobilisation, ContribLnorm and ContribPnorm

the normalized lipid and protein, respectively, masses contribution to energy mobilisation. Protein

energy contribution ContribPEnergy = 1 ContribLEnergy.

To  calculate  the  uncertainties  associated  to  both mass  and  energy  contribution  to  energy

mobilisation,  we calculated mass and energy contribution  (equations  8A to 10A) by taking the

minimum and maximum value of slope aCmin = aC – standard error and aCmax = aC + standard error

for each component. 
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Appendix B. Segmented regression equations

Table A1: Slope coefficients and associated standard error (SE) and confidence interval at 95% (IC

95%) of observed proportions of proteins and lipids in sardine and anchovy body composition, as a

function of water content for each condition state determined by the segmented regression analysis.

Anchovy Sardine

State Coefficient SE IC 95 % Coefficient SE IC 95 %

Water ~ Lipids

Good -1.38 ±0.11 [-1.59 ; -1.18] -1.43 ±0.12 [-1.66 ; -1.20]

Intermediate -0.64 ±0.09 [-0.82 ; -0.46] -0.78 ±0.10 [-0.97 ; -0.59]

Poor -0.09 ±0.31 [-0.71 ; 0.53] -0.16 ±0.18 [-0.53 ; 0.20]

Water ~ Proteins

Good 0.23 ±0.09 [0.05 ; 0.42] 0.21 ±0.06 [0.09 ; 0.33]

Intermediate -0.32 ±0.06 [-0.43 ; -0.21] -0.47 ±0.11 [-0.69 ; -0.26]

Poor -1.36 ±0.51 [-2.36 ; -0.34] -0.87 ±0.21 [-1.29 ; -0.45]

Figure A1: Comparison of segmented regressions of lipids (purple lines) and proteins (blue lines)

versus water content for sardine (solid lines) and anchovy (dotted lines), across different condition

states. The vertical lines represent the mean values of the breakpoints identified from proteins and

lipids segmented regressions for sardine (solid lines) and anchovy (dotted lines). 
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Appendix  C.  Length,  season,  reproductive  status  and  region  versus

condition state

Table A2. Multinomial logistic regression table showing the odd ratio and 95% confidence interval

of explanatory variables associated with condition states for sardine (reference group = intermedi-

ate state).

SARDINE Good state Poor state

Season

    Winter

    Spring

    Summer

    Autumn

1

5.09.10-3 [5.09.10-3 ; 5.10.10-3] ***

4.09.105 [1.02.105 ; 1 62.106]***

4.55.105 [1.45.105 ; 1 42.106]***

1

1.02.10-1 [1.47.10-2; 7.10.10-2] *

0.45 [0.05 ; 3.70]

0.26 [0.04 ; 1.86]

Region

    Bay of Biscay

    English Channel

1

3.13  [0.95 ; 10.4]

1

0.62  [0.13 ; 2.93]

Length 1.37  [1.15 ; 1.63]*** 1.57 [1.25 ; 1.97]***

P-value: * <0.05,** <0.01, *** =<0.001

Table A3. Multinomial logistic regression table showing the odd ratio and 95% confidence interval

of explanatory variables associated with condition states for anchovy (reference group = intermedi-

ate state).

ANCHOVY Good state Poor state

Season

    Winter

    Spring

    Summer

    Autumn

1

6.68.10-4 [6.68.10-4 ; 7.00.10-4]***

6.91.101 [2.27 ; 2.10.103]*

9.75.101 [4.76  ; 2.00.103]**

1

3.58.10-14 [5.08.10-15 ; 2.54.10-13]***

4.33.10-13 [8.39.10-14 ; 1.88.10-1é]***

1.36.10-6 [2.18.10-8 ; 1.00.10-4]***

Region

    Bay of Biscay

    English Channel

1

1.06.101 [0.97 ; 1.15.102]

1

6.33.10-6 [6.32.10-6 ; 6.34.10-6 ]***

Length 1.72  [1.03 ; 2.87]* 1.70 [0.89 ; 3.22]

Reproductive status

    No

    Yes

1

1.98.10-8 [1.98.10-8 ; 1.98.10-8 ]***

1

8.16.107 [8.56.106 ; 7.77.108]***
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P-value: * <0.05,** <0.01, *** =<0.001
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Figure A2: Observed content of proteins (diamond) and lipids (circle) in sardine and anchovy body

composition, as a function of water content with colors representing (a) the length, (b) the season,

(c) the reproductive status and (d) the region. The dotted vertical lines represent the mean values of

the breakpoints identified from proteins and lipids segmented regressions, allowing to separate the

three condition states. 
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Appendix  D.  Regression equation characteristics of proximate components

versus water for each condition state

Table A4: Regression equation and associated standard error (±SE) and determination coefficient

(R2) of observed mass of proteins, lipids and ash in sardine and anchovy body composition, as a

function of water  mass for all individuals (all) and for each  condition state (good,  intermediate,

poor)

Anchovy Sardine

log(Proteins) ~

log(Water)

All -1.26 (±0.07) + 1.01(±0.03) x, R2 = 0.93 -1.01 (±0.07) + 0.93(±0.02) x, R2 = 0.95

Good -1.05 (±0.09) + 0.98(±0.03) x, R2 = 0.98 -0.90 (±0.12) + 0.94(±0.03) x, R2 = 0.96

Intermediate -1.24 (±0.06) + 1.01(±0.02) x, R2 = 0.97 -1.10 (±0.05) + 0.96(±0.02) x, R2 = 0.98

Poor -1.14 (±0.15) + 0.92(±0.05) x, R2 = 0.95 -1.11 (±0.17) + 0.91(±0.04) x, R2 = 0.95

log(Lipids) ~

log(Water)

All -4.58 (±0.64) + 1.51(±0.23) x, R2 = 0.29 -2.39 (±0.53) + 0.85(±0.15) x, R2 = 0.21

Good -3.83 (±0.44) + 1.62(±0.15) x, R2 = 0.85 -3.00 (±0.54) + 1.35(±0.15) x, R2 = 0.71

Intermediate -3.25 (±0.56) + 0.98(±0.21) x, R2 = 0.23 -2.56 (±0.31) + 0.86(±0.10) x, R2 = 0.59

Poor -6.93 (±1.32) + 1.92(±0.46) x, R2 = 0.53 -3.67 (±0.59) + 0.81(±0.15) x, R2 = 0.53

log(Ash) ~

log(Water)

All -2.80 (±0.09) + 0.92(±0.03) x, R2 = 0.89 -3.08 (±0.07) + 1.04(±0.02) x, R2 = 0.96

Good -2.44 (±0.15) + 0.81(±0.05) x, R2 = 0.93 -2.83 (±0.16) + 0.98(±0.04) x, R2 = 0.94

Intermediate -2.84 (±0.12) + 0.93(±0.04) x, R2 = 0.87 -3.11 (±0.09) + 1.05(±0.03) x, R2 = 0.96

Poor -3.42 (±0.30) + 1.12(±0.10) x, R2 = 0.89 -2.98 (±0.20) + 1.01(±0.05) x, R2 = 0.94
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Appendix E. Lipid and protein contributions to the variation in fish mass 

Table  A5:  Slope  coefficients  in  segmented  regression  of  protein  and  lipids  and  their  relative

contribution as energy source (calculated using equations 2 and 3) in anchovy across the condition

states.  aL: lipid slope and associated standard error, aP: protein slope and associated standard

error CL mass: lipid mass contribution, CP mass: protein mass contribution, CL energy: lipid energy

contribution, CP energy: protein energy contribution.

Anchovy

Lipids Proteins

aL CL mass CL energy aP CP mass CL energy

Good 1.38 ± 0.11 94% 96% 0.23 ± 0.09 6% 4%

Intermediate -0.64 ± 0.09 53% 65% -0.32 ± 0.06 47% 35%

Poor -0.09 ± 0.31 6% 10% -1.36 ± 0.51 94% 90%

Table  A6:  Slope  coefficients  in  segmented  regression  of  protein  and  lipids  and  their  relative

contribution as energy source (calculated using equations 2 and 3) in sardine across the condition

states.  aL: lipid slope and associated standard error, aP: protein slope and associated standard

error CL mass: lipid mass contribution, CP mass: protein mass contribution, CL energy: lipid energy

contribution, CP energy: protein energy contribution.

Sardine

Lipids Proteins

aL CL mass CL energy aP Cp mass CL energy

Good -1.43 ± 0.12 93% 96% 0.21 ± 0.06 7% 4%

Intermediate -0.78 ± 0.10 52% 64% -0.47 ± 0.11 48% 36%

Poor -0.16 ± 0.18 14% 21% -0.87 ± 0.21 86% 79%
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Appendix  F.  Difference  between  simple  and  segmented  regression  for

water~energy density regression

Table A7: Regression equation and associated standard error (±SE) and determination coefficient

(R2) of observed energy density as a function of percent water for all individuals (all) and for each

condition state (good, intermediate, poor)

Anchovy Sardine

Energy density

~ water

Simple 28.7 (±0.39) – 31.2 (±0.53) x, R2 = 0.87 34.9 (±0.19) – 39.8 (±0.26) x, R2 = 0.96

Strong 38.9 (±2.46) – 46.3 (±3.74) x, R2 = 0.75 37.3 (±0.73) – 43.5 (±1.15) x, R2 = 0.83

Intermediate 32.2 (±0.78) – 36.2 (±1.07) x, R2 = 0.77 33.1 (±0.55) – 37.5 (±0.77) x, R2 = 0.83

Poor 19.2 (±0.88) – 18.8 (±1.14) x, R2 = 0.71 26.5 (±0.99) – 28.6 (±1.29) x, R2 = 0.71
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