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1 Abstract

2 Coastal ecosystems are exposed to anthropogenic pressures worldwide. Seagrass are 

3 sensitive to human activities, especially through physical stress. Among them, boats induce 

4 many pressures including physical degradation through anchoring. Mapping the anchoring 

5 pressure of large boats (≥ 24 m) can be done with traditional methods but is still challenging 

6 for smaller boats. Thus, the impact of large boats on coastal ecosystems is better 

7 documented and more efficiently regulated in comparison with small ones.

8 Here, we characterize the pressure and the impact of boats anchoring on Posidonia 

9 oceanica seagrass beds through the proxy of three landscape indices and compare 

10 anchoring surveillance methods.

11 We show that small boats also have an impact on P. oceanica when anchoring.

12 AIS (Automatic identification System) and low resolution satellite imagery are poorly adapted 

13 to detect small boats anchoring.

14 High resolution satellite imagery is a very efficient tool suitable even for small boats 

15 detection, but is for now limited to punctual surveys due to its high costs.

16 We propose an automatic detection/localization tool adapted to multisource imagery and test 

17 it successfully on a case study in Corsica (France).

18 Overall our study provides key quantified elements for the design of future efficient 

19 surveillance and management of anchoring pressure.

20

21 Keywords

22 Seagrass, pressure monitoring, mooring, small ships, image analysis, satellite, AIS
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24 Introduction

25 Coastal ecosystems, including mangroves, near shore reef ecosystems and 

26 seagrass beds, are among the most important ecosystems not only ecologically, but also 

27 economically and socially (Martínez et al. 2007; Barbier et al. 2011). Those sensitive 

28 ecosystems are severely and increasingly threatened worldwide by human activities 

29 (Halpern et al. 2008, 2015) including shipping (Halpern et al. 2019), which is responsible for 

30 pollution and physical damage with anchoring (Deter et al. 2017).

31 Mapping anchoring pressure was traditionally performed by manual counts of boats, from a 

32 boat, from shore, on fixed camera images (Bonhomme et al. 2013; Schohn et al. 2019), or 

33 from airplanes during aerial survey (Holon et al. 2015; Serra-Sogas et al. 2021; MEDOBS 

34 2024).

35 Since 2004, the automatic identification system (AIS) device is mandatory on ships of 300 

36 gross tonnage and upwards (IMO 2018). This electronic transponder, communicating the 

37 ship position and characteristics to surrounding receiving stations, allowed huge progress in 

38 mapping large boats (≥ 24 m) anchoring events (Deter et al. 2017; Pergent-Martini et al. 

39 2022; Bockel et al. 2023). AIS is however missing part of the small boats (Serra-Sogas et al. 

40 2021).

41 Other methods like synthetic aperture radar (SAR) (Greidanus et al. 2017) or optical 

42 (Kanjir et al. 2018) satellite imagery combined with efficient image analysis software such as 

43 SUMO for SAR images, are also used to detect large boats (≥ 24 m) anchoring events. The 

44 ever increasing resolution of satellite imagery has recently made it possible to achieve 

45 impressive performance in ship detection, even on small boats (Jialeng et al. 2023).

46 Smartphones and social networks are another huge source of image data (Toivonen et al. 

47 2019) that could also potentially be useful to map anchoring pressure whatever the boat 

48 size.

49 Recent developments in artificial intelligence (AI) and especially deep learning 

50 (LeCun et al. 2015; Wu et al. 2020) already allowed massive improvements in detection and 
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51 classification on satellite imagery (Goswami et al. 2020), with applications for boats 

52 monitoring (Kanjir et al. 2018; Patel et al. 2022; Paolo et al. 2024).

53

54 The mediterranean sea is crossed by intense maritime traffic (March et al. 2021) and 

55 a mecca for pleasure craft (Carreño and Lloret 2021). This implies considerable pressures 

56 for its great biological diversity, with more than 17000 marine species and a very high rate of 

57 endemism (20-30 %) (Coll et al. 2010; UNEP/MAP). The endemic species Posidonia 

58 oceanica forms a protected key habitat hosting a high number of species and providing 

59 many services (Boudouresque et al. 2012). P. oceanica seagrass beds are very sensitive to 

60 anthropogenic threats (Boudouresque et al. 2009) and 70 % of its habitat is projected to be 

61 lost by 2050 (Intergovernmental Panel on Climate Change (IPCC) 2022).

62 Large boats (≥ 24 m) anchoring highly impacts Posidonia oceanica meadows 

63 (Boudouresque et al. 2012; Deter et al. 2017; Pergent-Martini et al. 2022). Few existing local 

64 studies also suggest an impact from small boats (Francour et al. 1999; Milazzo et al. 2004; 

65 Rouanet et al. 2013). Anchoring impacts on P. oceanica meadows are traditionally 

66 characterized by large scars visible on aerial imagery for small depth (< 10 m deep) and 

67 sonar imagery for deeper areas (Pasqualini et al. 1999) but can also be derived from 

68 patterns observed in landscape indices. The decline index (proportion of living meadow) and 

69 the patch cohesion index (characterizing the cohesion of the meadow) are the landscape 

70 indices describing the conservation status of the meadow that best correlated with 

71 anthropogenic pressures in the literature (Holon et al. 2018; Houngnandan et al. 2020). Their 

72 application to characterize the conservation status of Posidonia seagrass beds, coupled to a 

73 map of the anchoring pressure of large boats (≥ 24 m) (Deter et al. 2017), has led to a 

74 tightening of regulations in France (Deter et al. 2022), regulations which have effectively 

75 reduced these pressures in return (Bockel et al. 2023). Many questions now arise for smaller 

76 boats: where do they anchor? To what extent do they impact when anchoring? What 

77 methods are best suited to monitor the anchoring pressure of small boats?
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78 The aim of this work was to address these questions. We first investigated the impact of 

79 large and small boat anchoring on the French Posidonia oceanica meadows using the 

80 proxies of landscape indices and AIS anchoring positions. We then compared AIS with the 

81 other traditional methods used to monitor anchoring pressure. We proposed a new detection 

82 and localization tool based on images from different sources and AI and tested it on a case 

83 study in Corsica. We finally showed the relevance of high-resolution satellite imagery for 

84 detecting small boats at anchor, and discussed the design of efficient anchoring surveillance.

85

86 Material and methods

87 1) Impact of boat anchoring on Posidonia oceanica 

88 meadows, using AIS

89 1-1) Anchoring events and duration from AIS positions

90 AIS data were collected from two different sources. AIS data from 2010 to 2018 were 

91 collected from Marine traffic database (www.marinetraffic.com). Those AIS positions 

92 correspond to positions of declared anchoring activity, received by terrestrial AIS stations, 

93 with an hourly frequency. AIS data from 2019 to 2022 came from the terrestrial receiving 

94 stations of AIShub network (www.aishub.net) and from the vesselfinder database 

95 (www.vesselfinder.com). Those AIS data are raw positions that were collected with a 

96 frequency of one position every two minutes. All AIS data contain information on boat 

97 identification and size, time of detection, geographic coordinates, heading direction, speed, 

98 dimensions, type, and destination (when declared). All AIS positions were combined in a 

99 unique database independently of source or frequency.
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100 The methodology used to obtain the anchoring positions from AIS (approx. 55°000 

101 between 2010 and 2018 and approx. 160°000 between 2019 and 2022) was derived from the 

102 work of Deter et al. (2017) and Bockel et al. (2023). Briefly, a boat was considered at anchor 

103 when its successive AIS positions (at least four) had low speed (< 1 kt) and were stationary 

104 (distance between points ≤ 600 m). A regression circle was then fitted on those positions to 

105 calculate the anchoring polygon.

106 Cumulated anchoring duration was calculated on 100 x 100 m cells for big boats (≥ 

107 24 m) on one part and small boats (< 24 m) on another part. For each boat size category, a 

108 pixel was labeled as “anchoring” if anchored only by boats belonging to the size category or 

109 smaller.

110 1-2) Landscape indices from the biocenoses map

111 Landscape indices were calculated for Posidonia oceanica (Houngnandan et al. 

112 2020) based on the 2023 update of the 1/10000 map of the marine biocenoses in the entire 

113 French Mediterranean sea between 0 and 80 m deep (Andromède Océanologie 2014) 

114 (www.medtrix.fr, donia expert project). Biocenoses data was rasterized at a resolution of 5 m 

115 before calculating the three following landscape indices: decline index, patch cohesion index 

116 and landscape division index. Formulas for each index were reported in Error! Reference 

117 source not found.. The landscape indices were calculated in 100 x 100 m cells using the R 

118 software 4.2.1 and the packages SDMTools 1.1-221.2 and terra 1.6-17.

119 1-3) Analysis

120 Values of each landscape index were calculated and plotted on areas with and 

121 without small or large boat anchoring and the differences were tested using a Wilcoxon test. 

122 Very shallow areas (< 5 m deep) and the deepest areas (> 30 m deep) were removed from 

123 this analysis, to avoid landscape patterns outside of the anchoring bathymetric range to 

124 influence the results.
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125

126 2) Comparison of AIS and other traditional methods used to 

127 map anchoring

128 This analysis was realized on a study area covering the Medobs and Sentinel 1 SAR 

129 acquisition areas in the French Mediterranean sea within a period covering the summer of 

130 2020. Areas and dates of acquisitions for Medobs, AIS and Sentinel 1 SAR are reported in 

131 Error! Reference source not found. and Error! Reference source not found..

132 2-1) AIS

133 AIS-derived anchoring events were mapped as described above.

134 2-2) Sentinel 1 SAR images and SUMO

135 Sentinel 1 SAR images were downloaded from NASA EARTHDATA ASF data platform 

136 (search.asf.alaska.edu). L1 Detected High-Res Single-Pol (GRD-HS) sentinel products were 

137 used. Sentinel 1 images (n = 13) were analyzed using the Search for Unidentified Maritime 

138 Objects (SUMO) software (Greidanus et al. 2017). Cross-polarization and co-polarization 

139 detection threshold adjustments were applied based on the literature (Galdelli et al. 2021; 

140 Pita et al. 2022). No land buffer was used. Coordinates and estimated size of each detected 

141 boat were obtained.

142 2-3) Medobs

143 Medobs (MEDOBS 2024) is a monitoring network of human activities using aerial 

144 surveillance on the French Mediterranean coast. Operated by the Air Attack Technologies 

145 company and funded by the Agence de l’eau Rhône Méditerranée Corse (French water 

146 agency), this network includes multiple aerial surveys of the entire coastline including 

147 Corsica, with a higher density of flights during summer. Boats are manually counted and 
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148 regrouped by anchoring zones (hotspots of anchoring) and size classes (< 10 m: small; 10 - 

149 24 m: medium; ≥ 24 m: large). Thirteen survey dates and 1068 anchoring zones were 

150 analyzed for the 2020 summer.

151 2-4) Analysis

152 For each Medobs anchoring zone, the number of boats detected by Medobs and by 

153 AIS/SAR were compared. In order to filter out zones out of AIS/SAR detection ranges, only 

154 Medobs anchoring zones containing AIS detections/SAR detections were kept for this 

155 analysis. Sentinel 1 SAR images were acquired by the satellite at two different timeframes: 5 

156 am or 5 pm. Boat detections on 5 am images were considered as boats anchored since the 

157 day before the detection. The mean percentages of “medobs boats” detected by AIS and 

158 SAR for each size class were calculated. The difference of detection performance between 

159 size classes and detection methods were tested using a Wilcoxon test.

160

161 3) Terrestrial and aerial imagery to better map anchoring 

162 boats

163 A suite of tools was developed to detect any type and size of boats on multisource 

164 imagery, and to localize their position based on the metadata of the images. 

165 3-1) Images dataset

166 The dataset of images (344 images) was composed of two main types of images 

167 (figure S2). The first type of images (71 % of the images) is multisource images: 

168 smartphones and drones images taken by our team (Andromède océanologie) during the 

169 summer in 2022 and 2023, fixed camera on the coast (Stareso, summer 2020) and aerial 

170 images (Medobs, summer 2022). The second type of images (29 % of the images) were 
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171 downloaded from an opensource boats images dataset (Bogue Sound Team Roboflow 

172 2023).

173 All images were randomly separated between training set (83 %), test set (7 %) and 

174 validation set (10 %). Labeling of boats on images before training was performed with the 

175 online application Make Sense (Skalski 2019) and was semi supervised (all images were 

176 pretreated with YOLOv5 and then checked visually and corrected manually when needed).

177 3-2) YOLOv8 detection algorithm and its improvement

178 The boat detection algorithm was trained using YOLOv8 on a GPU equipped server. 

179 Although initially planned with 500 epochs to ensure comprehensive learning, the training 

180 was concluded after approximately 300 epochs due to satisfactory performance metrics 

181 achieved earlier than expected. This early stopping helps prevent overfitting while 

182 maintaining high accuracy. Images were automatically resized to a standard size of 640 by 

183 640 pixels to facilitate uniform processing. 

184 3-3) Localization methodology

185 The developed localization tool was entirely based on the metadata of the image. 

186 Image metadata are encrypted in image files in Exif format (Exchangeable Image File 

187 Format). They contain information on the image shot, essential for localization: date, 

188 coordinates, altitude, camera captor width and focal length, angles of the shot (pitch, yaw 

189 and roll), and image height and width (in pixels). Some devices such as drones contained 

190 very complete image metadata, but others such as smartphones contained metadata of 

191 variable quality, often lacking several parameters. In this case, precise localization was only 

192 possible when the photographer manually provided missing parameters, at least date, 

193 coordinates of the camera and yaw angle. Camera captor width and focal length could be 

194 inferred from the camera model, roll was assumed to be 0 (the localization tool doesn’t work 

195 otherwise), altitude could be inferred from the coordinates and freely accessible digital 
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196 elevation models, and pitch was assumed to be linearly linked to the height of the relative 

197 horizon in the image (pitch of 0 for a relative horizon of 0.5 and pitch of -30° for a relative 

198 horizon of 1) using the following formula: pitch (p) = (-60 * relative horizon) - 30.

199 Using basic principles of trigonometry (Figure 1), the boat real position was then 

200 derived from its relative position in the image (rel_x and rel_y, defined at the middle bottom 

201 of the detection bounding box) using the following equations:

202

203 𝑝ℎ𝑖𝑋ℎ =  𝑎𝑡𝑎𝑛((𝑆ℎ ∗  (𝑎𝑏𝑠(𝑟𝑒𝑙_𝑥) ∗  2)) / 𝐶𝑓 / 2)

204 𝑝ℎ𝑖𝑌ℎ =  𝑎𝑡𝑎𝑛((𝑆ℎ ∗  (𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 / 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ) ∗  (𝑎𝑏𝑠(𝑟𝑒𝑙_𝑦) ∗  2)) / 𝐶𝑓 / 2)

205

206 𝑖𝑓 𝑏𝑜𝑎𝑡 𝑜𝑛 𝑡𝑜𝑝 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 (𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖𝑛 𝑖𝑚𝑎𝑔𝑒 <  0.5):

207 𝐾 =  𝐴 / (𝑡𝑎𝑛( ― 𝑝) ―  𝑝ℎ𝑖𝑌ℎ)

208 𝑖𝑓 𝑏𝑜𝑎𝑡 𝑜𝑛 𝑏𝑜𝑡𝑡𝑜𝑚 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒:

209 𝐾 =  𝐴 / (𝑡𝑎𝑛( ― 𝑝) +  𝑝ℎ𝑖𝑌ℎ)

210

211 𝑅 = 𝑠𝑞𝑟𝑡(𝐴2 + 𝐾2)

212

213 𝑖𝑓 𝑏𝑜𝑎𝑡 𝑜𝑛 𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 (𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖𝑛 𝑖𝑚𝑎𝑔𝑒 >  0.5):

214 𝑊 =  𝑅 ∗  𝑡𝑎𝑛(𝑝ℎ𝑖𝑋ℎ)

215 𝑖𝑓 𝑏𝑜𝑎𝑡 𝑜𝑛 𝑙𝑒𝑓𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒:

216 𝑊 =  ― (𝑅 ∗  𝑡𝑎𝑛(𝑝ℎ𝑖𝑋ℎ))

217

218 𝑥 =  𝑋 +  𝑊 ∗  𝑐𝑜𝑠(𝑑𝑖𝑟) +  𝐾 ∗  𝑠𝑖𝑛(𝑑𝑖𝑟)

219 𝑦 =  𝑌 ―  𝑊 ∗  𝑠𝑖𝑛(𝑑𝑖𝑟) +  𝐾 ∗  𝑐𝑜𝑠(𝑑𝑖𝑟)

220

221 A filter was then applied to consider the low reliability of localization near the edges of the 

222 image or near the relative horizon. Only boats detected in the 99 % of the image farthest 
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223 from the image edges (or from the relative horizon when shot not vertical and altitude < 10 

224 m) were kept.

225

226 Figure 1 Schematic view of localization method. Boat position on the field (left) is derived from boat position on 

227 the camera image (right), using camera metadata (captor width Sh and focal length Cf) and field metadata 

228 (altitude A and coordinates X and Y of the camera, angles of the shot (dir and p), and distance K to the target.

229

230 3-4) Performance analysis of detection and sensitivity analysis of 

231 localization

232 The performance of the detection model was evaluated by calculating its average 

233 precision (proportion of true positive detections among all positive detections) and recall 

234 (proportion of true positive detections among all actual positive ones) and by comparing 

235 between the YOLOv8 standard algorithm using default YOLO coco weights, and our 

236 YOLOv8 custom algorithm trained on our images dataset.

237 The performance of the localization tool was evaluated by running a sensitivity 

238 analysis on a separate subset of images where the true location of the detected boat was 

239 known. The error between the true position and the estimated position was calculated. Each 
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240 factor potentially influencing this localization error was extracted from the images: distance 

241 between boat and camera, altitude, method of acquisition (smartphone or drone), relative 

242 position of the boat with respect to the horizon on the image, relative position of the boat with 

243 respect to the center of the image, and relative position of the horizon. A linear regression 

244 was performed to assess the relationship between each factor and the localization error 

245 (previously log-transformed for normality).

246 3-5) Application of the custom YOLO detection and localization 

247 methodology to the case study of the Alga bay

248 The « Alga » bay, located north of the city of Calvi in Corsica (France), was equipped 

249 with a Bushnell 30MP CORE Trail Camera, positioned at an altitude of 89 m in order to 

250 cover the entire bay. Photographs were acquired every hour during daylight for the summer 

251 period of 2020. The first exploitable image every morning (8 am) was considered the most 

252 representative of the boats anchored during the night and extracted from the database. 

253 Those images (n = 62) were then processed through our custom detection localization 

254 algorithm (Error! Reference source not found., Error! Reference source not found.). 

255 The depth category was extracted for each detection using a bathymetric raster produced by 

256 combining the best available resolution between SHOM data, and Andromède océanologie 

257 bathymetric dataset; categories were defined as follows: deeper than -20 m, -20 to -10 m, 

258 and shallower than -10 m. The average number of boats detected per night and depth 

259 category was calculated and compared with anchoring boats detected during the same night 

260 based on AIS data using the method described above. The difference between both 

261 methods was tested using a Wilcoxon comparison test. 

262
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263 4) High resolution optical satellite imagery to better map 

264 anchoring boats

265 A pre-trained YOLOv8 detection algorithm was tested on high resolution optical satellite 

266 imagery to detect small boats at anchor.

267

268 4-1) Images and pretreatment

269 The images used were Airbus Pleiades multispectral (2 m resolution) and 

270 panchromatic (50 cm resolution) on a study area of 17 km width and 13 km height centered 

271 on the area of Bonifacio and the Lavezzi islands in south Corsica. Images were available at 

272 three timestamps: 2023/07/19 at 10:31 am, 2023/07/26 at 10:28 am, and 2023/08/14 at 

273 10:31 am. The 2023/07/26 image was removed from the analysis because the numerous 

274 waves negatively affected the YOLO detection performances.

275 Images were pansharpened and tilled at a size of 1000 by 1000 pixels using gdal 3.0.4. An 

276 overlap of 100 pixels was used during tiling in order not to remove any boats from the 

277 database. Tiles containing shallow water areas (0 – 20 m deep) were extracted for boats 

278 detection.

279

280 4-2) YOLO detection and validation

281 YOLOv8 base weights were obtained from a pre-training performed on a google 

282 earth dataset (Cole Robin 2023). Boats detection was performed on each previously created 

283 tile using YOLOv8 and the obtained base weights, with an automatic resizing of the tiles to a 

284 standard size of 640 by 640 pixels (Error! Reference source not found.). A sample of 100 

285 tiles per image, with the associated detections, was then used to create a reference 

286 annotation dataset using Roboflow (Dwyer et al. 2024) online annotation tool (774 boats 
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287 annotated for the 2023/08/14 image and 670 boats annotated for the 2023/07/19 image). 

288 YOLOv8 algorithm using base weights was then retrained using the 2023/07/19 reference 

289 dataset as training set, and 2023/08/14 reference dataset as validation set. Boat detections 

290 on land or inside ports were filtered out. Precision and recall metrics were then calculated for 

291 each boat size class (0-5m, 5-10m, 10-15m, >15m).

292

293 Results

294 1) Impact of boat anchoring using AIS

295 The anchoring dataset contained 225°470 anchoring polygons between 2010 and 2022 

296 (129°552 for large boats (≥ 24 m) and 95°918 for small boats (< 24 m)). Cumulated 

297 anchoring duration calculation gave a total of 23 092 100 m x 100 m cells with anchoring 

298 (11°235 containing anchoring of only large boats and 3°389 containing anchoring of only 

299 small boats).

300 The decline index was significantly higher on areas with large boat anchoring 

301 compared to areas without large boat anchoring (W = 2.5 108, p < 0.001, n = 85°114), and 

302 not significantly different between areas with or without small boat anchoring (W = 8.9 107, p 

303 > 0.1, n = 78°932) (Figure 2).

304 The patch cohesion index was significantly lower on areas with anchoring compared 

305 to areas without anchoring; for large boats  (W = 2.8 108, p < 0.001, n = 81°573), and for 

306 small boats (W = 1.1 108, p < 0.001, n = 75°464) (Figure 2).

307 The landscape division index was significantly higher on areas with anchoring 

308 compared to areas without anchoring; for large boats (W = 2.5 108, p < 0.001, n = 81°573), 

309 and for small boats (W = 5.5 107, p < 0.001, n = 75°464) (Figure 2).

310
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311

312 Figure 2 Statistical distribution of landscape indices for each size category of ais boats (≥ 24 m or < 24 m) with or 

313 without anchoring. a. log(decline index) (boats ≥ 24 m), b. log(decline index) (boats < 24 m), c. patch cohesion 

314 index (boats ≥ 24 m), d. patch cohesion index (boats < 24 m), e. landscape division index (boats ≥ 24 m), f. 

315 landscape dvision index (boats < 24 m). Numbers inside the bars indicate the number of 100 x 100 m cells where 

316 each indicator was calculated (this number is higher for the decline index compared to the other indices because 

317 also taking into account dead matte).

318

319

320 2) Comparison of AIS and other traditional methods used to 

321 map anchoring

322 Differences between size classes, for both detection methods, were significant only between 

323 large (≥ 24 m) and small boats (< 10 m) (AIS: W = 1.1 103, p < 0.001, n = 313; SAR: W = 9.6 
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324 102, p < 0.001, n = 83) and between medium (10 – 24 m) and small boats (AIS: W = 5.2 104, 

325 p < 0.001, n = 498; SAR: W = 2.4 103, p < 0.001, n = 118) with larger boats being more 

326 detected than small ones (Figure 3). Differences between detection methods were significant 

327 only for medium boats (W = 9.7 103, p < 0.001, n = 304) with more boats detected on 

328 average by AIS (28 % of Medobs observations) than by SAR (12 %) (Figure 3).

329

330 Figure 3 Mean percentage of Medobs boats detected by AIS and SAR, for each size category (≥ 24 m, 10 - 24 m, 

331 < 10 m°; n = number of Medobs anchoring zones, m = mean percentage of Medobs boats detected).

332
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333 3) Terrestrial and aerial imagery to better map anchoring 

334 boats

335 3-1) Performances of the detection algorithm and improved model

336 On the validation dataset, YOLOv8 showed an average precision of 0.63 and an 

337 average recall of 0.42. The improved custom model showed an average precision of 0.81 

338 and an average recall of 0.69. The custom model presents a good balance between 

339 precision and recall (Figure 4, Error! Reference source not found.).

340

341

342 Figure 4 Precision recall curve for the custom detection model

343

344 3-2) Localization performances and sensitivity analysis

345 The linear regression between the images metadata and the logarithm of the 

346 localization error explained 73 % of the variance of the localization error (F = 51, p < 0.001, 

347 adjusted R² = 0.73). The localization error was significantly negatively influenced by altitude 
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348 (t = -3.8, p < 0.001) and significantly positively influenced by the method (t = 2.2, p < 0.05) 

349 and the distance between the boat and the camera (t = 10, p < 0.001). The average 

350 localization error under ideal conditions (using the drone method with a distance between 

351 the boat and the camera below 200 meters) was 16 m (Error! Reference source not 

352 found. and Figure 5).

353

354

355 Figure 5 Error of the localization method as a function of the distance to the camera and the acquisition method 

356 (drone or smartphone). The number of images is indicated above each boxplot.

357

358 3-3) Application of the YOLO detection and localization methodology to 

359 the case study of the Alga bay (Corsica)

360 The average number of detected anchored boats per night and detection method 

361 was equal to 0.032 (AIS) and 0.05 (images) for depth below 20 m; 1.6 (AIS) and 1.8 

362 (images) for depth between 10 m and 20 m; and 2.7 (AIS) and 10 (images) for depth above 
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363 10 m (Figure 6). The average number of anchored boats detected per night increased 

364 significantly with decreasing depth, for both methods (W < 1221, p < 0.001 n =62). The 

365 number of anchored boats detected per night was significantly higher for images than AIS at 

366 a shallow depth (- 10 m) (W = 240, p < 0.001, n = 62). The differences between images and 

367 AIS were not significant for the other depth categories (10-20m: W = 1669, p > 0.1, n = 62; 

368 +20m: W = 1891, p > 0.1, n = 62) (Figure 6).

369

370

371 Figure 6 Average number of boats detected at anchoring per night, for each depth category and detection 

372 method

373
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374 4) High resolution optical satellite imagery to better map 

375 anchoring boats

376 Post-training of YOLOv8 base algorithm using 2023/07/19 training dataset did not 

377 improve the performance of the detection algorithm on the 2023/08/14 validation dataset. 

378 Average precision on the validation dataset was equal to 0.91, and average recall was equal 

379 to 0.77. Precision vs recall, precision vs confidence and recall vs confidence curves were 

380 reported in Error! Reference source not found.. After filtering out detections on land and 

381 inside ports, average precision values per size class were equal to 0.5 (0-5m), 0.87 (5-10m), 

382 0.91 (10-15m), 0.88 (>15m), and average recall values per size class were equal to 0.75 (0-

383 5m), 0.69 (5-10m), 0.76 (10-15m), 0.84 (>15m).

384 While recall values were relatively high and constant for each boat size class, precision 

385 value was 43 % lower for boats smaller than 5 m compared to boats longer than 5 m. This 

386 value is to be interpreted with caution as only four boats smaller than 5 m were present in 

387 the dataset.
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388

389 Figure 7 Precision and recall metrics per size class of YOLOv8 algorithm on optical satellite imagery. Numbers at 

390 the top indicate the number of boats per size class

391

392 Discussion

393 1) Impact of boat anchoring using AIS

394 The impact of large boats (≥ 24m) anchoring was confirmed on each analyzed landscape 

395 indices (decline, patch cohesion and landscape division) for Posidonia oceanica meadows. 

396 Moreover, small boats detected by AIS (< 24 m) are also responsible for measurable 

397 impacts: patch cohesion index and landscape division index were significatively degraded in 

398 presence of small boats anchoring. Small boats damage the spatial configuration of the 
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399 meadows when anchoring, and these changes in configuration could be an early warning of 

400 future decline, not yet detected. Scars induced by small boats anchoring in the meadow 

401 could also be too narrow to be detected as dead matte during lateral sonar acquisitions, 

402 explaining the absence of significant impact on the decline index.

403 The impact of small boats is detected even though their number is underestimated due 

404 to the rare presence of AIS equipment on small boats (Greidanus et al. 2017; Paolo et al. 

405 2024) (see 2 Comparison of AIS and other traditional methods used to map anchoring). It is 

406 therefore necessary to monitor those anchoring events, whether or not the boats are 

407 equipped with AIS, because they are not currently affected by the French regulation 

408 prohibiting anchoring in P. oceanica seagrass beds. This more detailed knowledge 

409 depending on the size is all the more important as the number of boats, including small 

410 boats, continues to increase, particularly in protected marine areas, and requires monitoring 

411 to address carrying capacity issues (Gómez et al. 2023).

412

413 2) From the comparison of AIS and other traditional methods 

414 to the test of terrestrial and aerial imagery to better map 

415 anchoring boats 

416 This study demonstrated both at the scale of the French Mediterranean sea and at the 

417 scale of a bay, that AIS data, while allowing to detect a general pattern of impact, are poorly 

418 adapted to a detailed mapping of small boats anchoring impacts, in accordance with the 

419 literature (Serra-Sogas et al. 2021).

420 Similarly, freely available low resolution (10 m) SAR satellite imagery was shown to be 

421 poorly adapted to detect small boats (only 12 % of small Medobs boats (10 - 24 m) and 5 % 

422 of very small boats (< 10 m) detected on SAR S1 images during summer 2020), in 

423 accordance with the literature (Greidanus et al. 2017).

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4905210

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



424 As Medobs images cannot be acquired continuously and automatically, alternative 

425 methods must be proposed. Using multi-source images, the image-based tool developed in 

426 this work showed very good detection (average precision of 0.81 and average recall of 0.69) 

427 and localization (average localization error of 16 m under ideal conditions) performances. 

428 Some limitations must however be kept in mind under certain conditions such as very low 

429 altitude (below 2 m) and/or large distance to targets (above 2 km) and the presence of 

430 detection artefacts (important sun reflections at the sea surface, presence of buoys). Most of 

431 these limitations can however be controlled when using fixed cameras with well known 

432 acquisition metadata (see below).

433 The case study of the Alga bay showed a very similar rate of detection by AIS and 

434 the camera for areas deeper than -10 m but many anchoring were missed by AIS compared 

435 to the camera for areas shallower than -10 m. These anchoring events at such shallow 

436 depths most probably correspond to the smallest boats. The absence of an estimation of the 

437 boat size is a limitation of the image-based method, but this information could be calculated 

438 if the wind conditions are known at the date of acquisition of the image, and if the camera 

439 line of sight is perpendicular to the dominant wind in the area. The camera should be placed 

440 at a minimal altitude of approximately five meters in order to obtain an acceptable 

441 localization error for boats as far as approximately one kilometer from the camera. The 

442 automatic camera detection localization tool is moreover flexible and adapted to any source 

443 of terrestrial or aerial imagery (smartphone, drone, small aircraft such as ultra-light motorized 

444 planes (ULMs), or even webcams or social networks images), and provides automatic boat 

445 detection and localization, allowing important time gains in data analysis. The image 

446 acquisition represents a very low cost (approximately 400 euros for the purchase, installation 

447 and usage of the camera).

448 This method is therefore perfectly adapted to implement high-frequency surveillance on 

449 localized high-stake anchoring areas, and allows a detailed spatio-temporal reporting of 

450 large and small boats anchoring pressure, as well as an estimation of the total frequentation 

451 and turnover of boats on the surveyed sites.
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452

453 3) High resolution satellite optical imagery to better map 

454 anchoring boats

455 The YOLO detection algorithm tested in this work on Pleiades images showed very good 

456 performances (average precision of 0.91 and average recall of 0.77), close to the 

457 performances of the pretraining reference work (precision of 0.94 and recall of 0.93) (Cole 

458 Robin 2023), and very good compared to other recent studies (accuracy of 0.94 and 

459 precision of 0.74 (Jialeng et al. 2023), and accuracy of 0.99 and precision of 0.84 (Patel et 

460 al. 2022)). While recall values were relatively high and constant, precision appeared to 

461 decrease by more than 40 % for boats smaller than five meters. This pattern could indicate a 

462 good reliability of the detection algorithm only for boats longer than five meters, but is to be 

463 interpreted with caution as only four boats smaller than five meters were present in the 

464 dataset. Waves, small private swimming pools, and very high density of boats next to each 

465 other (ports) were visually observed as factors negatively influencing the detection algorithm 

466 performances. Those factors can however easily be filtered out during images pre-selection 

467 and detections post-treatment.

468 Satellite imagery field is evolving very fast and higher resolution (e.g. Pleiades neo (30 cm 

469 resolution) for optical imagery (Soubirane 2019)) is already available. High resolution 

470 satellite imagery, as well as aerial surveys, are very appropriate for punctual monitoring to 

471 get a rough idea of the pressure, but their important costs make those methods less 

472 appropriate for regular surveillance.

473
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474 Conclusion and future path for management

475 This work confirmed the impact of large boats (≥ 24 m) anchoring on Posidonia 

476 oceanica meadows using three different landscape indices (decline, patch cohesion and 

477 landscape division), and showed that small boats (< 24 m) anchoring, despite very low 

478 accuracy detection by AIS, also seem to have an impact on P. oceanica meadows (impact 

479 detected on two of three analyzed indices: patch cohesion and landscape division). This 

480 work demonstrated that traditional monitoring methods such as AIS and low resolution freely 

481 available SAR satellite images, while detecting a reasonable part of large boats (≥ 24 m, 

482 approximately 50 %) are poorly adapted to small (10 – 24 m, approximately 20 %) and very 

483 small boats (< 10 m, approximately 5 %) detection.

484 The strong suitability of high-resolution satellite imagery for small boats automatic detection 

485 was demonstrated but must be reserved, for the time, for punctual monitoring because of the 

486 relatively high costs involved. This work then proposed an automatic detection localization 

487 tool based on multi-sources images, and tested it successfully on a case study in Corsica. 

488 This tool is particularly adapted to high-frequency localized monitoring and could be easily 

489 deployed by harbourmasters and marine areas managers that could make appropriate use 

490 of existing images or set up an automatic image-taking system. With constantly improving 

491 technologies, it can be a struggle for managers to balance the pros and cons of each 

492 monitoring solution. The perfect solution does not exist, and addressing managers specific 

493 needs will inevitably involve a mix between the previously mentioned solutions. Well-

494 designed monitoring and surveillance plans will both allow the construction of adapted 

495 management plans and enable managers to control and evaluate their efficiency. This work 

496 provides key quantified elements for the design of future efficient surveillance and 

497 management of anchoring pressure.

498
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