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Abstract
1.	 Understanding how ecological assemblages vary in space and time is essential for 

advancing our knowledge of biodiversity dynamics and ecosystem functioning. 
Metabarcoding of environmental DNA (eDNA) is an efficient method for docu-
menting biodiversity changes in both marine and terrestrial ecosystems. However, 
current methods fail to detect and display the biodiversity structure within and 
between eDNA samples limiting ecological and biogeographical interpretations.

2.	 We present a spatial matrix factorization method that identifies optimal eDNA 
sample assemblages—called pools—assuming that taxonomic unit composition is 
based on a fixed number of unknown sources. These sources, in turn, represent 
taxonomic units sharing similar habitat properties or characteristics. The method 
aims to reduce the multi-taxa composition structure into a low number of dimen-
sions defined by these sources. This method is inspired by admixture analysis in 
population genetics. Using a marine fish eDNA survey on 263 sampling stations 
detecting 2888 molecular operational taxonomic units (MOTUs), we apply this 
method to analyse the biogeography and mixing patterns of fish assemblages at 
regional and large scales.

3.	 At large scale, our analysis reveals six primary pools of fish samples character-
ized by distinct biogeographic patterns, with some mixtures between these pools. 
We identify pools composed of unique sources, corresponding to distinct and 
more isolated regions such as the Mediterranean and Scotia Seas. We also iden-
tify pools composed of a greater mix of sources, corresponding to geographically 
connected areas, such as tropical regions. Additionally, we identify the taxa un-
derpinning the formation of each pool. In the regional analysis of Mediterranean 
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1  |  INTRODUC TION

Species assemblages exhibit spatiotemporal variations influenced 
by a multitude of factors, such as environmental disturbance, biotic 
interactions and stochasticity (Blowes et  al.,  2024; Ji et  al., 2024; 
Leibold et al., 2022). Assessing the structure of species assemblages 
in different spatial contexts is essential for advancing our under-
standing of biodiversity distribution and ecosystem functioning 
(Barwell et al., 2015; Mori et al., 2018). Since no single species as-
semblage can support all ecological functions and contributions to 
people (Mayor et al., 2024), distinct local species assemblages across 
heterogeneous environments must be maintained (Hillebrand & 
Matthiessen, 2009; Loiseau et al., 2021).

In community ecology, variation in species assemblages across 
space is typically quantified using β diversity, which quantifies dif-
ferences in species identity and abundance between local assem-
blages—an essential component of biodiversity (Mori et  al.,  2018; 
Whittaker, 1972). Yet, it does not explicitly reveal the composition of 
species assemblages or species composition at specific locations and 
its high dimensionality can make these multiple pairwise distances 
difficult to interpret.

Environmental DNA (eDNA) metabarcoding has opened new pos-
sibilities for studying the biogeography of marine species assemblages 
across scales (Leray & Knowlton,  2015; Mathon et  al.,  2022). The 
analysis of eDNA samples involves the extraction, amplification and 
sequencing of the genetic material collected (Deiner et al., 2017). Next-
generation sequencing and bioinformatic analysis can identify specific 
eDNA sequences associated with different organisms, often referred 
to as taxonomic units (Marques et al., 2020). These units serve as prox-
ies that help identify species or taxonomic groups in a given environ-
ment, similar to the molecular operational taxonomic units (MOTUs) 
described by Marques et al. (2020). For example, Mathon et al. (2023) 
observed a strong correlation between fish MOTUs β diversity and 
environmental factors in coastal ecosystems worldwide. While β di-
versity is a valuable metric, it does not reveal the main structure of 

assemblages nor it does offer a clear visualization of assemblages in 
terms of taxonomic unit compositions (Podani & Schmera, 2011). To re-
duce the hyper-dimensionality of pairwise β diversity values, ordination 
methods such as principal coordinate analysis (PCoA; Gower, 1966), 
non-metric multidimensional scaling (NMDS; Kruskal,  1964) or ca-
nonical correspondence analysis (CCA; ter Braak, 1986) are classically 
used to represent the grouping of assemblages in a lower number of 
dimensions (Legendre & Legendre,  1998). However, these methods 
are limited by their inability to simultaneously represent the spatial 
and compositional relationships of assemblages at individual sites. As 
a result, our understanding of how species composition varies across 
geographic locations is limited. Alternatively, probabilistic models 
can provide a more complete understanding of assemblage structure 
within and across eDNA surveys. For example, occupancy models are 
used in eDNA studies to estimate the probability of species occurrence 
while accounting for imperfect detection (McClenaghan et al., 2020; 
Uthicke et al., 2022). Sommeria-Klein et al.  (2021) used a probabilis-
tic model of species occurrence based on eDNA data from 70 major 
eukaryotic plankton groups collected during the Tara Ocean Project 
in different ocean basins. They reveal an alignment of plankton assem-
blages with biogeographic patterns, particularly in the most diverse 
groups. Although their method analysed species assemblages rather 
than β diversity patterns, their use of a Bayesian model like Latent 
Dirichlet Allocation (LDA; Blei et al., 2003; Valle et al., 2014) has some 
limitations. LDA was originally developed to describe a corpus of text 
documents as composed of unknown topics. The statistical analogy 
between the presence/absence of a word in a document and a species 
in an ecological community allows the inference of community struc-
ture as the composition of species from a specified number of sources. 
The same analogy and statistical model were used in population ge-
netics to evaluate genetic admixture in population samples (Pritchard 
et al., 2000). However, these Bayesian approaches are computationally 
intensive and cannot account for the spatial nature of observations, 
making them inefficient for handling and understanding large-scale 
datasets (Caye et al., 2016).

eDNA samples, our method successfully identifies different pools, allowing the 
detection of not only geographic gradients but also human-induced gradients 
corresponding to protection levels.

4.	 Spatial matrix factorization adds a new method in community ecology, where 
each sample is considered as a mixture of K unobserved sources, to assess the dis-
similarity of ecological assemblages revealing environmental and human-induced 
gradients. Beyond the study of fish eDNA samples, this method has the potential 
to shed new light on any biodiversity survey and provide new bioindicators of 
global change.

K E Y W O R D S
biogeography, environmental DNA (eDNA), fish communities, matrix factorization, 
metabarcoding
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With over 30,000 taxa—half of them being marine species—
fishes are the most diverse vertebrate group (Costello et al., 2015). 
Conducting biogeography studies on this group in open and con-
nected spaces such as oceans and seas is challenging due to the 
vastness and heterogeneity of these environments (Benestan 
et  al.,  2021). In addition to their substantial taxonomic richness, 
marine fishes exhibit a wide range of life history characteristics, 
behaviour and diet that contribute to key ecological processes in 
marine ecosystems (Villéger et al., 2017). They inhabit diverse ma-
rine environments from the equator to the poles and from coastal 
regions to the abyss (Nelson, 2016). However, marine fish popula-
tions face significant threats, including industrial fishing practices 
and pollution, that threaten their existence (Johnston et al., 2021; 
Jouffray et  al.,  2020). Therefore, understanding the structure and 
resilience of fish assemblages is essential for their conservation 
(Makiola et al., 2020).

Here, we present a novel approach to describe and infer patterns 
of taxonomic unit assemblage composition within their geographic and 
environmental context. Like LDA, our model assumes that observed 
taxonomic unit frequencies in sampled assemblages come from a mix-
ture of K unobserved sources. However, our model integrates spatial 
information and is computationally more efficient. Our approach esti-
mates (i) the sample pools from our spatial eDNA surveys as mixtures 
of K different sources and (ii) the frequency of the taxonomic unit as-
semblages, that is the frequency of each taxonomic unit from the K dif-
ferent sources. These mixtures exhibit continuous distributions across 
geographic and environmental gradients, with parameters derived 
from genetic and spatial data. We conduct analyses of taxonomic units 
and assemblage compositions on a large scale as well as regionally, fo-
cusing on data from the Mediterranean Sea where some samples come 
from no-take marine reserves.

2  |  MATERIAL S AND METHODS

2.1  |  Geospatial constraints in taxonomic unit 
assemblage mixture estimation

The community matrix, denoted as X, consists of n samples and m 
taxonomic units. The matrix X can represent various data types, 
such as the presence of each taxonomic unit in each sample or the 
abundance or detection probability of each unit. Our model assumes 
that the frequencies of taxonomic units detected in a given assem-
blage are drawn from a mixture of K unobserved sources, where K is 
unknown. These sources represent taxonomic units that share simi-
lar habitat characteristics or traits.

The algorithm estimates two matrices: the assemblage sample 
matrix S (with dimension n × K), representing the proportions of each 
sample in each source, and the matrix M (with dimensions K × m), 
representing for each source the frequencies of each taxonomic 
unit. In this context, the coefficient sik represents the fraction of 
sample i belonging to source k, while the coefficient mkj represents 
the frequency of the taxonomic unit j in source k.

We assume that the frequency of the specific taxonomic unit j in 
sample i is determined by the law of total probability:

According to this formula, each sample is formed by a mixture 
of sources and by the taxonomic unit frequencies in each source. 
In matrix terms, solving the above equation is equivalent to finding 
two matrices, S and M, with non-negative coefficients and subject to 
some probabilistic constraints, such that:

Thus, the estimation of the S and M matrices can be formalized 
as a non-negative matrix factorization problem (Lee & Seung, 1999). 
To account for the probabilistic constraints on S and M, we perform a 
matrix factorization using an alternate least-squares minimization al-
gorithm, as implemented in the method estimating individual ances-
try coefficients from population genetic samples (Caye et al., 2016; 
Frichot et  al., 2014). To account for spatial autocorrelation among 
samples, additional constraints are introduced into the minimization 
problem to ensure that geographically proximate samples are more 
likely to have the same taxonomic unit composition than distant 
samples (Caye et al., 2018).

The model allows us to estimate the mixture of samples (S) and 
the respective pools, and the taxonomic unit frequencies in the 
sources (M) in the community under study. A given taxonomic unit 
could be present in multiple sources, and variable proportions of 
sources define each sample.

We determine the number of sources, K, by evaluating a cross-
entropy criterion for each K (Caye et al., 2018). The choice of K is 
based on a cross-validation method that partitions the input matrix 
entries into a training and a testing dataset. The cross-entropy cri-
terion compares the predicted taxonomic unit frequencies from the 
training set with those calculated from the testing set in each sam-
ple. Smaller values of the criterion typically indicate better values 
for K.

To identify the taxonomic units that show the greatest differences 
between the K sources, we use the M matrix to calculate taxonomic 
unit frequencies within the K sources, and we compute an ANOVA 
statistic for each taxonomic unit. The ANOVA F statistic is used as a 
measure of differentiation between sources, and null hypotheses (no 
difference between sources) were tested using Fisher thresholds with 
K − 1 and n − K degrees of freedom (François et al., 2016).

2.2  |  Case study: eDNA Surveys of coastal 
marine fishes

2.2.1  |  eDNA collection and sample processing

We used eDNA samples of seawater collected at 263 stations, 
in 11 marine regions covering the global ocean from pole to pole 
(Mathon et al., 2023). Between 1 and 4 replicates were sampled 

xij = frequency of taxonomic unit j in sample i =
∑K

k=1
sik mkj.

X = SM.
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at each station, and in this study, we considered only samples fil-
tered between 0 and 40 m deep. Four different sampling meth-
ods were used: on-point water collection with sterile containers, 
from the surface or close to the substrate, and filtration along 
a 2-km long transect, below the surface or close to the bottom. 
Details on which sampling method was used in each region are 
provided in Mathon et al. (2023). For samples collected with ster-
ile containers, the seawater was filtered with sterile Sterivex filter 
capsules (Merck© Millipore; pore size 0.22 μm) using disposable 
sterile syringes. Immediately after, the filter units were filled with 
CL1 Conservation buffer (SPYGEN, le Bourget du Lac, France) and 
stored in 50 mL screw-cap tubes at room temperature. eDNA fil-
trations along transects were performed with an Athena® peri-
staltic pump (Proactive Environmental Products LLC, Bradenton, 
Florida, USA; nominal flow of 1.0 L/min ± 15%), a VigiDNA® 
0.2 μM cross-flow filtration capsule (SPYGEN, le Bourget du Lac, 
France) and disposable sterile tubing for each filtration capsule. At 
the end of each filtration, the water inside the capsules was emp-
tied, and the capsules were filled with 80 mL of CL1 Conservation 
buffer (SPYGEN, le Bourget du Lac, France) and stored at room 
temperature. For each sampling campaign, a strict contamination 
control protocol was followed in both field and laboratory stages 
(Valentini et al., 2016), and each water sample processing included 
the use of disposable gloves and single-use filtration equipment. 
Negative field controls were performed in multiple sites across all 
sampling locations and revealed no contamination from the boat 
or samplers.

2.2.2  |  eDNA extraction, amplification and 
sequencing

DNA extraction was performed in a dedicated DNA laboratory 
(SPYGEN, www.​spygen.​com) equipped with positive air pressure, 
UV treatment and frequent air renewal. Decontamination proce-
dures were conducted before and after all manipulations. eDNA 
extractions were performed following the protocols described by 
Pont et al. (2018) for SPYGEN capsules, and by Juhel et al. (2020) 
for the sterivex filters. A teleost-specific 12S mitochondrial rRNA 
gene primer pair (teleo, forward primer—ACACCGCCCGTCACTCT, 
reverse primer—CTTCCGGTACACTTACCATG; Valentini 
et  al.,  2016) was used for the amplification of metabarcode se-
quences. As we analysed our data using MOTUs as a proxy for 
species to overcome genetic database limitations, we chose to am-
plify only one marker. Twelve DNA amplifications PCR per sample 
(i.e.  replicates) were performed in a final volume of 25 μL, using 
3 μL of DNA extract as the template. The amplification was per-
formed following the protocol of Pont et al.  (2018). The purified 
PCR products were pooled in equal volumes, to achieve a theo-
retical sequencing depth of 1,000,000 reads per sample. Library 
preparation and sequencing were performed at Fasteris (Geneva, 
Switzerland). A total of 45 libraries were prepared using the 
MetaFast protocol for Illumina sequencing platforms. A paired-end 

sequencing (2 × 125 bp) was carried out using an Illumina HiSeq 
2500 sequencer with the HiSeq Rapid Flow Cell v2 using the 
HiSeq Rapid SBS Kit v2 (Illumina, San Diego, CA, USA) or a MiSeq 
(2 × 125 bp, Illumina, San Diego, CA, USA) using the MiSeq Flow 
Cell Kit v3 (Illumina, San Diego, CA, USA) or a NextSeq sequencer 
(2 × 125 bp, Illumina, San Diego, CA, USA) with the NextSeq Mid 
kit following the manufacturer's instructions. This generated an 
average of 624,468 sequence reads (paired-end Illumina or Ion 
Torrent) per sample. Many extraction and amplification negative 
controls were performed for each sample.

2.2.3  |  Bioinformatic analysis

Following sequencing, reads were processed using clustering and 
post-clustering cleaning to remove errors and estimate the num-
ber of species using MOTUs (Marques et  al., 2020). First, reads 
were assembled using vsearch (Rognes, 2016), then demultiplexed 
and trimmed using Cutadapt (Martin, 2011) and clustering was 
performed using Swarm v.2 (Mahé et  al.,  2014) with a minimum 
distance of 1 mismatch between clusters. Taxonomic assignment 
of MOTUs was carried out using the lower common ancestor 
(LCA) algorithm ecotag implemented in the Obitools toolkit (Boyer 
et al., 2016) and the European Nucleotide Archive (ENA; Leinonen 
et  al.,  2011) as a reference database (release 143, March 2020), 
supplemented by our custom reference database, containing ap-
proximately 800 sequences. To avoid spurious MOTUs originat-
ing from a PCR error, we applied quality filters, and we discarded 
all samples with less than 10 reads and present in only one PCR 
replicate. Then, errors generated by index-hopping (MacConaill 
et al., 2018) were filtered using a threshold empirically determined 
per sequencing batch using experimental blanks (combinations of 
tags not present in the libraries; Taberlet et  al., 2018). Tag-jump 
(Schnell et al., 2015) was corrected using a threshold of 0.001 oc-
currence for a given MOTU within a library. At the species level, 
taxonomic assignments were accepted, as putative species, if the 
percentage of similarity with the reference sequence was 100%; 
at the genus level, if the similarity was between 90% and 99%, and 
at the family level if the similarity was >85%. If these criteria were 
not met, the MOTU was left unassigned. The post-LCA algorithm 
correction threshold of 85% similarity for the family assignment 
was chosen to include a maximum of the correct family assignment 
while minimizing the risk of adding wrong family assignments in 
the family detections. The number of reads, MOTUs and species 
after each cleaning step are available in the Supplementary mate-
rial of Mathon et al. (2023).

2.2.4  |  Dataset and PCR proportion

The final large-scale dataset consists of 522 samples and a total of 
2888 detected MOTUs. The regional dataset, which includes only 
samples from the Mediterranean Sea, comprises 108 samples and 
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249 MOTUs. Each geo-localized sample records the frequency of 
detection for each MOTU across 12 PCR replicates. Subsequently, 
the dataset was scaled by dividing the PCR detection number of 
each MOTU per sample by the total number of replicates conducted. 
The frequency of detection for each MOTU across 12 PCR replicates 
was chosen to account for the variability in DNA extraction from 
samples and potential errors in the amplification and sequencing 
processes of eDNA data. This approach provides a more reliable es-
timate of MOTU presence compared with binary presence/absence 
data.

2.3  |  Algorithm and computing pipeline

2.3.1  |  Assemblage analysis

To estimate the number of K sources and the two matrices S 
and M, we used the tess3 function from the ‘tess3r’ R-package 
to implement the matrix factorization method. Originally de-
signed for the analysis of large georeferenced genotype datasets 
(Caye et al., 2018; François, 2016), we customized the algorithm 
for eDNA metabarcoding data and adapted it to the context of 
fish biogeography. Details on the new matrix factorization algo-
rithm are provided in Supporting Information (Appendix S1). The 
method and the analysis were performed using R (version 4.1.3; R 
Core Team, 2022).

The number of sources, K, was determined by varying K in the 
range of 3–9. The geographic coordinates of each sample were 
provided as latitude and longitude. To select the optimal number 
of sources, K, we computed the cross-entropy score using the 
‘tess3r’ package. A principal component analysis (PCA) was also 
performed to examine the explanatory variance of the axes. To 
perform the PCA, we used the prcomp function in the R package 
‘stats’. We considered that the optimal value of K to reveal the 
biogeographical delimitation of our samples was at the edge of the 
plateau when representing the cross-validation score performed 
by the model.

2.3.2  |  Identification of the most differentiating 
MOTUs at a large scale

In addition to the spatial assemblage analysis, we explored the 
correlation between specific MOTUs and their respective sources. 
Using the matrix of MOTU frequencies across different sources, 
M, we performed an ANOVA to detect significant differences be-
tween sources. The null hypothesis was that there were no dis-
cernible differences between the sources, providing a baseline for 
our analyses.

To identify the MOTUs that most strongly differentiate be-
tween sources, we focused on those showing the highest statisti-
cal significance in the ANOVA results. We calculated the p-values 
for each MOTU and then applied a logarithmic transformation to 

these values, representing them as −log10(p-values) to enhance 
visualization.

To emphasize species that are highly specific to a partic-
ular source, we set an expected false discovery rate (FDR) of 
q = 10−30. This stringent threshold helped us isolate a small num-
ber of MOTUs that are particularly indicative of specific sources, 
highlighting their unique contributions to the overall assemblage 
composition.

The results of these tests were presented visually using a plot of 
the −log10(p-values), allowing us to clearly identify the most differ-
entiating MOTUs at a large scale.

To test the species composition characterizing each pool and 
the mixture of species frequencies, we extracted geographic ranges 
from the global species distribution map provided by Duhamet 
et al. (2023). We intersected the species detected in our dataset and 
the global species distribution map obtained for 730 species. We 
transformed the detection frequency of each species in our model to 
presence–absence. Furthermore, we considered that the frequency 
of a species within a pool is detected if its value exceeds the third 
quartile, to ensure significant detection concerning the value of 
frequencies.

2.3.3  |  Comparison with other methods

We compared our method to one of the most commonly used meth-
ods for studying species assemblages: PCA followed by k-means 
clustering on the first six most explainable axes (cumulative ex-
plained variance 0.42). The ‘stats’ package in R was used to execute 
the PCA using the prcomp function. The first six most explainable 
PCA scores, representing the projections of the data onto the prin-
cipal components, were then subjected to k-means clustering using 
the kmeans function from the same package, specifying 6 as the 
number of clusters, corresponding to the optimal number of pools 
found by our method.

2.3.4  |  Test of the protection effect

To test the capability of the method on a smaller spatial scale, we 
selected a subset of data specific to the Mediterranean Sea, re-
sulting in 108 samples (34 inside and 74 outside no-take marine 
reserves) and 249 MOTUs, and analysed it with our matrix factori-
zation approach, using the same parameters as for the whole data-
set (Appendix S1). To test the correlation between the probability 
matrix S, and the protection level of the samples, we transformed 
the probability matrix S using an isometric log-ratio (ILR) transfor-
mation implemented by the ILR function of the ‘compositions’ R 
package. We then applied a generalized linear model (GLM) to the 
transformed matrix S, where the transformed S follows a binomial 
model with the level of protection (inside vs. outside reserves) as 
the explanatory variable. To assess the significance of the model, 
we performed a chi-squared test. Furthermore, we calculated the 
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pseudo-R-squares of McFadden using the pR2 function from the 
‘pscl’ R package.

3  |  RESULTS

3.1  |  Assemblage analysis at large scale

We explored a range of values for the number of sources K, varying 
from 3 to 9, and for each K value, we derived the matrix S, repre-
senting the proportion of each sample in each source. This allowed 
us to study how sample proportions and pool composition changed 
with the number of sources. We presented the results in bar plots 
illustrating the proportion of samples within each sample pool for 
K values ranging from 3 to 9 (Figure 1a). Specifically, for K = 3, the 
algorithm discriminated the Mediterranean Sea, the tropical north-
western Atlantic Ocean, and a third pool which grouped all other 
samples in blue. For K = 4, the algorithm revealed the emergence of 
a tropical Indo-Pacific-French Polynesia pool, shown in pink. Moving 

to K = 5, the algorithm detected the presence of the New Caledonian 
pool, identified as the tropical Southwest Pacific in yellow. At K = 6, 
the algorithm provided clear distinctions for the Indian Ocean pool 
and French Polynesia, characterized by purple. For K = 7, a pool as-
sociated with French Polynesia emerged, represented by the light 
blue. For K = 8, the algorithm identified a new split within the tropical 
northwestern Atlantic with varying proportions of different sources 
due to the presence of samples from the Pacific coast of Colombia. 
For K = 9, the algorithm identified an additional pool associated with 
the Arctic, indicated in brown. Notably, due to the limited data avail-
able from Arctic samples, this assemblage was only detected at K = 9.

The optimal value of K was reached for K = 6 (Figure S1a). In ad-
dition, a scree plot resulting from the PCA performed on the raw 
data matrix, representing the probability of MOTU detection in PCR 
replicates for each sample, showed an elbow at PCA axis 3 and a 
decrease at PCA axis 6 (Figure  S1b). We examined the sensitivity 
of our method's biogeographic delimitation of samples to K = 6 and 
observed that the six sample pools correspond to well-identified 
biogeographical regions (Figure 1b).

F I G U R E  1  Environmental DNA sample mixture mapping at large scale. (a) Bar plots representing fish samples (horizontal lines) for varying 
numbers of sources (K) from 3 to 9. Each source is depicted with a different colour. (b) World map with a pie plot illustrating the sample 
mixture for K = 6. Samples cluster into six pools corresponding to distinct biogeographic regions: The Tropical southwestern Pacific (yellow), 
the Western Coral Triangle (pink), the Mediterranean Sea (green), the Tropical northwestern Atlantic (orange), the western Indian Ocean 
(purple) and the Scotia Sea (blue).
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3.2  |  MOTU proportions at large scale

For K = 6, we examined the M matrix, which represents the fre-
quencies of MOTUs within each source (Figure  2a). To facilitate 
the interpretation, we streamlined the results by selecting the 
most abundant MOTUs. Specifically, we selected those MOTUs 
for which cumulative frequencies exceeded a predefined thresh-
old, fixed at 30%, selecting 56 MOTUs out of 2888 (Figure  2b). 
This threshold was arbitrary and served as a filter, emphasizing 
MOTUs with substantial representation in the large-scale dataset 
(2% of all MOTUs).

Our analysis distinguished ‘pure’ and ‘mixed’ MOTUs, based 
on whether MOTUs' frequencies originated from only one source 
or multiple sources, respectively. Pure MOTUs were prevalent 
in regions characterized by isolation and endemism, such as the 
Mediterranean and Scotia Seas (depicted in green and blue, respec-
tively in Figure 2a,b). In contrast, mixed MOTUs were indicative of 
regions featuring a mixture of sources, such as MOTUs characteris-
tic of the Indo-Pacific tropical regions (illustrated in yellow, pink and 
purple; Figure 2a,b). This analysis revealed a direct correspondence 
between the frequency of mixtures within MOTUs and the mixture 
of sample proportions (Figures  1 and 2). This alignment is closely 
related to the biogeographic regions delineated by the six distinct 
pools, providing valuable insights into how MOTU compositions in 
samples relate to biogeographical regions. In addition, by reporting 
the taxonomic assignments of the various MOTUs to infer species 
identity, when possible, we were able to associate the proportion of 
each taxon in the pool set (Figure 2b).

Our analysis revealed that MOTUs with the highest global dif-
ferentiation played a critical role in delineating distinct pools. After 
assigning taxon to MOTUs, our observations indicated that the most 
differentiated MOTUs corresponded to species with localized dis-
tributions, as shown in the p-value plot derived from the ANOVA 
test performed on the M matrix (Figure 3a). Indeed, the most dif-
ferentiated species according to the test are the Antarctic cod, that 
is Notothenia coriiceps, the yellowback fusilier, that is Pterocaesio 
tessellata and the dreamfish, that is Sarpa Salpa. These species cor-
respond to assemblages sampled from the Scotia Sea, the tropical 
Indo-Pacific and the Mediterranean Sea, respectively (Figure  3b, 
ref. FishBase/NCBI). In addition, the list of MOTUs exceeding the 
threshold defined by the FDR includes taxa specific to the defined 
pools (Figure 3c).

To evaluate the species composition characterizing each pool 
and the mixture of species frequencies, we used geographic ranges 
extracted from the global species distribution map provided by 
Duhamet et  al.  (2023). We selected the geographic range of each 
species within our study area (Figure  S2) and intersected these 
ranges with the MOTUs for which we had taxonomic information 
at the species level. A linear correlation between the global species 
distribution and the transformed M matrix produced a Pearson cor-
relation of r = 0.62 (p-value <0.001). This analysis establishes a clear 
link between endemic species (species unique to specific regions) 
and the biogeographic regions defined by the identified assemblages 

(Figure 2b). This exploration helps us better understand how species 
are distributed in specific regions and how their assemblage compo-
sition differs between regions (Figures 1b and 2b).

3.3  |  Comparison with other methods

To benchmark our method on the representations obtained from 
the large-scale dataset, we performed a PCA followed by a k-
means clustering on the most explanatory axes, with the number 
of clusters set to K = 6. In the representation plane using the first 
two PCA axes (Figure  S3a), we observed that the samples were 
primarily distributed along three directions, corresponding to the 
Mediterranean Sea, the northwestern tropical Atlantic region, and 
the Indo-Pacific region. Applying the k-means method to the first 
six PCA axes (cumulative explained variance 0.42) with K = 6, we 
obtained distinct clusters corresponding to different biogeographic 
regions (Figure S3b). We compared the clustering results of the PCA 
and k-means method to those obtained with our new method. Both 
methods identified clusters that correspond to well-defined bioge-
ographic regions (Figure  1; Figure  S3). However, our new method 
provided a more nuanced and detailed delimitation of these regions, 
capturing finer-scale patterns of taxon distribution that were not as 
clearly distinguished by the PCA and k-means clustering alone.

3.4  |  Assemblage analysis in the 
Mediterranean Sea

To explore whether our matrix factorization approach could be used 
at a regional scale, we applied our algorithm to a subset of the large 
dataset focusing on the Mediterranean Sea. By analysing the bar 
plots generated with K values spanning from 3 to 7 (Figure 4a), the 
algorithm revealed distinct pools that initially aligned with the geo-
graphical distribution of samples.

For K = 3, the algorithm identified distinct geographical areas 
within the Mediterranean, including notable regions like the Balearic 
Islands, Corsica, and various coastal zones. Progressing to K = 4 
and K = 5, the algorithm provided finer characterizations, pinpoint-
ing different coastal areas such as Banyuls, Carry le Rouet, Riou, 
Porquerolles and Cap Roux in France (Figure 4b). The optimal value 
of K was reached for K = 5 (Figure S4a). In addition, a scree plot re-
sulting from PCA performed on the raw data matrix, representing the 
probability of MOTU detection in PCR replicates for each sample, 
showed an elbow at the level of the PCA axes 4 and 6 (Figure S4b). 
Subsequently, at K = 6 and K = 7, the algorithm detected variations in 
the taxa composition of proportions within each geographical zone 
(Figure 4c). On a regional scale, such as the Mediterranean Sea, the 
analysis of the M matrix for K = 5 did not reveal strong compositional 
MOTU characterizations concerning the sources as in the large-
scale case (Figure S4c).

To test for a protection effect, that is the difference between 
samples from a reserve versus outside, we fitted GLM to examine 

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14430 by Ifrem
er C

entre B
retagne B

lp, W
iley O

nline L
ibrary on [24/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://besjournals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2F2041-210X.14430&mode=
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the effect of protection level on the probability of belonging to 
one of the seven sources. The chi-squared test of GLM between 
the two levels of protection (reserve—non-reserve) and the com-
bined probabilities of the seven sources by an ILR transformation 
had a significance value (p-value <0.001). The pseudo values of 
the GLM resulted in a McFadden pseudo R2 of 0.29 and a Cragg 
and Uhler's pseudo R2 of 0.41. By calculating the correlation be-
tween the MOTU richness in each sample and the probabilities 
combination by the ILR transformation of the S matrix for K = 7, 
we obtained a value R2 of 0.72 (p-value <0.001). This finding con-
firmed that for K = 7, the algorithm recognized the human gradi-
ent of protection among samples and the distribution of MOTU 
richness.

4  |  DISCUSSION

Ecological systems are complex and characterized by numerous 
interactions between species and environmental factors (Riva 
et al., 2023). To better understand the structure of assemblages un-
derpinning biodiversity distribution, effective methods are needed 
both in terms of data acquisition and data analysis. In this study, we 
introduced a new method for studying taxonomic unit assemblage 
composition, emphasizing the mixture that can exist between dif-
ferent pools of samples and taxa. This method is inspired by admix-
ture analysis in population genetics and latent Dirichlet allocation 
(Pritchard et al., 2000; Valle et al., 2014). We applied the method 
to reanalyse a fish eDNA metabarcoding dataset at both large and 

F I G U R E  2  Frequencies of molecular operational taxonomic units from environmental DNA samples in each source for the large-scale 
dataset: (a) Bar plot representing the frequencies of 2888 fish molecular operational taxonomic units (MOTUs) in each source for K = 6. (b) 
Bar plot for a selection of MOTUs (56 out of 2888) with a cumulative frequency exceeding 30% in (a). For these selected MOTUs, we provide 
the best taxonomic assignments. (c) The colour association with sources is derived from the assemblage results presented in Figure 1, for 
which we report the bar plot for K = 6.

(a) (b)

(c)
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    |  9LAMPERTI et al.

F I G U R E  3  Most differentiating molecular operational taxonomic units (MOTUs) detected in the large-scale environmental DNA dataset: 
(a) Plot of −log10(p-values) for the large-scale dataset. The horizontal line represents an expected false discovery rate of q = 10−30. 
The taxonomy of the nine most differentiated MOTUs is reported. (b) Table reporting the 29 MOTUs above the q threshold and their 
corresponding taxonomic identification. (c) Representation of the top three −log10(p-values) and the corresponding fish distribution based 
on FishBase and Aquamaps. The geographic areas corresponding to our samples are highlighted in red rectangles.
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10  |    LAMPERTI et al.

regional scales (Mathon et al., 2023). At large scale, the method was 
able to detect biogeographic sample pools and to associate a proba-
bilistic MOTU composition with the biogeography of the respective 

pool (Figure 1). We observed mixing between pools, revealing the 
complex dynamics of marine ecosystems and the fact that a MOTU 
can belong to several bioregions (Figure  2). By examining MOTU 

F I G U R E  4  Mixture mapping and molecular operational taxonomic unit (MOTU) composition at a local scale: The Mediterranean Sea (a) 
Barplots illustrating the composition of fish samples for varying numbers of sources (K) from 3 to 7 in the Mediterranean Sea. As K increases, 
the different pools are associated with the continent-island gradient (K = 3) and the latitudinal and longitudinal gradients (K = 4–6). (b) At 
K = 5, distinct regions are identified: Balearic Islands (orange), Banyuls (purple), Carry-le-Rouet and Riou (yellow), Porquerolles (green), Cap 
Roux (pink) and Corsica (blue). (c) At K = 7, the effect of protection within each specific geographic region is observed, with local variation 
in composition between samples from no-take reserves and those from fished areas within each region. On the left, in the geographic map, 
reserve samples are represented by larger circles, and their coordinates are indicated by asterisks. On the right, a bar plot for K = 7 shows 
samples sorted by latitude. Bars corresponding to samples from reserves are indicated by an arrow and an asterisk.
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compositions and their respective abundance in the sources, the 
model linked the taxa corresponding to the MOTUs to their respec-
tive geographic ranges (Figures  2 and 3). In the regional analysis 
of Mediterranean samples, our algorithm successfully identified 
biogeographic gradients such as the latitudinal gradient and the 
continent-island gradient. It also identified clusters of MOTUs cor-
responding to the level of protection for each sample (Figure 4).

The delineation of fish assemblages in different oceanic regions is 
influenced by a complex interaction of environmental, historical and 
ecological factors (Costello & Chaudhary, 2017; Deutsch et al., 2020; 
Stuart-Smith et al., 2017). In the eastern Pacific and tropical Atlantic, 
ocean currents, temperature gradients and geographic barriers form 
distinct communities adapted to local conditions (Bender et al., 2017; 
Pellissier et  al.,  2014). Similarly, Antarctic fish communities reflect 
the influence of polar currents and unique habitats like ice shelves 
(Crame, 2018; Eastman, 2005). The Mediterranean biodiversity stems 
from its geographic isolation and habitat diversity (Coll et al., 2010). 
In the Indo-Pacific, subtle differences in assemblages are due to the 
weak physical barriers to dispersal (Treml et al., 2015), although areas 
of endemism persist (Kulbicki et al., 2013). Our method identified in-
creasingly distinct sample pools with higher parameter values. On the 
large scale, regions like the Mediterranean and Tropical Northwestern 
Atlantic can be discriminated while at higher resolution the Indo-
Pacific was split. This highlights the Indo-Pacific's vastness and het-
erogeneity, driving species evolution, diversification and adaptation 
(Cowman & Bellwood, 2013).

By dissecting MOTU frequencies within sources and classifying 
them into ‘pure’ and ‘mixed’ types, we identified relationships be-
tween MOTU composition, geographical regions and biodiversity 
(Figure  2). The taxonomic identification of MOTUs revealed how 
pure taxa are characteristic of areas such as the Mediterranean Sea 
(e.g., Sparidae like Salpa Salpa, Boops boops and Diplodus sargus) and 
Scotia Sea (e.g., Nototheniidae, like Notothenia rossii and Notothenia 
corliceps), and how mixed MOTUs are characteristic of those taxa 
from the tropical belt, mainly mixed taxa from the Indo-Pacific zone. 
(e.g., Scaridae, Acanthuridae and Lutjanidae) (Figure 3).

The comparison with PCA followed by k-means shows that our 
mixed representation is more effective in clustering the various sam-
ples. In the PCA (Figure S3), samples are stretched along PC axes, 
and some samples are assigned by the k-means to a cluster even if 
they are geometrically distant from the centre of their cluster. This 
behaviour is typical of mixed compositions, such as fish communi-
ties, where spatial connections, vastness and heterogeneity of en-
vironments promote mixing (van Denderen et al., 2015). Moreover, 
although the clustering largely matches the biogeographic regions, 
some samples within each biogeographic region of the large-scale 
dataset remain grouped in the cluster corresponding to the poles 
(Cluster 1 Figure 3). These samples correspond to near-zero coor-
dinates in the PC1-PC2 plane, which have a very low contribution 
on the axes, resulting in their failure to be clustered into their re-
spective biogeographic groups. The representation provided by 
PCA limits the identification of community data mixing and fails to 
adequately handle samples with near-zero coordinates. Our method 

appears more appropriate for the study of community assemblages, 
allowing more effective analysis of both spatial and compositional 
relationships at individual sites.

To conserve biodiversity and understand the effects of conserva-
tion efforts on ecological systems, the study of species assemblages 
within specific regions is of great importance, particularly species re-
sponses to different levels of protection (Loiseau et al., 2021). Our in-
vestigation, focusing on a subset of the Mediterranean Sea, showed 
a significant association between protection levels and the distribu-
tion of MOTUs (McFadden pseudo R2 = 0.29, p-value <0.001; Cragg 
and Uhler's pseudo R2 = 0.41., p-value <0.001), illustrating the algo-
rithm's capacity to discern human-induced protection gradients and 
their impact on MOTU composition (R2 = 0.72, p-value <0.001). This 
result confirms several previous studies on similar data (Boulanger 
et al., 2021; Dalongeville et al., 2022; Lamperti et al., 2023) but has 
the merit to show the mixture characterizing each area and local con-
ditions (Figure 4c). Our method thus proved to be an effective tool 
for understanding changes in species assemblages from eDNA me-
tabarcoding data, allowing us to accurately track both environmental 
and human changes, aspects that are crucial for understanding the 
current impact of global change (Blowes et al., 2019) but also moni-
tor restoration strategies across coastal habitats (Vozzo et al., 2023).

The method was then able to link different samples by mix-
ing assemblage compositions from different sources. It provides a 
more accurate view of species assemblages in space than β diver-
sity (Figure S5). The latter is able to describe pairwise dissimilarity 
between different samples (Loiseau et  al.,  2021) and, when com-
bined with a reduction method such as PCoA, to cluster samples 
along gradients that are often difficult to interpret. In contrast, our 
method provides a clear multidimensional representation of individ-
ual samples described by the proportion of different sources. It also 
provides mixed frequencies on MOTUs, thereby offering a simulta-
neous visualization of the geographic and compositional relation-
ships of the assemblages at each site. While β diversity is a measure 
of pairwise dissimilarity between samples, spatial matrix factoriza-
tion is a sample-based assessment of similarity to all other samples, 
considering common sources.

The method proves to be an additional relevant tool for study-
ing the composition of species assemblages. However, the selection 
of parameters can influence its outcomes, and identifying scattered 
samples can pose challenges. At large scale, Arctic samples often 
elude clear identification as a distinct pool unless the algorithm is 
adjusted to accommodate a larger number of sources, thereby in-
troducing instability in the optimization process (Figure  S1a). This 
phenomenon arises from the sparse nature of the samples, charac-
terized by a high prevalence of null values and a limited number of 
samples and MOTUs.

In conclusion, our comprehensive analysis from large to regional 
scales provides original insights into the structuring of marine fish 
assemblages, the interaction between assemblages and taxonomic 
units, and the impact of human factors on biogeography. These 
results demonstrate that the model is more suitable for studying 
community assemblages, clearly highlighting the mixing that can 
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occur within an ecosystem and effectively visualizing the biodiver-
sity structure both within and between samples. The importance of 
accurate assemblage identification could also have significant impli-
cations for ecological conservation efforts and biodiversity manage-
ment. The method has the potential to derive relevant bioindicators 
based on the composition of taxonomic units to detect early signals 
of ecosystem shifts. With the arrival of massive eDNA data world-
wide (Duarte et al., 2023; Mathon et al., 2023), future improvements 
should exploit the information contained in nucleotide sequences 
(Lamperti et  al.,  2023). Although the spatial matrix factorization 
method was tested on a large-scale fish eDNA dataset, it has broad 
applications in the study of biogeography and community composi-
tion with other types of data, such as abundance or detection data, 
species inventories, OTUs and ASVs.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1: Cross-validation score plot (a) and scree plot (b) from the 
PCA on the large-scale eDNA data.
Figure S2: Geographical sampling areas for selection of the 
geographical map of Duhamet et al. (2023).
Figure S3: (a) Representation of the first two axes of the PCA on the 
large-scale eDNA data matrix. The points are coloured based on the 
k-means clustering performed on all the first six PCA components. (b) 
Geographical representation of the different points according to the 
k-means clustering performed on the first six PCA components.
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Figure S4: Cross-validation score plot (a) and scree plot (b) from 
the PCA on the local eDNA data, the Mediterranean Sea. In (c) we 
reported the MOTU proportions for K = 5 in the Mediterranean Sea 
(ref. Figure 4b). In contrast to the large-scale case, the proportions 
represented in the Mediterranean Sea seem to be more mixed 
together, without having a clear proportion of one source.
Figure S5: Comparison diagram illustrating the analyses we can 
obtain from a community matrix using the spatial method of matrix 
factorization (left) and using beta diversity and PCoA (right).
Appendix S1: Algorithm and computing pipeline.
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