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12 Highlights:

13 - Absence of major changes in species dominance and the persistence of a common pool of 

14 structuring species;

15 - Since 1976, the communities in the downstream/median area of the basin have shown a 

16 overall functional stability;

17 - In the upstream area, remarkable instability is observed, explained by a recent marinisation of 

18 the area and notable changes in the distribution of superficial sediments;

19 - Functional diversity and redundancy remain in good condition throughout the different years 

20 of the study, suggesting a high level of ecological resilience.

21 Abstract:

22 The Community Trajectory Analysis Framework was used in conjunction with conventional methods 

23 to analyse, characterize, and represent long-term functional changes in soft sediment communities in 

24 the Rance basin (Normano-Breton Gulf) sampled in 1976, 1995, 2010, and 2020, in connection with 

25 the operation of the Rance Tidal Power Station (RTPP). The results of this study have shown a 

26 functional stability of assemblages in the downstream/median areas of the basin, driven by the absence 

27 of major changes in the dominance of species and the persistence of a common pool of structuring 

28 species. On the contrary, in the upstream area, the observed instability over time is largely explained 

29 by (i) marinisation caused by changes in the tidal prism and (ii) an increase of surficial sediments 

30 grain size in the main channel. Despite the changes observed in 2020, the functional diversity index 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4751096

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

mailto:titouan.brebant1@gmail.com


31 indicates a relative functional stability at the basin scale, suggesting a high level of ecological 

32 resilience. 

33 Keyword: Community Trajectory Analysis, functional stability, structuring species, resilience 

34

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4751096

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



35 Introduction

36 Aquatic ecosystems are under the influence of multiple stressors of natural or anthropogenic 

37 origin, which lead to a degradation of ecological quality and compromise the ability to provide goods 

38 and services to humans (Costanza et al., 1997; Costanza and Farber, 2002; Worm et al., 2006; Halpern 

39 et al., 2008). Monitoring, management and restoration are crucial steps to characterize, minimize or 

40 reverse the effects of disturbances on the structure and functioning of ecosystems (Simenstad et al., 

41 2006; Elliott et al., 2007; Borja et al., 2010). To assess the health of an ecosystem, biodiversity indices 

42 related to the species richness and taxonomic compositions of a community are generally used (Aarnio 

43 et al., 2011). Although very useful, they do not consider interactions with the abiotic components of 

44 the system and do not provide information on the functioning of the ecosystem (Bremner et al., 2003). 

45 In order to truly understand ecosystem dynamics, it is essential to investigate not only the structure but 

46 also the functioning of the biological communities involved (Naeem, 1998; Naeem et al., 2002; 

47 Hooper et al., 2005; Weigel et al., 2016; Shojaei et al., 2021). Functional traits-based approach refers 

48 to the biological and ecological characteristics of organisms and constitutes a complementary 

49 integrative framework for linking changes in biodiversity to their functional consequences (Covich et 

50 al., 2004; Hooper et al., 2005; Cardinale et al., 2006; Raffaelli, 2006; Suding et al., 2008; Boyé et al., 

51 2019; Martini et al., 2021). This approach gives a more complete overview of the organisation and 

52 evolution of the community (Lausch et al., 2016; Cochrane et al., 2016) and is also successful tool for 

53 assessing the health or vulnerability of an ecosystem (Dı́az and Cabido, 2001; Bremner, 2005; 

54 Fleddum, 2010; Schleuter et al., 2010; Capet et al., 2014). 

55 Functional diversity facets such as functional redundancy is an important component of 

56 ecosystem resilience properties (Walker 1992; De Juan et al., 2015). The stability of traits composition 

57 indicates that substitutions of functionally similar benthic species can occur commonly and over 

58 multiple time scales. This turn over ensures the stability of ecological functioning (Clare et al., 2015; 

59 Frid and Caswell, 2015; Naeem, 1998; Shojaei et al., 2021) and increases the ability of a system to 

60 absorb various disturbances and reorganize to maintain critical functions while undergoing state 

61 changes (Peterson et al., 1998). High functional redundancy between species would allow only minor 

62 changes in functionality, even despite considerable variations in taxonomic diversity (Frid and 

63 Caswell, 2015; Törnroos et al., 2015; Van der Linden et al., 2016; Weigel et al., 2016; Shojaei et al., 

64 2021). Conversely, low functional redundancy imply that functioning properties are more sensitive to 

65 changes in biodiversity (Wong and Dowd, 2015).

66 The influence of parameters as functional redundancy may be important in maintaining 

67 ecosystem resilience (Walker 1992; De Juan et al., 2015). The stability of trait composition indicates 

68 that substitutions of functionally similar benthic species can occur commonly and over multiple time 

69 scales. This turn over ensures the sustainability of ecological functioning (Clare et al., 2015; Frid and 

70 Caswell, 2015; Naeem, 1998; Shojaei et al., 2021) and increases the ability of a system to resist to 
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71 disturbances (Peterson et al., 1998). High functional redundancy between species would allow only 

72 minor changes in functionality, even despite considerable variations in taxonomic diversity (Frid and 

73 Caswell, 2015; Törnroos et al., 2015; Van der Linden et al., 2016; Weigel et al., 2016; Shojaei et al., 

74 2021). Conversely, low functional redundancy indicates that functioning is sensitive to changes in 

75 biodiversity (Wong and Dowd, 2015).

76 Different indices of functional diversity are available in the literature (Mason et al., 2005; 

77 Mouillot et al., 2005; Petchey and Gaston, 2002; Rao, 1982; Schleuter et al., 2010; Villéger et al., 

78 2008). The functioning of benthic communities was primarily assessed using approaches such as 

79 trophic group analysis, relative taxon composition analysis, and integrative indices (Bremner et al., 

80 2003, 2006). These methodologies provide little information on ecological functions and thus provide 

81 a reductionist view of functioning as they focus on a single or small number of biological traits 

82 (Bremner et al., 2003). Biological Trait Analysis (BTA) is an alternative method of describing 

83 ecosystem functioning, that goes beyond traditional approaches (Statzner et al., 1994), through the 

84 strong links between traits and ecosystem processes (Díaz and Cabido, 2001). BTA confers 

85 advantages over conventional methods (Dolédec et al., 2006; Frid et al., 2008; Neumann and Kröncke, 

86 2011). BTA may use a set of different characteristics (life history, morphological, behavioural) of 

87 species present in assemblages (Bremner, 2008) and can be used for management and conservation 

88 purposes (Bremner, 2008; Frid et al., 2008). 

89 We used BTA to determine the dominant functional characteristics of the Rance basin after 54 

90 years of operation of a tidal power plant. Commissioning in 1966, the Rance Tidal Power Plant 

91 (RTPP) uses the tidal range to create a difference in water height between the open sea and the basin 

92 and to produce electricity. This study complements a previous one focused on temporal differences in 

93 benthic assemblage structure and ecological trajectories over the last three decades (Brébant et al., 

94 submitted-a). During the last decade, the number of species significantly increased, in relation with 

95 progression of marine waters, sediment redistribution, habitat heterogeneity increasing and seagrass 

96 dynamics. The RTPP operation is responsible of the surficial sedimentary cover by locally slightly 

97 increasing the sedimentation rate. The first objective of this study was to assess the functioning of 

98 macrobenthic assemblages in the Rance basin in response to hydro-sedimentary modifications. As 

99 studying the temporal changes in the functioning of benthic assemblages is indispensable to validate 

100 management plan (Veríssimo et al., 2012), the second objective was to identify functional trajectory 

101 differences between benthic assemblages during the last three decades by applying the Community 

102 Trajectory Analysis framework (De Caceres et al., 2019) to functional dynamics (Sturbois et al., 

103 2021b)

104

105

106

107
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108 Materials and methods

109 1. Study site and data set

110 The study area focuses on the Rance maritime basin, which extends on 22 km² at high tide 

111 from the Chatelier lock upstream to the RTPP downstream (Figure 1). This basin is a narrow ria 

112 (Evans and Prego, 2003) located on the north coast of Brittany (France). After the RTPP was built in 

113 1966, the salinity front migrated several km upstream. Currently, the Rance basin is divided in two 

114 zones: the downstream zone corresponding to marine waters and the upstream zone where evolve the 

115 salinity front (Bonnot-Courtois and Lafond, 1991, Figure 1). During the last decade, in response to 

116 climatic change, the salinity front has moved upstream allowing the progression of marine species. 

117 The Rance basin has become a privileged study site to characterise the impact of such large structure 

118 on biological recolonization modalities, sedimentological changes or structure and functioning of 

119 benthic assemblages. Surficial sedimentary cover was studied in 1994 (Bonnot-Courtois et al., 1995) 

120 and 2020 at the scale of the basin and in 2010 in the upstream. Benthic assemblages were studied by 

121 maps in 1971, 1976, 1995 and 2020 at the scale of the basin (Retière, 1979; Desroy, 1998, Brébant et 

122 al., submitted–b) and in 2010 in the upstream zone (Brébant et al., submitted-b). Unfortunately, the 

123 lack of impact assessment prior to the construction of the RTPP prohibits any comparison with pre-

124 impact data.

125
126 Figure 1: Situation map of the Rance basin and sampling grid (84 stations) common to the different 

127 surveys (adapted from Bonnot-Courtois and Lafond, 1991).
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128 2. Sampling and analytical procedures

129 2.1. Sediment

130 Granulometric data were collected in 1994, 2010, and 2020. In 1994, 211 samples were 

131 collected and analysed through seven granulometric sieves (Bonnot-Courtois et al., 1995). In 2010, 32 

132 stations located in the upstream part of the Rance basin had been sampled. In 2020, sediment has been 

133 collected on 99 stations (integrating stations sampled in 2010) distributed in the whole basin Sampling 

134 grid performed in 1994 and 2020 were different, but granulometric analysis were conducted with the 

135 same protocol. The classification of sedimentary facies distinguishes 12 facies, ranging from gravels 

136 to muds, regrouped in this study in 3 categories: mud (<100 µm), sand (100 µm – 2 mm) or gravel (> 

137 2mm)-dominated habitats.

138 2.2. Fauna

139 Data collected in 1976, 1995 and 2020 at the scale of the basin (84 common stations) and in 

140 2010 in the upstream zone (32 common stations) were considered (Figure 1). For each survey, two 

141 replicates were collected using a Smith McIntyre grab (1976, 1995, 2010) or Day grab (2020), 

142 sampling on a unitary surface of 0.1 m-2. The replicates were sieved in situ using a 1 mm-mesh sieve 

143 and the material was preserved in a 4% buffered formalin solution. Specimens were counted and 

144 identified to the lower possible taxonomic level. Taxa found during each year of study were 

145 standardized and named in accordance with the World Register of Marine Species (WoRMS Editorial 

146 Board, 2023). Abundances were expressed as ind.0.1 m-2.

147 3. Taxonomic description

148 In order to assess the different components of α-diversity, the mean numbers of individuals per 

149 0.1m-2 (N) and taxa richness (S) were calculated for each survey and station prior to any 

150 transformations of the dataset. Values characterising downstream, median, and upstream zones of the 

151 Rance basin were compare and statistically tested using analysis of variance (ANOVA).

152 4. Biological traits

153 Based on the literature, seven traits were selected and divided into thirty-six modalities of 

154 traits to characterise the responses of organisms to the main pressures identified in the study area: 

155 sedimentation and eutrophication (Table 1). Selected traits provide a broad view of the functioning of 

156 the ecosystem, while limiting redundant information. Traits include (i) feeding mode, linked to 

157 resource availability and use; (ii) life history, related to sediment reworking and biogeochemical fluxes 

158 at the water-sediment interface; (iii) mobility, linked to movement activities and occupation of the 

159 environment; (iv) size, associated to the morphology of taxa; (v) ecological group, related to the 

160 tolerance of species to sedimentation or organic enrichment (Degen and Faulwetter, 2019)]; (vi) 

161 lifespan, proxy of productivity dynamics (Brey, 1999); (vii) bioturbation, related to the ability of 
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162 species to rework the sediment (Borja and Tunberg, 2011) and (viii) position of organisms in the 

163 sediment, related to habitat use and the potential of disturbance. Each trait was divided into 4-5 

164 modalities to encompass the wide range of macro- and megafaunal characteristics. Affinity of 

165 organisms for traits was coded in a fuzzy manner (Chevene et al., 1994) by assigning them a score 

166 ranging from 0 (no affinity for a given trait) to 3 (full affinity). Community weighted mean values 

167 (CWMs) were calculated to characterise the functional structure (Ricotta and Moretti, 2011). 

168 Information was extracted from the primary literature on specific taxa, existing matrices (Robert, 

169 2021; Sturbois et al., 2021a; Clare et al., 2022), expert knowledge and three publicly available 

170 databases: polytraits (http://polytraits.lifewatchgreece.eu), the World Register of Marine Species 

171 (WoRMS Editorial Board, 2023) and the Biological Trait Information Catalogue (BIOTIC, 

172 http://www.marlin.ac.uk/biotic/). When no data were available (5% of taxa), trait modalities were 

173 coded 0. For subsequent trait analyses, these taxa took the average profile of all other taxa [i.e. they 

174 did not contribute to potential models of the given trait (Statzner and Beche, 2010)].

175 Hierarchical Cluster Analysis (HCA) and Non-Metric Multidimensional Scaling (NMDS) was 

176 performed on the biological traits matrix’s to distinguish functional groups between each pair of 

177 samples (Legendre and Gallagher, 2001) and applying the Ward's clustering method (Ward, 1963).

178
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179 Table 1: Traits, modalities and descriptions used for the analysis of biological traits.
Trait Modalities Description

Feeding mode
1- Deposit-feeder
2- Suspension-feeder
3- Herbivorous
4- Predator/ Scavengers

1- Feeds on detritus (including algal material) on the sediment 
surface and within the sediment matrix. 

2- Feeds on particulate food resources suspended in the water 
column.

3- Feeds exclusively on plant material.
4- Actively predates on animals (including small zooplankton) and 

Feeds on dead animals (carrion).

Living habit

1- Tube-dwelling
2- Burrow-dwelling
3- Free-living
4- Crevice/hole/under 

stones
5- Epi/endo-biotic
6- Attached to substratum

1- Adults live in a tube, lined with sand, mucus or calcium carbonate.
2- Adults live in a permanent or temporary burrow.
3- No restrictive structure. Able to move freely in and/or on the 

sediment.
4- Adults are usually cryptic and in coarse/rocky substrate or algal 

spikes.
5- Adults live on or in another organism.
6- Adults are attached to coarse substrate or rock.

Mobility
1- Sessile
2- Swim
3- Crawl/creep/climb
4- Burrower

1- Adults have little or no mobility. Attached or lives in (semi-) 
permanent burrow/tube.

2- Adults actively swim in the water column
3- Adults capable of (usually limited) movement along the surface of 

sediments or rocks.
4- Adults able to move actively in the sediment

Maximun size
1- <1 cm
2- 1-2 cm
3- 2-10 cm
4- >10 cm

The maximum lifespan (years) of the adult stage of the taxon.

Tolerance 

(AMBI)

1- Sensitive
2- Indifferent
3- Tolerant
4- Second-order 

opportunist
5- First order opportunistic

1- Species disappear when there is hypertrophy of the environment.
2- Species that are little influenced by an increase in the quantity of 

organic matter.
3- Naturally present in the mud. Their proliferation is stimulated by 

an enrichment of the environment, a sign of the imbalance of the 
system.

4- Small short-cycle species (<1 year) abundant in the reduced 
sediments of polluted areas.

5- Depositor species, proliferating in reduced sediments

Lifespan
1- <1 year
2- 1-3 years
3- 3-10 years
4- >10 years

The maximum reported lifespan (years) of the adult stage of the taxon.

Bioturbation

1- Diffusive mixing
2- Surface deposition
3- Upward conveyor
4- Downward conveyor
5- None 

1- Vertical and horizontal redistribution of sediment/other particles.
2- Deposition of particles on the sediment surface (e.g. pseudofeces).
3- Translocation of particles from the depth to the sediment surface.
4- Subduction of particles from the sediment surface to the depth 

(e.g. feeding and/or defecation).
5- Does not have bioturbation capacity.

Sediment 

position

1- Surface
2- Shallow infauna
3- Mid-depth infauna
4- Deep infauna

1- Adults live on or just above the sea floor.
2- Adults live below the surface of the sediment (0 and 5 cm deep).
3- Adults live below the sediment surface (5 and 10 cm deep).
4- Adults live below the surface of the sediment (more than 10 cm 

deep).
180

181
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182 5. Functional diversity

183 The studied community is composed of S species. Each species i has a number of T traits with 

184 standardized values (xi1, xi2, ..., xiT), which are conceived as coordinates in the functional trait space. 

185 When plotting all the S species in a multi-trait space, functional diversity is simply the distribution of 

186 species and their abundances in this functional space (Villéger et al., 2008). The functional space was 

187 defined with a Principal Coordinate Analysis (see the review of Mouillot et al., 2013) and functional 

188 diversity was estimated from four univariate indices: functional richness (FRic), functional evenness 

189 (FEve), functional divergence (FDiv) [calculated following the method of Villéger et al., (2008)] and 

190 functional redundancy (FRed). FRed corresponds to the ratio of Functional Diversity to Shannon-

191 Weaver index [FD/H' (van der Linden et al., 2012)]. FRic ranges from 0 to 1 when the functional 

192 richness of the assembly fills the entire possible functional space. FEve determines the distribution 

193 among species and their abundances within the functional space. FDiv represents the average distance 

194 of species (weighted by their abundances) between the position of each species present at the 

195 considered station in the functional space and the center of gravity of that space. FRed values decrease 

196 as functional redundancy increases. Functional diversity indicators were calculated using the "FD" 

197 package (Laliberté et al., 2014). Maps presenting the distribution of univariate indices of functional 

198 diversity were produced using Rstudio software (package Krigiing), according to the kriging 

199 interpolation method. 

200 ANOVA were conducted to test differences between indices values across space (three zones) 

201 and time (three sampling periods).

202 6. Detecting trajectory patterns

203 A PCA was performed on CWMs and analysed with the Community Trajectory Analysis 

204 framework (CTA, De Caceres et al., 2019) applied to functional dynamics (Sturbois et al., 2021b). 

205 CTA is based on the geometric properties of ecological trajectories (De Cáceres et al., 2019). 

206 Trajectories corresponds to a set of ecosystem states (i.e., coordinates in a multidimensional space) 

207 derived from temporal observations that can be analysed and compared using a distance matrix. States 

208 are expressed by a vector specifying the site corresponding to each consecutives ecosystem status and 

209 a vector specifying the survey (sampling year) corresponding to the sampling of each ecosystem 

210 status. A set of distance-based metrics was calculated. The segment length represents the distance 

211 between two consecutive surveys. The trajectory path corresponds to the sum of segment lengths 

212 belonging to a trajectory. NC provides information about the overall change occurred during the study 

213 period. The net change ratio (ratio between the net changes and the trajectory path) indicates the 

214 linearity of recovery and/or departure processes relative to the initial status. Consecutive recovery and 

215 departure trajectory segments (RDT) were identified by the difference between the net change n-1 and 
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216 the net change n (Sturbois et al., 2021b). CTA were conducted using the 'ecotraj' package (De Cáceres 

217 et al., 2019, Sturbois et al., 2021b). 

218 Hierarchical Cluster Analysis (HCA) was performed on the Directed Segment Path Distance 

219 (DSPD) to distinguish clusters of functional trajectories between each pair of samples (Legendre and 

220 Gallagher, 2001) and applying the Ward's clustering method (Ward, 1963).

221 Results

222 1. Sedimentary characteristics

223 Although maps of surficial sediment coverage are not comparable because of their different 

224 sampling grids, some sedimentary changes occurred over a span of 26 years (see Brébant et al., 

225 submitted-b for details).

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240 Figure 2: Pie chart representing the sedimentary facies (mud, sand and gravel-dominated sediment) for 

241 the year 1994 (A) and 2020 (B). Background colours of the map represent the bathymetry (m: 

242 maximum, M: minimum). A common bathymetry recorded in 2018 was used for the two years.

A] B]
B]
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243 Sediment has been enriched between 1994 and 2020 in fine particles (<100 µm) downstream 

244 in lateral coves and upstream, on upper intertidal flats. In the upstream zone, the main channel was 

245 clearly delineated in 2020, with predominantly sandy sediment and important proportions of coarse 

246 fractions. In contrast, sediments in the channel were richer in fine particles (mud notably). Data could 

247 not be statically tested as only 13 stations were comparable between 1994 and 2020.

248 2. Macrobenthic communities

249 2.1. General characteristics

250 At the scale of the 84 stations sampled in the whole basin, 98 taxa were common to the 1976, 

251 1995, and 2020 surveys. On the upstream part, 28 species were common to the three sampling periods.

252 The number of taxa recorded in the basin has significantly increased between 1976–1995 

253 (respectively 164 and 212) and 2020 (361; p-value < 0.001). In 2020, the number of taxa followed an 

254 increasing gradient (not observed in 1976 and 1995) from upstream to downstream zones (Figure 3). 

255 Similarly to the species richness, abundance values were significantly higher only in 2020, compared 

256 to 1976-1995. Abundance followed a similar gradient of increasing from upstream to downstream 

257 (Figure 3). In 1976, the most abundant species were the polychaetes Euclymene oerstedii, Melinna 

258 palmata, and Chaetozone gibber. In 1995, they were replaced by oligochaetes and in 2020, by the 

259 phoronid Phoronis psammophila and the polychaete Leiochone leiopygos. For each survey, the 

260 number of taxa and abundances were significantly different between zones, values observed in the 

261 median and downstream zones being different of values observed in the upstream zone (Figure 3). In 

262 1976, 1995 and 2020, species richness and abundance were not significantly different in median and 

263 downstream zones but significantly different in the upstream zone.

264

265

266

267

268

269

270
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271 Figure 3: Boxplot representing changes in species richness (A) and abundance (B) between different 
272 areas over time. Richness and abundance are expressed over 0.1m-2. Statistical differences have been 
273 assessed thanks to pairwise-Wilcoxon tests. ***: p-value <0.001; **: p-value <0.01; *: p-value <0.05.
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274 Compared to previous surveys, Shannon index (Table 2) was also significantly different only 

275 in 2020 (p-value < 0.001). Over time, values of Shannon index are not significantly different in 

276 median and downstream zones but significantly different in the upstream zone (p-value <0.001). 

277 Values of Simpson and Pielou index (Table 2) are not significantly different at the scale of the basin.

278 Table 2: Mean values per station of Shannon (H'), Simpson (D) and Pielou index (J), and of species 

279 richness (S) for the different zones in 1976, 1995, 2010, and 2020. Standard deviations are indicated in 

280 italics.

281

282

283

284 2.2. Functional properties

285 At the basin scale, the overall functional properties remained stable over time between 1976, 

286 1995 and 2020 (Figure 4). Deposit feeders were largely dominant, representing up to 60% of the 

287 trophic group, whatever the year considered. Fauna was mainly composed of tubicolous organisms, so 

288 sessile, and burrowers, living in the few first cm of sediment, with a short lifespan (1-3 y) and tolerant 

289 to organic enrichment. Over time, some light changes can be observed: among bioturbators, the 

290 contribution of organisms inducing surface deposition decreased to the benefit of upward conveyor 

291 species. The ratio of small organisms decreased over time to the benefit of medium size organisms. 

292 Contribution of sensitive species (group I) tended to increase at the expense of indifferent species 

293 (group II). Finally, tubicolous and free-living organisms decreased, and burrowers increased.

294

295

296

297

298

299

300

301

1976 1995 2010 2020 1976 1995 2020 1976 1995 2020
H' 1.53 ± 0.57 1.49 ± 0.57 1.18 ± 0.86 1.80 ± 0.76 2.04 ± 0.52 2.20 ± 0.49 2.50 ± 0.44 2.08 ± 0.59 2.36 ± 0.68 2.62 ± 0.81
D 0.68 ± 0.17 0.66 ± 0.18 0.57 ± 0.33 0.70 ± 0.18 0.75 ± 0.15 0.80 ± 0.12 0.83 ± 0.08 0.77 ± 0.16 0.81 ± 0.17 0.84 ± 0.17
J 0.68 ± 0.14 0.68 ± 0.18 0.53 ± 0.33 0.67 ± 0.15 0.58 ± 0.11 0.63 ± 0.10 0.64 ± 0.08 0.63 ± 0.14 0.66 ± 0.15 0.64 ± 0.14
S 12 ± 14 11 ± 11 9 ± 7 24 ± 21 35 ± 13 35 ± 13 52 ± 18 29 ± 14 38 ± 18 62 ± 26

Upstream Median Downstream
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302

303

304 Figure 4 : Profiles of functional traits (including the 36 modalities) at the scale of the whole basin 

305 in1976, 1995 and 2020.
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306 At the scale of the upstream area, which exhibit the most variable environmental conditions, 

307 some modality contributions changed between 2010 and 2020: contribution of medium size, long-

308 lived (3-10 y) organisms and organisms inducing surface deposition increased and contribution of tube 

309 dwellers decreased (supplementary material, annex 1). However, these changes are in the variability 

310 range observed since 1976 and did not modify the main contributions pattern of functional traits which 

311 were comparable to those observed at the scale of the basin.

312 2.3. Functional diversity

313 Various univariate indices of functional diversity were calculated for each station in 1976, 

314 1995 and 2020 at the scale of the basin and represented, using kriging, to determine trends in species 

315 trait diversity within the ecosystems (Figure 5A, B and C).

316 Functional richness (FRic) exhibits similar distribution patterns in 1976 and 2020, with hight 

317 values in the downstream and median parts and in the channel of the upstream area (p-value > 0.05). 

318 In 1995, values observed in the upstream area were lower. As a consequence, FRic values are 

319 significantly different between 1976 and 1995 (F: 5.42, p-value <0.001) and between 1995 and 2020 

320 (F: 12.36, p-value <0.001). Functionnal eveness (FEve) values were higher to 0.4 and regularly 

321 distributed in the whole basin in 1976 and 1995. Values, which were not significantly different 

322 between 1976 and 1995, became significantly different in 2020 (F: 3.21, p-value < 0.001). In 2020, 

323 regarding the abundance of species, FEve strongly decreased in 2020 in the whole basin, at the 

324 exception of some stations located upstream. Functional divergence (FDiv) follows the same pattern, 

325 with non significant differences between 1976 and 1995, which became significant in 2020 (F: 4.55, p-

326 value <0.05). High in 1976 and 1995, values of FDiv decreased in 2020, notably on the periphery of 

327 the basin. Values of functionnal redundancy (FRed) are low at the scale of the basin (except in the 

328 most upstream part), whatever the year considered, which means that functional redundancy is high. 

329 Values remained non significantly different between 1976 and 1995 and became significantly different 

330 in 2020 (F: 3.90, p-value<0.001).

331

332
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333

334

335

336

337

338 Figure 5: Spatial distribution FRic, FEve, FDiv and FRed in 1976, 1995 and 2020. The highest values 

339 are coloured in yellow. The black area represents the portion of the basin without station, and therefore 

340 without data.

341
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344 2.4. Inter-annual variability

345 HCA and n-MDS were conducted on the entire dataset (1976, 1995, 2010, and 2020), revealing the 

346 presence of 7 functional groups (Figure 6E), which were mapped for each sampling date (Figure 6A to 

347 D). The stress value for HCA was below 0.2. Two clusters (2 and 3) dominate at the basin scale.

348 Figure 6: Distribution of functional assemblages in the Rance basin in 1976 (A), 1995 (B), 2010 (C) 

349 and 2020 (D). (E): non-metric multidimensional positioning based on HAC, each polygon representing 

350 an functionnal assemblage.

351 Functional asssemblages seemed to be separated in two groups in the multidimensional space 

352 (Figure 8E). The first, comprising clusters 1 (17 stations), 6 (10 stations) and 7 (24 stations) grouped 

353 upstream stations (at the exception of one station of group 6 located downstream in 1976 and 1995). 

354 The number of stations of each group and their location in the basin was stable over time. Cluster 1 

355 was dominated by carnivores and scavengers species (>60%) indifferent to organic matter rate and 

356 inducing diffusive mixing. Clusters 6 and 7 were mainly composed of deposit feeders,carnivores and 
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357 scavengers tolerant to organic enrichment and moving in or on the sediment. The second group, 

358 composed of clusters 2 (87 stations), 3 (65 stations), 4 (36 stations) and 5 (43 stations), grouped 

359 mainly downstream stations and and locally some upstream stations. Contribution and distribution of 

360 each cluster changed over the study period (Figure 6A to D). In 1976 and 1995, cluster 2 was 

361 distributed on muddy fine sands in the downstream and median areas. In 2010, it extended upstream 

362 and became the dominant cluster in this zone in 2020. For each sampling date, stations of cluster 3 

363 were located in the downstream and median areas, in or near the main channel. In 2020, this cluster 

364 was present in the upstream zone. Unlike 1976 and 1995, in 2020, downstream and median areas host 

365 only clusters 2 and 3. Distribution of cluster 4 decreased over time, from 1976 where it was present on 

366 intertidal mudfltats throughout the basin to 2020 where it was present in only one station. Cluster 5 

367 was located upstream at each sampling date. Clusters 2, 3, 4 and 5 were mainly composed of deposit 

368 feeders (>60%), sessile organisms dwelling in tubes or burrows, generating surface deposition 

369 (pseudofeces). Species included in clusters 4 and 5 are more tolerant to organic matter enrichment than 

370 species of clusters 2 and 3.

371 To summarise, downstream and median parts exhibited relative stable functional assemblages. 

372 Changes observed resulted in a reduction of the number of assemblages until they only host clusters 2 

373 and 3 in 2020. Upstream area is characterise by permanent change of functional assemblages 

374 dominance (cluster 4 and 5 in 1976, cluster 5 in 1995, mosaic of cluster in 200 and cluster 2 in 2020).

375 2.5. Functional trajectories

376 Functional trajectories of the 84 stations sampled in 1976, 1995 and 2020 were separated in 3 

377 clusters of trajectories (Figure 7A and B). Cluster A regroups 32 stations quasi-exclusively located in 

378 the upstream zone. Stations of this group exhibits longest TP and NC value is high (NC: 5.3 ± 2.6 and 

379 TP: 4.6 ± 2, Figure 7C), which indicate important functional changes over time. Cluster B is composed 

380 of 30 stations, mainly distributed in the median part. TP are tight and NC value is the lowest (NC: 2.3 

381 ± 1.2 and TP: 2.7 ± 1.5). Such low values indicate a high degree of stability of functional trait in the 

382 median part of the basin. Cluster C was composed of 23 stations located all along the basin and 

383 characterised by intermediate values of TP and NC (NC: 3.8 ± 2.0 and TP: 3.2 ± 1.5).

384
385

386

387

388

389
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390

391 Figure 7: A - Location of functional trajectory clusters calculated from 1976, 1995 and 2020 datasets. 

392 B - Trajectory diagram (ecological states of each station have been linked to represent trajectories). C 

393 – Summary of trajectory metrics. Taxonomic trajectories are coloured according to trajectory clusters 

394 and described using measures based on mean distance ± sd (NC: net change, TP: trajectory path).

395 Functional trajectory maps were represented in downstream (Figure 8A) and upstream (Figure 

396 8B) areas. Of the 84 stations in the basin, one half presents departing trajectories (42 stations) and the 

397 other half, recovering trajectories (42 stations). Thus, from a global point of view, no dynamic 

398 deviation from the initial functional state is observed in the basin, however, locally, some trends can 

399 be detected, notably in the upstream area. In this area, stations exhibiting departing trajectories are 

400 globally located in the main channel (with differences in magnitude of changes, stations located in the 

401 most upstream arm presenting lowest TP and NC values). Stations showing recovering trajectories are 

402 globally located on intertidal flats and are characterised by TP and NC values of the same order of 

403 magnitude. Their sediment is characterised by high rates of fine particles (mud).

404 In the median and downstream areas, no general trend can be observed. Recovering patterns 

405 seems however to be mainly distributed in and around the main channel.
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406

407 Figure 8: Trajectory maps (A – downstream area, B – upstream area). Net changes between 1976 and 

408 2020 are represented by central black circles. Lower triangles represent the trajectory segment S1 

409 (1976-1995) and the upper ones, the trajectory segment S2 (1995-2020). Size of symbols corresponds 

410 to the lengths and colours of triangles indicate pattern followed (recovering or departing).
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411 Discussion

412 Human activities have caused significant alteration of estuarine ecosystems worldwide, 

413 reducing their species richness, diversity, and productivity (Lotze et al., 2006). Overexploitation, 

414 habitat destruction, and pollution have disrupted the natural balances of species and interactions within 

415 estuarine species, leading to an increase in local extinctions of species and invasions by non-

416 indigenous species (Loreau et al., 2001; Hooper et al., 2005; Lotze et al., 2006; Worm et al., 2006). 

417 With the construction of the RTPP at its mouth, the Rance estuary does not escape this rule. After the 

418 disturbance caused by the construction of the RTTP (1963-1966), benthic assemblages progressively 

419 recolonised bottoms and exhibited, after about 10 years, structures comparable to those of undisturbed 

420 assemblages (Retière, 1979). In 1995, around 30 years after the commisioning of the RTPP, benthic 

421 assemblages appeared stable and mature and approaching their climacic status (Desroy, 1998). Species 

422 richness and abundances increases observed in 2020 raise question about previous observations. New 

423 community distributions have been observed, with marine species establishing their presence on 

424 sediments historically under influence of brackish waters (Brébant et al., submitted-b). Such marine 

425 species transgression must be monitored as it is established that species range expansions first occur at 

426 a small scale before spreading to larger scales (Wilson et al., 2005).

427 The intertidal communities of the Rance share similarities with other similar systems in terms 

428 of species composition and abundance, for example, long-lived bivalves, epibenthic gastropods, 

429 amphipods, burrowing polychaetes, and tube builders (McLusky and Elliott, 2004).

430 Classically, the assessment of ecological status of benthic assemblages were based on 

431 taxonomy (Mouillot et al., 2006; Elliott and Quintino, 2007). However, measures based on biological 

432 characteristics, often considered as better indicators of ecosystem functions and processes, are now 

433 also carried out, (Díaz et al., 2007; Griffin et al., 2009; Gagic et al., 2015). The originality of estuarine 

434 environments is the high variability of presssures (natural and anthropogenic), to which benthic 

435 invertebrates will respond (van der Linden et al., 2012). Such variabilities have significant 

436 repercussions on functional balance and dynamics, and shape the functioning of estuarine ecosystems 

437 (Hooper et al., 2005; Lotze et al., 2006; Worm et al., 2006). At the scale of the basin, values of FEve 

438 and  FDiv were lower in 2020. Lower values of FDiv suggest a lower degree of niche differentiation 

439 and more intense resource competition (Mason et al., 2005; Dolbeth et al., 2013). On the contrary, the 

440 Functional redundancy increased in 2020. Functional redundancy is an important property for 

441 ecosystem stability (Díaz and Cabido, 2001), since redundant taxa mitigate changes ecological 

442 functioning (Clare et al., 2015). Biggs et al., (2020) demonstrated, in a meta-analysis, a positive 

443 average correlation between functional redundancy and ecological stability/resilience. These scientists 

444 hypothesised that functional redundancy promotes ecological resilience and stability, as the function 

445 of ecosystems in communities composed of more redundant species (those that perform similar 
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446 functions) should be less affected by the loss of individual species. Results of this study corroborates 

447 this affirmation.

448 1. Importance of dominant species

449 The functioning of the RTPP, associated to the narrow morphology of the basin create intense 

450 hydrodynamics in the Rance basin. Although less strong than previous the comissioning of the RTPP, 

451 hydrodynamics is responsible for sediment distribution and resuspension, directly impacting the 

452 distribution of benthic macrofauna (Fujii, 2007; Compton et al., 2013; Veiga et al., 2017). 

453 Downstream, the surficial sediment coverage of the main channel remained stable since 1994. 

454 Upstream, in contrast, the channel was silted in 1994 and sandy in 2020. Such changes influence the 

455 structure and the functioning of benthic assemblages and their resilience level (Whomersley et al., 

456 2010). This resilience is attributed to species selection and their inherent ecological plasticity (Davic, 

457 2003).

458 A total of 98 taxa were common to fauna sampled in 1976, 1995 and 2020, representing 76% 

459 of abundances (Brébant et al., submitted-a). In the upstream area, 28 taxa were common to 1976, 

460 1995, 2010 and 2020 datasets. Most of these species are able to support high level of sedimentary 

461 disturbances (erosion or deposition). Species with high abundances, as the polychaetes Ampharete 

462 baltica, Leiochone leiopygos or Melinna palmata, as species with long life cycles (as the polychaetes 

463 Euclymene oerstedii, M. palmata or Nepthys hombergii) contribute to the persistance of assemblages 

464 over time. The production by large, long-lived species might be more sustainable, potentially fueling a 

465 richer trophic chain (Emmerson, 2012) and contributing to improved ecosystem functioning through 

466 other functions such as nutrient dynamics resulting from increased bioturbation (Queirós et al., 2013). 

467 Despite this stable consortium, the selectivity induced by environmental constraints inevitably reflects 

468 in the composition of species traits.

469 2. Trends of functional properties

470 Functional diversity informs about environmental factors and types of disturbances that shape 

471 the diversity of functional traits within assemblages and their distribution in space and time (Gerisch et 

472 al., 2012; Bremner et al., 2006). The gains or losses of species can have more significantly 

473 implications for certain ecosystems than for others (Isbell et al., 2018) and can affect the functional 

474 diversity of assemblages in various ways (Cadotte et al., 2011). In the Rance basin, despite some local 

475 functional changes in functional assemblages and trait modalities, functional characteristics remained 

476 stable over time at the scale of the whole study area. The increase in species richness between 1995 

477 and 2020 did not questionned the respective patterns of contributions of the different modalities of 

478 functional traits. Gains of species or stability seems sufficient to compensate losses of species. This 

479 pattern is confirmed by analysis of departing - recovery trajectories. At the scale of the basin, 
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480 departing and recovery trajectories seemed balanced, but locally, patterns were different between 

481 upstream and median/downstream parts.

482 2.1. Functional stability of downstream and median areas

483 Despite an increase in the number of species between 1995 and 2020 (Brébant et al., 

484 submitted-b), the year 2020 is individualised since downstream and middle areas became functionally 

485 homogeneous (assemblages belonging to two clusters). Stations previoulsy assignated to different 

486 functional assemblages than cluster 2 and 3 defined by the HAC no longer exist in 2020. FRic values 

487 increased from 1995 to 2020, suggesting richer assemblages in 2020. This result are consistent with 

488 the good to very good ecological status calculated by Brébant et al. (submitted-b) for soft-bottom 

489 assemblages. The lower FDiv values and higher redundancy characterising this area in 2020 indicate 

490 assemblages with a lower relative abundance of species exhibiting extreme/unique functional trait 

491 modalities (Gerisch et al., 2012).

492 No pattern of distribution can be identified, departing and recovering trajectories being 

493 associated to stations located in the periphery or in the center of the basin. These areas, hosting a 

494 stable consortium of species (98 species common in 1976, 1995 and 2020, mostly long-lived), 

495 exhibited a relative functional stability. Functional diversity indices further support these observations. 

496 As functional stability can be subject to aperiodic disturbances caused by different taxon substitutions 

497 or uncompensated population fluctuations (Clare et al., 2015), the strong functional redundancy 

498 observed from year to year in the basin (Figure 5) suggests that density compensation by redundant 

499 taxa mitigates changes in ecological functioning (Naeem, 1998). Persistence, defined by Grimm and 

500 Wissel (1997) as a property of ecological systems that incorporates moderate temporal variations, 

501 seems to characterise the species dynamics observed in the Rance basin, which results in an overall 

502 persistence  in the respective contribution of traits modalities within the system. Assemblages of these 

503 areas are dominated by sessile (>80% of species) detritivores (>60%), primarily consisting of tube-

504 dwelling organisms (e.g. the amphipod Ampelisca tenuicornis or the polychaetes Euclymene oerstedii, 

505 Melinna palmata…). The high contribution of tubicolous organisms in subtidal assemblages can be a 

506 consequence of the absence of professionnal fishing activities in the basin. The high functional 

507 stability illustrate the fact that the sediment variability has been confined to specific stations in the 

508 downstream or middle zone over time, without disrupting the dominance of fine sediment habitats. 

509 The high local contribution of burrowers on intertidal flats or sandbanks, as the Manilla clam 

510 Ruditapes philippinarum, in fauna may be responsible for erosion processes, as already reported for 

511 several species of bivalves (Dairain et al., 2020) and local changes in functional trajectories. Similar 

512 findings were observed in intertidal habitats of the Bay of Saint-Brieuc (Sturbois et al., 2021a). 

513 Intertidal mudflats being more exposed to predation by birds (Dolbeth et al., 2015), the strategy of 
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514 deep burial in sediment and the ability to feed in suspension seem highly advantageous to cope with 

515 potentially higher predation pressure.

516 Local changes often observed on intertidal mudflats can also be due to the proliferation of 

517 opportunistic green macroalgae, general phenomenon observed in many coastal and estuarine habitats 

518 in the northwest of france (Ménesguen, 2003; Charlier et al., 2006), may strongly impact benthic 

519 assemblage composition (Quillien et al., 2018) and functional properties. Their proliferation illustrates 

520 the high level of nitrates concentrations in the basin (Ménesguen and Piriou, 1995). Although pressure 

521 exerced by Enteromorpha mats may be one of the causes of benthic fauna changes over time, the 

522 generalisation of their effects is not straightforward (Bolam et al., 2000; Everett, 1994; Raffaelli et al., 

523 2000).

524 2.2. Upstream area concentrates functional changes

525 In the upstream area, departing patterns concerned assemblages located in the main channel, 

526 up to the Chatelier lock and recovering patterns, assemblages located on the intertidal mudflats. 

527 Theses trends were supported by significant trajectory segments and substantial trajectories, 

528 suggesting a functional instability. Highly variable environmental conditions, particularly 

529 hydrological, characterises the upstream area (Desroy and Retière, 2003). As underlined by Defeo and 

530 Mclachan (2013), such a natural variability may lead to a strong control, up to a reset, of community 

531 composition. Assemblages are characterised by small detritivorous species, tolerant to organic matter 

532 increase. These species exhibit traits of opportunistic species, as defined by van der Linden et al., 

533 (2012). Their life cycle are short, their productivity and ability to (re-)colonise the environment, high 

534 as already observed by Dolbeth et al., (2015) in the Mondego estuary. These traits are highly 

535 advantageous in unpredictable environments subject to a source of disturbance, such as tidal 

536 fluctuations, providing additional but ephemeral food resources e.g., freshwater inputs (Borja et al., 

537 2000). As reported by Mouchet et al. (2010), functional composition of assemblages are consistent 

538 with low values of FDiv and FRic on intertidal mudflat areas. This strategy is reflected in large 

539 populations of small-sized individuals, indicating higher production. In the channel leading to the 

540 Chatelier lock, the instability of the sediment is such that sessile species cannot settle. High 

541 concentrations of suspended sediments in the water column can also disrupt suspension-feeding 

542 species (Schönberg, 2016; Pineda et al., 2017), affecting their energy, health, and reproductive fitness 

543 (Bell et al., 2015; Pineda et al., 2016; Schönberg, 2016; Stubler et al., 2015; Tompkins-MacDonald 

544 and Leys, 2008; Pineda et al., 2017).

545 In the upstream area, the tidal prism have evolved since the 1990s, leading to a new 

546 distribution of surficial sediments, with the reappearance of coarser sediment in the main channel, and 

547 the intrusion of marine species in 2020 in this area historically bathed by brackish waters (Brébant et 

548 al., submitted-b). Congruently, benthic assemblages located upstream exhibited strong functional 
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549 changes in 2020 in the main channel up to the Chatelier lock, with departing trajectory patterns and 

550 high NC values. From a structural and functional points of view, downstream assemblages have 

551 extended upstream. As a consequence, the increase in the contribution of some traits characteristics of 

552 marine species was observable in 2020.

553 3. Implications for environmental management and monitoring

554 The first ecological state in the data series is 1976, so we do not have an initial state before the 

555 construction of the RTPP in this study. However, the value of this historical data for basin 

556 management remains essential, just as the importance of maintaining consistent protocols, as 

557 emphasized by Callaway (2016) for the management of marine and coastal environments.

558 As suggested by various authors (Hewitt et al., 2016; Bacouillard et al., 2020; Sturbois et al., 

559 2021a), coupling different spatial and temporal scales in the sampling strategy could help track 

560 changes between long-term networks. Particularly in the upstream part of the Rance basin, which is 

561 unpredictable and subject to numerous disturbances and functional instability. A smaller number of 

562 stations sampled two or three times per decade could allow us to better understand the mechanisms at 

563 play in this area, as well as the factors that disrupt these habitats.

564 In the Rance basin, sediment removal experiments (Autonomous Robot "Nessie") and 

565 dredging activities have accelerated in recent years with the aim of maintaining secondary channels, 

566 reducing sedimentation in certain inlets, and improving water circulation. The potential environmental 

567 consequences of maintenance dredging are multifaceted. On one hand, morphological changes and 

568 variations in the nature of the surface sediment are likely to alter benthic habitats (Marmin et al., 

569 2014). On the other hand, the turbidity conditions of the environment can be affected, either indirectly 

570 depending on changes in hydro-morpho-sedimentary functioning, or directly in the dredged area in the 

571 case of the release of fine particles during dredging operations (Duclos, 2012), inevitably leading to 

572 direct effects on the morphology of the study area and indirect repercussions on the overall ecological 

573 functioning and productivity of the basin (Rhoads et al., 1978).

574 These sediment extractions have already been carried out both upstream and downstream in 

575 the basin, with inherent consequences in each zone. Mainly located on the left bank of the downstream 

576 area, these operations could disrupt the positive dynamics of seagrass beds observed in recent years. 

577 Seagrass beds do not tolerate rapid and prolonged changes in water turbidity well (Auby et al., 2011). 

578 Upstream, in a context of lower sediment availability, the upstream part of the estuary would be more 

579 sensitive to rising waters and climatic events such as storms due to greater depths, which facilitate the 

580 propagation of marine energy upstream, as already suggested in the Seine estuary (Lemoine, 2021).

581 In the context of sustainable preservation of the integrity and functioning of the Rance basin, 

582 there was a real need to assess the functional characteristics of the inherent species and their responses 
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583 to all these pressures in order to establish appropriate monitoring and management tools. For the 

584 future, management of biodiversity must integrate, towards relevant spatial and temporal scales, the 

585 implications for functional diversity (Jarzyna and Jetz, 2018).

586 Conclusion

587 Results of this study have shown a functional stability of assemblages in the 

588 downstream/median areas of the basin, driven by the absence of major changes in the dominance of 

589 species and the persistence of a common pool of structuring species. On the opposite, in the 

590 upstreamarea, instability observed over time is largely explained by (i) a marinisation caused by 

591 changes in the tidal prism and (ii) increase in the granulometry of surficial sediments in the main 

592 channel. Despite a slight decrease in the values of some functional diversity indices in 2020, the 

593 respective contribution of each modalities of traits remained stable at the scale of the basin. It suggests 

594 a high level of ecological resilience drived by the pool of structuring prevalent species and the 

595 associated functionnal redundance. Further investigation dealing with secondary production and its 

596 transfert in the trophic food web could complement these ecological findings, functional diversity 

597 being positively linked to benthic secondary production (Dolbeth et al., 2015).

598

599

600
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