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Abstract :   
 
Landscape heterogeneity is known as a major factor of community structure and composition. Whether 
this effect of the landscape extends at different scales and particularly at the relevant scale for 
microorganisms remained to be determined. We used the cases produced by aquatic larvae of 
Trichoptera, which assemble organic or mineral particles, as naturally replicated experimental systems 
representing structured substrates to determine the effect of landscape structuration on microbial 
communities. A metabarcoding approach was used to characterise fungal, bacterial and diatom 
communities on cases produced by six Trichoptera species and related unstructured organic and mineral 
substrates. The structuration of the particles constituting the cases was also determined as a measure of 
microscale landscape. Structured substrates harboured communities of diatoms, fungi and bacteria that 
differed from those found on unstructured substrates. Microbial communities also differed between 
organic and mineral substrates. We found a higher microbial diversity on structured substrates than on 
unstructured substrates. The heterogeneity of the microscale landscape also affected bacterial and fungal 
communities within cases. These results highlight the importance of microscale landscape structuration 
for microbial diversity and demonstrate that approaches of landscape ecology could be downscaled to 
the microscale. 
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Graphical abstract 
 

 
 
 

Highlights 

► The structuration of substrate by Trichoptera larvae affects microbial communities. ► Trichoptera case 
hosts higher microbial richness than the unstructured substrates. ► Fine scale heterogeneity of structured 
substrates promotes bacterial diversity. ► Microscale landscape heterogeneity promotes microbial 
richness. ► Trichoptera are ecosystem engineer that increase stream microbial diversity. 
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related unstructured organic and mineral substrates. The structuration of the particles 25 

constituting the cases was also determined as a measure of microscale landscape. Structured 26 

substrates harboured communities of diatoms, fungi and bacteria that differed from those found 27 

on unstructured substrates. Microbial communities also differed between organic and mineral 28 

substrates. We found a higher microbial diversity on structured substrates than on unstructured 29 

substrates. The heterogeneity of the microscale landscape also affected bacterial and fungal 30 

communities within cases. These results highlight the importance of microscale landscape 31 

structuration for microbial diversity and demonstrate that approaches of landscape ecology 32 

could be downscaled to the microscale. 33 

 34 

Keywords: Diatoms, fungi, bacteria, stream microbial ecology, landscape heterogeneity, 35 

biodiversity. 36 
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 44 

Introduction 45 

Predicting community structure has been formalized using a large conceptual framework 46 

including biogeography (Macarthur and Wilson, 1967), niche theory (Hutchinson, 1957), 47 



   

 

   

 

species selection through environmental filters (Lortie et al., 2004), and neutral theory (Hubbell, 48 

2001). Community assembly is driven by stochastic processes and by deterministic 49 

environmental filters that select from a regional species pool, species able to survive and 50 

develop in a specific local habitat patch (Mittelbach and Schemske, 2015). Factors operating 51 

both at the local scale (abiotic stresses, disturbances, biotic interactions) and at the landscape 52 

scale (dispersal) shape species selection (Vellend, 2010). Application of these theories to the 53 

microbial world has been slow to develop. However, due to the short generation time and the 54 

small-distance dispersal of most microbes (Telford et al., 2006), the need for investigating the 55 

relevance of these concepts at scales smaller than those effective in macroorganisms has been 56 

highlighted (Bergmann and Leveau, 2022; Mony et al., 2020).   57 

Microbes include an incredible biodiversity colonising all ecosystems worldwide (Marsland et 58 

al., 2020). The diversity and composition of microbial communities display a huge spatial 59 

heterogeneity recorded at the millimetric and centimetric scales (Besemer, 2016; Fierer, 2008; 60 

Li et al., 2023). Downscaling the landscape parameters considered may be necessary to 61 

understand this heterogeneity in microbial community. In streams, due to high water flow, 62 

microbial communities mainly develop as biofilms attached to any solid, stable surface 63 

(Stoodley et al., 2002). Biofilm is known as one of the most successful lifeforms (Stoodley et 64 

al., 2002), generating a complex ecosystem within the “microbial landscape” (Battin et al., 65 

2007; Besemer, 2016, 2015). The microorganisms present in biofilms include protozoa, 66 

microalgae, archaea, bacteria and fungi, and contribute to all the main geochemical cycles in 67 

aquatic ecosystems (Battin et al., 2016). The ability of microorganisms to form biofilm is 68 

related to substrate properties, which influence its colonisation (Dang and Lovell, 2015; Kearns 69 

and Bärlocher, 2008; Laviale et al., 2019; Zheng et al., 2021), which is likely to result in 70 

deterministic assemblages. Microbial communities are likely to be controlled by a number of 71 



   

 

   

 

other environmental factors influencing small-scale heterogeneity of microbial communities, 72 

which is still poorly understood. 73 

Habitat heterogeneity over space has been recorded as impacting biodiversity, through 74 

changes in the composition of habitat patches (i.e. landscape element that forms part of or the 75 

entire species habitat), but also in terms of patch size and arrangement in space (i.e., landscape 76 

configuration) (Fahrig et al., 2011; Riera et al., 2023; Wiens, 1995).  Biodiversity is expected 77 

to increase with habitat heterogeneity, due to the diversification of habitat types available for 78 

colonisation by different species. Furthermore, species dispersal within the landscape is 79 

favoured by the reduction of between-patch distances (Fahrig et al., 2011). Applying this 80 

rationale to small-scale studies, it is expected that substrate heterogeneity may influence biofilm 81 

composition and diversity. Considering that substrate particles would correspond to a given 82 

habitat type (i.e. set of environmental characteristics), substrate heterogeneity may be described 83 

by change in particle composition, but also by change in particle configuration (i.e. spatial 84 

arrangement of particles). Therefore, based on the landscape ecology framework, it is expected 85 

that biofilm diversity would increase with substrate heterogeneity in terms of composition and 86 

configuration. 87 

Aquatic larvae of caddisflies (Insecta, Trichoptera) form cases that provide protection 88 

and camouflage (Frandsen et al., 2023), using mineral materials (sand, small gravel), plant 89 

materials (fragments of dead leaves and wood) or a mix of them, collected in the environment.  90 

These cases constitute specific microenvironments that offer specific conditions favourable to 91 

the development of microbial communities: physical stability in terms of hydraulic constraints 92 

and exposure to light, as well as local nutrient enrichment from excretion by the larvae within 93 

the case (Bergey and Resh, 1994). The preferred materials and the architecture of the case vary 94 

according to the species. Several dozens of trichopteran species are potentially present in a 95 

stream, resulting in a large variability of cases shape, size, structure and composition. 96 



   

 

   

 

Trichoptera cases are thus naturally replicated “landscape” systems that differ from surrounding 97 

substrates in terms of composition and configuration of the physical environment.  98 

The objective of this study is to test whether landscape ecology predictions apply to 99 

biofilms at a microscale. The regional species pool is constituted of the microbial community 100 

growing on all the different kinds of substrates present in the stream, including materials used 101 

by larvae to build their cases. Our overall hypothesis is that species assembly of microbial 102 

communities on Trichoptera cases is deterministic, i.e. there is a species selection from the 103 

regional pool due to the composition and configuration of trichopteran cases, and that 104 

heterogeneity of substrate configuration at the stream and at the case level promote microbial 105 

diversity. After characterizing the composition and structure of cases (thereafter referred to as 106 

structured substrates) from various trichopteran species sampled in a stream, we compared the 107 

biofilm communities developed on these structured substrates to those found on other substrates 108 

present in the same sampling sites that were not structured by Trichoptera larvae (leaves, sand, 109 

gravels, wood pieces). We expected differences in the composition of microbial communities 110 

between structured and unstructured substrates used by the different trichopteran species to 111 

produce cases. An effect of the type of substrate (i.e. organic or mineral) was also expected. If 112 

our hypotheses are verified, we would observe higher biodiversity on cases than on unstructured 113 

substrate particles. For similar reasons, we expected that differences in heterogeneity at the case 114 

scale would affect microbial communities, i.e. increased species richness with increased case 115 

structural heterogeneity.  116 

 117 

Material and method 118 

Sampling 119 



   

 

   

 

Trichoptera larvae, leaf and twig litter, sand and pebbles were collected in a sandy bottom 120 

circumneutral stream (le Petit Hermitage stream 48°26’6’’N 1°34’7’’O) located in the forest of 121 

Villecartier (Brittany, N.-W France) in Spring 2022. Six different species of Trichoptera were 122 

sampled. Two of these build their cases with exclusively mineral material: Sericostoma 123 

personatum (n = 5) and Athripsodes aterrimus (n = 5), thereafter referred to as min1 and min2, 124 

three with exclusively organic material derived from plant litter: Halesus radiatus (large woody 125 

cases, n = 6), Chaetopteryx villosa (small wood and leaf litter-based cases, n = 6), and 126 

Lepidostoma basale (with cases made of leaf litter cut in small squares, n = 6), thereafter 127 

referred to as org1, org2 and org3, and one creates mixed organic-mineral cases with a mostly 128 

mineral central part to which are generally attached two wooden twigs longer than the mineral 129 

central part (Anabolia nervosa, thereafter referred to as mixed cases, n = 5). Larvae were 130 

extracted from the cases, and larvae and cases were fixed in 96% ethanol rapidly after 131 

collection. Additionally, other mineral (sand, gravels) and organic substrates (wood, leaves) 132 

were sampled at the same time (5 to 6 replicates each). They represent the raw materials used 133 

by Trichoptera larvae to build their cases, but without the structuration done by larvae. These 134 

substrates will thereafter be referred to as unstructured substrates. They also represent the most 135 

abundant substrates in the study area. 136 

 137 

Substrate characterisation 138 

All the samples (cases and unstructured substrates) were photographed using a Leica M205 C 139 

stereomicroscope (Leica microsystems, Wetzlar, Germany) before the DNA extraction step.  140 

Pictures were then used to measure various structure parameters with ImageJ (Schneider et al., 141 

2012). We measured classical landscape metrics transposed to this case study. Composition 142 

heterogeneity was assessed through substrate roughness. Case width was measured every 143 

millimetre along the largest dimension. These measures were used to calculate roughness, based 144 



   

 

   

 

on the root-mean-square method (Huber et al., 2007; Jacobs et al., 2017). Roughness values 145 

close to 0 are indicative of smooth cases, while they increase with increasing three-dimensional 146 

heterogeneity. Heterogeneity of case configuration was assessed through an aggregation index, 147 

which analyses the degree of intermixing of different classes of particles. We measured each 148 

individual particle found along a line from the anterior to the posterior end of the case. Then, 149 

particles were pooled into seven size classes according to their visual distribution in the whole 150 

dataset and we calculated a juxtaposition index (JI) (Heinen and Cross, 1983) corresponding 151 

the number of successive changes of particle class from anterior to posterior end of each case 152 

divided by the total number of particles measured. The value of JI varies from 0 when all 153 

particles are of similar size class to 1 when all particles differ from the adjacent one. The 154 

coefficient of variation of particle size within case was also calculated from these measures. 155 

The total surface of the cases was also measured. 156 

 157 

Microbial community characterisation 158 

The microbial community associated with each sample (structured and unstructured substrates) 159 

was characterised using a metabarcoding approach. For DNA extraction on cases, only one half 160 

of each sample (cut in half following the median plane) was used, except for min2 (A. 161 

aterrimus) cases, which were too small. For the mixed cases, the mineral part and the organic 162 

part were separated and treated as different samples (thereafter referred as mixed-min and 163 

mixed-org). DNA was extracted using the NucleoSpin® Tissue purification kit (Macherey-164 

Nagel, Düren, Germany), with an additional mechanical lysis step using a steel ball and Tissue-165 

Lyzer for 5 minutes at 30 Hz (Ferreira et al., 2020) before adding the first extraction buffer. 166 

 167 

Three separate PCRs were performed on each extract. The first PCR targeted the rbcL plastid 168 

gene, which is specific of photosynthetic organisms, using a primer pair optimized for diatoms 169 



   

 

   

 

(Tapolczai et al., 2019) based on previous observations that diatoms largely dominated 170 

phototroph community in this stream, as in most headwater streams (Allen et al., 2024). The 171 

second PCR targeted the ITS, to amplify the DNA of non-photosynthetic eukaryotic organisms, 172 

particularly fungi (Gardes and Bruns, 1993). The third PCR targeted the V4 and V5 regions of 173 

the 16S gene for prokaryotic organisms. All primer sequences are available in Table S1.  174 

PCRs were performed in 25 μL of reaction mixture containing 12.5 μL of 2x Multiplex 175 

PCRMaster Mix (Qiagen®,Venlo, Netherlands), 9.5 μL of pure water, 0.5 μL of forward and 176 

reverse primers at 0.2 μM, and 2 µL of DNA extract. PCR conditions included an initial heat 177 

activation at 95 °C for 15 min, followed by 30 cycles of denaturation at 94 °C for 30 s, annealing 178 

at 57 °C for 90 s and extension at 72 °C for 90 s, and a final extension step at 72 °C for 10 min. 179 

The quality of the amplifications was checked by gel electrophoresis using a 1.5% agarose gel 180 

made from a 1:1 mixture of standard and low-melting agarose. Amplification failed for some 181 

DNA extracts (corresponding to abnormally brown DNA extracts). For those samples (one leaf 182 

sample, two org1 and one org2), a 1:10 dilution of the DNA extract was used to obtain a correct 183 

amplification. A negative control was prepared by carrying out all the extraction and PCR 184 

procedures without the biological sample.  185 

Amplicon sequencing was performed on the 180 samples (60 samples * 3 PCR) on an Illumina 186 

MiSeq in 2x250 bp, in paired-ended reads using V3 chemistry on the EcogenO platform 187 

(https://osur.univ-rennes.fr/EcogenOENG OSUR, Rennes, France). 188 

 189 

DADA2 (Callahan et al., 2016) was used for the bioinformatic treatment of the demultiplexed 190 

MiSeq reads. Primer sequence removal was done using Cutadapt 4.3 (Martin, 2011). DNA 191 

reads were filtered for length and quality with the following parameters: Q score ≥ 2, a minimal 192 

length equal to 50. Sequences were truncated to 220 bp for rbcL. The maximum number of 193 

expected errors was set to 2 for forward and reverse reads. Given the large size of the dataset, 194 

https://osur.univ-rennes.fr/EcogenOENG


   

 

   

 

a process of pseudo-pooling was applied to samples in order to ensure rare variant resolution 195 

while keeping computation time reasonable (see DADA2 documentation for details). For the 196 

merging of forward and reverse reads, the minimum overlap was set to 12 bp and the maximum 197 

number of mismatches to 1. Chimeras and singletons were also removed from the dataset. The 198 

taxonomic assignment of Amplicon Sequence Variants (ASV) was performed automatically. 199 

The R package “Diat.barcode” (v.11.1 published on 25-05-2022) was used for rbcL (Rimet et 200 

al., 2019), Silva v138 (McLaren, 2020) for 16S, and Unite database (Abarenkov et al., 2022) 201 

for ITS. Analyses of microbial diversity were performed using the ASV contingency table 202 

(ASV frequency across samples). The correlation between the ASV richness and the species 203 

richness based on the taxonomic assignation of the ASV was checked for all three markers, 204 

considering the strong correlation between measurements made on an ASV or taxonomic basis, 205 

only results based on ASV are presented. For all statistical analyses, ASVs that totalise 5 reads 206 

or less across all samples were discarded to avoid false-positives. A rarefied ASV table was 207 

computed to account for differences in the number of reads per sample using the 208 

rarefy_even_depth function of the phyloseq R package (McMurdie and Holmes, 2013). For 209 

each marker, samples with fewer reads than the extraction blank were excluded as they might 210 

represent failure in the extraction or amplification step rather than true absence (3 samples were 211 

discarded for rbcL and ITS, 4 for 16S). The rarefaction depth was set as the minimum number 212 

of reads for the remaining samples (612, 1404 and 756 for rbcL, ITS and 16S respectively). 213 

 214 

Statistical analysis 215 

Statistical analyses were conducted with R version 4.2.3 (R Core Team, 2023). To test the first 216 

hypothesis (i.e., that the substrate heterogeneity of structured substrates favours microbial 217 

biodiversity compared with unstructured substrates), we analysed the effect of substrate 218 

structure (structured versus unstructured), considering also substrate type (mineral or organic), 219 



   

 

   

 

on microbial community composition and richness. The effect of structure (structured  or 220 

unstructured) and substrate type (mineral or organic) on ASV richness was determined 221 

independently for the data obtained with each barcode using two-way ANOVAs after 222 

controlling for residuals normality and homoscedasticity. ASV richness was compared between 223 

structured and unstructured substrates, based on ASV rarefaction curves drawn with the iNEXT 224 

R package (Hsieh et al., 2022).  225 

To identify changes in community composition between different substrate types, we used non-226 

metric multidimensional scaling (NMDS) on presence/absence datasets using Jaccard's 227 

dissimilarity index as the distance metric. To identify the significance of these differences, a 228 

PERMANOVA was performed using the vegan package (Oksanen et al., 2022). 229 

To evaluate the contribution of neutral processes to community composition, community data 230 

were fitted on a Sloan neutral community model (Burns et al., 2016; Sloan et al., 2006). This 231 

model determines the relationship between the total number of reads of an ASV and its 232 

frequency across all samples and estimate the rate of migration from source community to local 233 

community. The model was constructed on a pool of all samples (structured and unstructured 234 

substrates). Observed ASV frequencies were compared to those predicted based on the neutral 235 

model. ASV were considered neutral when their frequency in structured substrates samples was 236 

within the 95% confidence interval of the neutral model. Over-represented and under-237 

represented ASVs were determined as those present at a frequency higher or lower than the 238 

95% confidence interval of the frequency predicted by the model. The proportion of 239 

deterministic processes was assessed as the proportion of non-neutral ASV. Models were well 240 

fitted for bacteria and diatoms but not for fungi. Normalised stochasticity ratio were computed 241 

following Ning et al. (2019). A multiblock sparse partial least square discriminant analysis 242 

(sPLS-DA) was used to identify the microbial groups specifically associated with structured 243 

and unstructured substrates (Singh et al., 2019). 244 



   

 

   

 

We used SourceTracker (Knights et al., 2011) to identify the contribution of the different 245 

possible sources (within the unstructured substrates) of microbial communities on the cases.  246 

To test the second hypothesis (i.e. that increased case heterogeneity favours microbial 247 

diversity), we analysed the effect of case heterogeneity (roughness, variation of particle size 248 

and JI) on the composition and ASV richness of diatoms, fungi and bacteria. To determine the 249 

effect of heterogeneity on community composition, we used a distance-based redundancy 250 

analysis (dbRDA; Legendre and Anderson, 1999) using Jaccard distances for the three 251 

microbial communities and the measured descriptors of case heterogeneity (roughness, 252 

variation of particle size and JI), case surface area and case substrate type, to construct our 253 

dbRDA model. An ANOVA was used to test the significance of the different terms included in 254 

the model. To test the effect of the same factors on ASV richness, we used a multiple linear 255 

regression approach. Best models were selected based on the Akaike Information Criterion and 256 

the genetic algorithm method using the glmulti package (Calcagno and Mazancourt, 2010). 257 

 258 

Results 259 

Description of the microbial communities in structured and unstructured substrate 260 

The sequencing of DNA samples amplified with the RbcL primers generated 2,041,407 reads 261 

after quality filtering and chimera/singleton removal, which were distributed into 546 distinct 262 

ASVs. Of these, 529 ASVs were found to belong to 39 different genera of diatoms (fig1). ITS-263 

amplified DNA samples produced 3857 ASVs, as obtained from 2,389,650 filtered reads. 264 

Among these ASVs, the dominant phyla were Ascomycota (37%) and Basidiomycota (14%) 265 

respectively (fig1). The sequencing of DNA samples amplified with 16S primers generated 266 

1,997,863 filtered reads assigned to 13,436 distinct ASVs, principally representative of the 267 

Proteobacteria and Bacteroidota phyla (fig 1). For simplicity, the different communities 268 



   

 

   

 

investigated using RbcL, ITS and 16S primers will thereafter be referred to as diatom, fungi 269 

and bacterial communities. 270 

 271 

Comparison of microbial communities on structured and unstructured substrates 272 

Through NMDS ordination, we demonstrated that communities differed between structured and 273 

unstructured substrates, and substrate type for bacterial, fungal and diatoms communities. For 274 

bacterial and fungal communities, we detected an additional interactive effect between both 275 

factors (fig 2; table 1).   276 

The proportion of deterministic (non-neutral) processes in community composition was 277 

estimated by the quantification of the ASV that did not follow a neutral community model (table 278 

1, fig S1). This approach also allowed us to determine the migration rate (e.g. the probability 279 

that a place in the local community is taken by an individual immigrating from source 280 

community). We detected 11.3% of bacterial ASVs and 16.7% of diatom ASVs on structured 281 

substrates that were present more frequently or less frequently than predicted by the neutral 282 

model. The diatom genera Nitzschia, Navicula, Planothidium and Fragilaria had a high 283 

proportion of over-represented ASVs (supplementary table S2). For bacteria, high proportion 284 

of ASVs belonging to the Rhodobacterales and Acetobacterales orders were overrepresented 285 

on structured substrates (supplementary table S4 Migration rates for diatoms and bacteria were 286 

0.41 and 0.51 respectively.). The multiblock sPLS-DA performed on the three microbial 287 

communities indicated Staurosira, Pinnularia and Caloneis as diatom genus associated with 288 

structured substrates and strongly co-occuring with bacteria from the Phormidiaceae, 289 

Bryobacteraceae and Spirochaetaceae family (fig 3).  290 

For diatoms, most of the community originated from organic unstructured substrates for all 291 

types of cases (fig 4). Gravels were detected as the major and nearly unique source of the fungal 292 

communities for min1 and min2, while leaf and woody litter were the major sources for org1, 293 



   

 

   

 

org2 and org3 (fig 4). For bacteria, 50% to 80% of the community originated from mineral 294 

unstructured substrate, mainly the gravels for the two exclusively mineral cases (min1 and 295 

min2). The bacterial community of mixed and organic structured substrates originated from 296 

both mineral and organic unstructured substrates (fig 4).  297 

Trichoptera cases significantly promoted ASV richness for diatoms, fungi and bacteria 298 

compared with unstructured substrates (fig 5, fig 6). Mineral substrates promoted fungal 299 

richness, but no effect of substrate type was observed for diatoms or bacteria. Similar results 300 

were observed when considering species or genus richness based on sequence annotations (fig 301 

5). The richness of fungal community was higher on mineral substrates compared to organic 302 

ones (fig 5). Rarefaction curves indicate that a higher number of different ASVs are found on 303 

structured substrates than on unstructured substrates for a similar number of samples for 304 

diatoms and fungi (fig 6). 305 

 In diatoms, the structured substrates sample rarefaction curve presents a steeper slope than that 306 

of unstructured substrates, indicating a higher diversity within and among samples collected on 307 

trichopteran cases (fig 6). The extrapolations of the rarefaction curves indicate that for a higher 308 

number of samples the richness of unstructured substrates and cases may have converged to 309 

around 200 ASVs. This indicates that there are no diatom species or ASV specific to 310 

Trichoptera cases but that these structured substrates support a high number of ASVs from the 311 

local pool (fig 6). For the fungal and bacterial diversity, the rarefaction curves did not reach a 312 

stable state, indicating that our sampling did not cover all fungal and bacterial ASV richness. 313 

With respect to fungal diversity, structured substrates harboured both a steeper curve and a 314 

higher number of ASVs when extrapolating the curves for a higher number of samples, 315 

indicating that a part of the fungal diversity was specific to the environment created by the 316 

cases. For the bacterial diversity, nearly no difference appears in the slope, but the extrapolation 317 



   

 

   

 

of the rarefaction curves indicates a higher richness on structured substrates than on 318 

unstructured substrates (fig 6). 319 

 320 

Influence of spatial heterogeneity within structured substrates 321 

Structured substrates spatial heterogeneity influenced the composition and richness microbial 322 

communities associated with cases. More especially, the case heterogeneity of composition (i.e. 323 

particle roughness) influenced both fungal and bacterial communities but not diatoms, while 324 

the heterogeneity of configuration (JI and variation of particle size) influenced only bacterial 325 

communities. Structured substrates type affected community composition for all three groups 326 

of microorganisms while the size of the case had a significant effect only for bacterial 327 

communities (fig 7).  328 

Bacterial ASV richness was affected positively by two of the variables used to characterise the 329 

heterogeneity of structured substrates: roughness and JI. Bacterial richness was also affected 330 

positively by case size (table 3). Fungal richness was found to decrease with increasing case 331 

size. Heterogeneity affected only marginally fungal richness by the interaction between case 332 

size and JI (table 3). 333 

  334 

 335 

Discussion 336 

Structured substrates harbour different microbial communities and higher diversity than 337 

unstructured substrates 338 

Our first hypothesis was that structured substrates microbial communities were deterministic 339 

compared to the unstructured substrate. Indeed, by associating substrates in a stable 340 

conformation Trichoptera larvae create a stable microscale landscape that offers particular 341 

ecological niches for microbes. Our results confirmed this hypothesis as we found marked 342 



   

 

   

 

significant compositional differences between structured and unstructured substrates for 343 

bacterial, fungal and diatoms communities (fig 2, table 1). The comparison with a neutral 344 

community model confirmed that the observed differences are not due only to neutral processes 345 

but results from deterministic processes. Diatom taxa occurring more frequently on structured 346 

than on unstructured substrates are diverse, including large motile diatoms (Nitzschia sp., 347 

Navicula sp.) and small adnate diatoms (Planothidium sp.) (Rimet and Bouchez, 2012). For 348 

bacteria, we noticed phototrophic species-containing groups such as Rhodobacter sp., 349 

Rhodoferax sp. and Rhodomicrobium sp. among the bacterial ASV more frequent on the cases. 350 

This result reinforces a previous study that highlights that net-spinning Trichoptera create 351 

different microenvironments hosting different microbial communities (Bertagnolli et al., 2023). 352 

More generally, several studies have shown that aquatic macroorganisms bear host-specific 353 

microbial communities (Chiarello et al., 2020; Falasco et al., 2018; Receveur et al., 2020). This 354 

host-specificity is generally attributed to direct interaction between the host and its microbiome 355 

through the secretion of a mucus containing diverse compounds that may affect microbial 356 

community (notably antimicrobial compounds) and immune cells (Esteban, 2012). In the 357 

present study, we focused on microbial community associated with Trichoptera cases. This 358 

approach limits the direct effect of the animal compared to study where skin or internal 359 

microbial community is used, while animals' behaviour may still affect the microbial 360 

community. Considering that a sand grain or a piece of leaf litter would have similar physical 361 

and chemical properties whether they are part of a case or not, the observed differences in 362 

microbial community are more likely a direct effect of microscale landscape through substrate 363 

spatial structuration.  364 

Such host-specificity was shown here through the deterministic proportion of microbes that was 365 

associated with cases. Further analysis could investigate the relationships between Trichoptera 366 

species or larvae phenological development on microbial communities associated with cases 367 



   

 

   

 

and analyse the underlying mechanisms of this specificity. We also expected higher microbial 368 

diversity on structured substrates than on the unstructured substrates, because cases represent 369 

areas with stable exposure to light and water current compared to sand and litter. This 370 

expectation was verified for the three groups of microorganisms studied (fig 5, 6).  While these 371 

substrates are regularly remobilised by the current, Trichoptera larvae activity and case 372 

structure stabilize the case environmental conditions (Otto and Johansson, 1995; Statzner and 373 

Holm, 1989), and therefore offer a more stable habitat to microorganisms. 374 

 375 

The nature of the substrate also affects microbial communities 376 

Our first hypothesis assumed that the nature of the substrate may affect its colonisation by 377 

microorganisms. In our results we observed, as expected, an important effect of organic versus 378 

mineral substrates on microbial community composition (fig 2, table 1) for all taxonomic 379 

groups. Indeed, the surface properties, that may strongly differ between mineral and organic 380 

substrates, affect diatoms, fungi and bacteria adhesion and colonization abilities (Kearns and 381 

Bärlocher, 2008; Laviale et al., 2019; Rosenhahn et al., 2010) and organic substrate may also 382 

be used as a carbon and nutrient source by some organisms. Substrate type influenced also 383 

richness but only for fungi (fig 5). The observed lower richness of fungi on organic substrate 384 

may be explained by the abundance of decomposers on organic substrates that can exclude other 385 

fungal species (Ferreira et al., 2010). Migration from the source community contribute around 386 

40-50% to the community at the surface of the cases and the assemblages are mostly but not 387 

uniquely driven by stochasticity. Microbial assemblages colonizing cases are originated from 388 

the dominant substrates in the streams, but we demonstrated that species of other substrate types 389 

colonized cases and contributed to the microbial assemblages: for instance, diatom 390 

communities associated with mineral structured substrates are recruited from organic 391 



   

 

   

 

unstructured substrates, while bacterial communities associated with organic structured 392 

substrates are originated partly from mineral unstructured substrates (Fig 4). 393 

 394 

Microscale landscape heterogeneity affects microbial diversity 395 

To analyse the relationship between microscale substrate heterogeneity and microbial diversity, 396 

we tested among the different structured substrate types the extent to which the spatial 397 

heterogeneity of composition and configurations affected microbial community composition 398 

and richness. Heterogeneity contributed to explaining differences in community composition 399 

for fungi and bacteria (fig 7). However, the expected heterogeneity-diversity relationship was 400 

found only for bacterial community (table 3). More especially, fungi responded to only 401 

compositional heterogeneity (case roughness), while both compositional and configurational 402 

heterogeneity influenced bacterial communities (high turnover between particle size, high 403 

coefficient of variation in size). Diatoms were not influenced by small-scale heterogeneity, 404 

likely because diatoms are large and motile they are less affected by factors at the scale 405 

considered.  406 

The size of the case was also found to affect ASV composition in bacteria, and ASV richness 407 

in bacteria and fungi, with opposite effects between fungi and bacteria (table 3). Biofilm 408 

microbial communities are hotspots of interactions that occurs notably between diatoms, fungi 409 

and bacteria (e.g. Allen et al., 2017; Zancarini et al., 2017). These interactions may have been 410 

interfering with the effect of the microscale landscape parameters (e.g. effect on fungi, possibly 411 

not due directly to microscale landscape but mediated by competition with bacteria). 412 

Considering these interactions may be key in the downscaling of landscape ecology at the 413 

microbial scale. However, cases represent a complex structure with a highly fractal 414 

structuration, and many parameters should be considered to completely characterise these 415 



   

 

   

 

structures as it can be done to characterise the heterogeneity of macroscale landscapes (Riera 416 

et al., 2023).  417 

 418 

Conclusion 419 

Landscape heterogeneity is known to promote diversity at the macroscale. We expected to find 420 

the same relationship for stream microbial communities. In this study, this question was 421 

explored at two levels: at the stream level we found that Trichoptera larvae, creating 422 

heterogeneity by the simple structuration of substrates already present in the stream, change 423 

microbial community and promote diversity of diatoms, fungi and bacteria. At the case level, 424 

we found some insights that heterogeneity of structured substrates in terms of configuration 425 

affects bacterial and fungal communities and promotes bacterial diversity.  426 

 Overall, our results show that by creating diverse structurally complex heterogeneous 427 

microscale landscapes, Trichoptera larvae act as engineer species and increase microbial 428 

diversity in streams. This suggests a positive relationship between diversity of Trichoptera 429 

larvae and microbial diversity. The decline in the diversity of benthic macroinvertebrates in 430 

streams is therefore likely to lead to an invisible decline in the diversity of microorganisms. 431 
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Tables 628 

Table 1: Results of the PERMANOVA on the microbial communities 629 

 F p-value 

Diatoms   
 

Substrat (organic-mineral) 2.5351 0.007 ** 

Structure (case-unstructured) 2.9545 0.002 ** 

interaction 1.0690 0.316 
 

    



   

 

   

 

Fungi 
   

Substrat (organic-mineral) 2.7259 0.001 *** 

Structure (case-unstructured) 1.9774 0.001 *** 

interaction 1.2961 0.036 * 

    

Bacteria 
   

Substrat (organic-mineral) 3.6117 0.001 *** 

Structure (case-unstructured) 3.6564 0.001 *** 

interaction 1.8877 0.002 ** 

 630 

 631 

Table 2: Results of the neutral community model and normalised stochasticity ratio. 632 

 

Migration rate 
[confidence 

interval] Above Below Neutral 

non-neutral 

proportion (%) R² 

Normalised 

Stochasticity 

ratio  

Diatoms 0.41 [0.33;0.49] 35 11 229 16.7 0.86 0.59 

Fungi 

0.0084 

[0.0076;0.0094] 185 28 1595 11.8 0.07 

0.88 

Bacteria 0.51 [0.48; 0.55] 388 73 3636 11.3 0.46 0.84 

 633 

 634 

Table 3. Results of the multiple regression for the best models for fungal and bacterial ASV richness 635 

on cases. 636 

 
Fungi 

 
Bacteria 

 
t p-value   t p-value 

JI 
   

2.761 0.012 

Roughness 
   

3.312 0.003 

Variation of particle size 
   

-1.461 0.159 

Case size -2.408 0.023 
 

3.807 0.001 

JI: Roughness 
   

-2.680 0.014 

Case size:JI -2.107 0.044 
   

Roughness: Variation of particle size 
   

1.973 0.062 

Roughness: Case surface 
  

-5.405 <0.001 

Case size:Substrate(org.)       4.699 <0.002 

      

Adjusted R² 0.43 
 

0.64 



   

 

   

 

Figures 637 

Fig. 1 Treemaps presenting the representation of ASV among genera (for RbcL) or phylum (for ITS and 638 

16S). 639 

 640 

Fig. 2. Non-metric multidimensional scaling ordination (NMDS) of microbial communities.  641 

 642 

Fig. 3. Results of the SourceTracker analysis indicating the contribution of different sources to the 643 

microbial communities found on Trichoptera cases. 644 

 645 

Fig. 4. Co-occurrence diagram presenting the correlations greater than 0.6 between different diatoms 646 

(grouped by genus) bacteria (grouped by family) and fungi (grouped by genus). Open symbols denote 647 

groups that are over-represented on unstructured substrates while closed symbols denotes groups 648 

over-represented on structured substrate. Presented groups are those selected by the multiblock sPLS-649 

DA algorithm to better discriminate better structured and unstructured substrates.  650 

 651 

Fig. 5. Richness of microbial communities on the different types of substrates, expressed as ASV 652 

richness (a, c, e) and taxonomic richness (b, d, f) for diatoms (a-b) fungi (c-d) and bacteria (e-f). 653 

Significant effect of the structure (structured vs. unstructured) and the substrate type (organic vs. 654 

mineral) on ASV and taxonomic richness based on a ANOVA is indicated by asterisks (*: p<0.05, **: 655 

p<0.01, ***: p<0.001, ns: not significant).  656 

 657 

Fig. 6. Rarefaction curves for substrates grouped as structured and unstructured substrates. Shaded 658 

area around rarefaction curves indicates 95% confidence intervals. 659 

 660 



   

 

   

 

Fig. 7. dbRDA biplot of the diatom, fungal and bacterial community on Trichoptera cases. Arrows 661 

indicates environmental factors. Asterisks indicate factors that significantly affect microbial 662 

community (* : <0.05, **: <0.01, ***: <0.001). 663 
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