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Abstract: The regular and consistent monitoring of marine ecosystems and fish communities is
becoming more and more crucial due to increasing human pressures. To this end, underwater camera
technology has become a major tool to collect an important amount of marine data. As the size of
the data collected outgrew the ability to process it, new means of automatic processing have been
explored. Convolutional neural networks (CNNs) have been the most popular method for automatic
underwater video analysis for the last few years. However, such algorithms are rather image-based
and do not exploit the potential of video data. In this paper, we propose a method of coupling
video tracking and CNN image analysis to perform a robust and accurate fish classification on deep
sea videos and improve automatic classification accuracy. Our method fused CNNs and tracking
methods, allowing us to detect 12% more individuals compared to CNN alone.

Keywords: marine ecosystems; convolutional neural networks (CNNs); BRUVS video data; fish
classification; automatic processing; tracking

1. Introduction

At a time when anthropogenic activities and global changes are exerting increasing
pressure on marine ecosystems [1] the enhancement of underwater wildlife management
and conservation has become more critical than ever [2]. The regular and consistent moni-
toring of these ecosystems is essential for detecting changes over time, understanding the
ecosystems’ health and functionality [3] and informing effective conservation strategies [4].
Traditional methods of underwater monitoring often prove to be labor-intensive [5], expen-
sive [6], and sometimes lack the desired accuracy or resolution. Therefore, it is necessary
to design innovative tools to monitor marine biodiversity frequently and on a large scale.
Recent advances in underwater camera technology have facilitated the collection of an
enormous amount of marine imagery [7]. However, given that the manual processing of
such vast data is impractical due to constraints of time and resources, algorithms based
on Machine Learning (ML) and deep learning (DL) have been developed to automate the
data processing [8]. These algorithms can identify and classify underwater species [9,10],
map habitats [11], and track movements [12] and behaviors [13], thereby creating extensive
databases of information that can be analyzed to identify patterns and trends. Despite
their promise, these algorithms currently face limitations, such as the need for large train-
ing datasets [14], challenges with low light or turbidity, difficulties in identifying rare or
camouflaged species, and the need for ongoing validation and refinement. Furthermore,
Convolutional neural networks (CNNs) are designed to analyze each image separately
while data often comprises video formats with similar information between frames. As
such, algorithms are not leveraging the temporal aspect of the video. One way to enhance
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automatic algorithms for counting and identifying fish could be to exploit this information
by linking the detection models, like CNNs, with a tracking algorithm [15].

When dealing with tracking algorithms for multiple objects [16], the process entails
monitoring objects within a video. This is achieved by analyzing each frame separately,
conducting object detection on each frame, and subsequently attempting to establish
correspondences between the objects detected in the current frame and those identified
in the preceding frame. This matching process is facilitated by employing a specific
measurement technique designed to enhance the accuracy of the object matching. If fish
tracking in video has been a topic for a decade [17–19], the coupling of deep learning
algorithms and tracking algorithms is a recent and current topic. CMFTNet [20] employs a
deformable convolutional network backbone architecture combined with a counterpoised
loss function to effectively detect and track individual fish in aquaculture videos. Its
performance is evaluated using metrics such as MOTA and IDF1, although these do
not include ecologically relevant metrics. Wang et al. [21] combined YOLOv5 with an
adaptation of SiamRPN++, originally designed for single target tracking. The paper
proposed a use case of this method to analyze the behavior of the porphyry seabream in
aquaculture videos. FishMOT [22] proposed to couple a YOLOv7 detection algorithm with
IoU evaluation serving as the tracking module. The algorithm is applied to Zebrafish seen
from above, using the Trex 2D scenery [23] and the idtracker.ai [24] datasets.

To our knowledge, this is the first paper proposing a coupling between a deep architec-
ture and a tracking algorithm applied in unconstrained baited remote underwater videos.

This process heavily depends on the accuracy of the detector. However, fish detection
models are not usually able to be consistent and fail to detect that same object for a couple
of frames [25], leading to extra ID assignments and thus a low tracking quality and poor
counting quality. In our paper, we propose an end-to-end method consisting of a CNN
detector, a tracker, and post-processing. The tracking module (tracker+post-processing)
can easily be plugged in to any CNN architecture depending on the goal while being
extremely cost-effective. We then compare the efficiency of our method to the state of the
art to identify and count fish in underwater videos. Our method fusing CNN and tracking
methods allowed us to detect 12% more individuals compared to CNN alone.

Key points:

- Use of temporal data through video tracking;
- Overall increase in coverage by 12%;
- Application to real-life unconstrained baited remote underwater videos used for

ecological studies in the south pacific ocean;
- Cost-efficient computing architecture and easy-to-plug modules for any CNN architecture.

2. Material

We used 289 videos from GoPro Hero 4 cameras with a medium field of view in
1920 × 1080 at 60 frames per second and a 1200 lumens, 120-degree angle led light (Group-
binc). Each video is 15 s long, is centered around deepwater snapper fish (Lutjanidae family),
shows one or multiple individuals moving on screen, and was recorded at depths varying
between 47 and 552 m, recorded on deep slopes and seamounts marine habitats of New-
Caledonia, South Pacific [26]. This video dataset was split into a training set of 159 (Table 1)
videos for our CNN model training and a testing dataset made of 130 videos (Table 2).
Such a division ensured that the testing and training datasets were independent and that
the shown results are representative of future applications. Each video was then cut into
frames at a 1 frame per second rate for the training. Then, all frames were annotated. The
coordinates, enclosed by a bounding box, as well as the species name of each fish were
recorded. We define a sample as one individual annotation. Finally, to test our tracking
dataset, we cut our testing videos at a rate of 30 frames per second.
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Table 1. Numbers of species samples used to train the detection model.

Species Number of Occurences in Videos

Pristipomoides filamentosus 2345

Aphareus rutilans 375

Pristipomoides flavipinnis 268

Aprion virescens 186

Etelis coruscans 145

Pristipomoides argyrogrammicus 134

Parapristipomoides squamimaxillaris 68

Table 2. Numbers of species samples used to test the detection model.

Species Number of Occurences in Videos

Pristipomoides filamentosus 1303

Pristipomoides flavipinnis 395

Aphareus rutilans 239

Etelis coruscans 117

Pristipomoides argyrogrammicus 114

Aprion virescens 74

3. Method
3.1. General Pipeline

Our testing pipeline was composed of three modules: a convolutional neural network
(CNN) detection model, a tracking algorithm, and a post-processing algorithm (Figure 1).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 13 
 

the shown results are representative of future applications. Each video was then cut into 
frames at a 1 frame per second rate for the training. Then, all frames were annotated. The 
coordinates, enclosed by a bounding box, as well as the species name of each fish were 
recorded. We define a sample as one individual annotation. Finally, to test our tracking 
dataset, we cut our testing videos at a rate of 30 frames per second. 

Table 1. Numbers of species samples used to train the detection model. 

Species Number of Occurences in Videos 
Pristipomoides filamentosus 2345 

Aphareus rutilans 375 
Pristipomoides flavipinnis 268 

Aprion virescens 186 
Etelis coruscans 145 

Pristipomoides argyrogrammicus 134 
Parapristipomoides squamimaxillaris 68 

Table 2. Numbers of species samples used to test the detection model. 

Species Number of Occurences in Videos 
Pristipomoides filamentosus 1303 
Pristipomoides flavipinnis 395 

Aphareus rutilans 239 
Etelis coruscans 117 

Pristipomoides argyrogrammicus 114 
Aprion virescens 74 

3. Method 
3.1. General Pipeline 

Our testing pipeline was composed of three modules: a convolutional neural network 
(CNN) detection model, a tracking algorithm, and a post-processing algorithm (Figure 1). 

 
Figure 1. General pipeline of our algorithm. 

3.2. CNN Training 
In our study, we used a TensorFlow implementation of the Faster Region-Based 

Convolutional Neural Network (Faster R-CNN) designed for object detection [27], which 
had been pre-trained on the Common Objects in Context (COCO) dataset [28]. This model 
was used with a hybrid Inception module combined with a Nas ResNet configuration 
(Inception-ResNet V2), processing images in the 1024 × 1024 format. The model’s 

Figure 1. General pipeline of our algorithm.

3.2. CNN Training

In our study, we used a TensorFlow implementation of the Faster Region-Based Con-
volutional Neural Network (Faster R-CNN) designed for object detection [27], which had
been pre-trained on the Common Objects in Context (COCO) dataset [28]. This model
was used with a hybrid Inception module combined with a Nas ResNet configuration
(Inception-ResNet V2), processing images in the 1024 × 1024 format. The model’s archi-
tecture is available on TensorFlow [29] 2’s model directory on GitHub. We fine-tuned this
architecture using Baited Remote Underwater Video Stations (BRUVS) images annotated
with deep-water snapper species, serving as our training dataset. The training and testing
of the model were conducted using the open-source TensorFlow API in Python 3. Our com-
putational hardware setup comprised four parallelized NVIDIA Quadro RTX 8000 cards,
boasting 196 GB of CPU memory and 42 GB of GPU memory. The entire system operated
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on an Ubuntu-based operating system. The model underwent 200,000 iterations with a
batch size of 8 and with a training dataset composed of 3521 images. The detection model
was trained on the seven fish species.

3.3. Pipeline Breakdown

When the CNN detected a new individual, it attributed to it a unique identifier; a
bounding box defined by its position and coordinates; and a species name. If the CNN
detected an individual at a given time (t) and failed to detect it at (t + 1), the tracking module
was activated. For each object, the module utilized the most recent bounding box obtained
from the CNN model. Using the object’s coordinates, the tracking algorithm initialized and
maintained tracking for a predefined number of frames referred to as “timeout frames”.
During this time, the tracking module remained active, continuously updating the position
of the object, unless the object was once again detected by the CNN (Figure 2).
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3.4. Faster R-CNN for Fish Detection

Video processing started by dividing the video into frames at a specified frame rate of
30 fps. These frames were subsequently fed into a Faster R-CNN, enabling the detection
and classification of objects within each frame (region convolutional neural network [15]).
R-CNN models consist of four tasks: (1) suggest regions that can contain objects of interest
in the frame; (2) extract a fixed-length feature vector from those regions; (3) classify objects
found in those regions; (4) and fit bounding boxes around classified objects (Figure 3).
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To perform the detection, we used the TensorFlow implementation of the state-of-the-
art Faster R-CNN Inception ResNet V2 1024 × 1024 model.

3.5. Tracking Algorithm

The tracking algorithm goal was to keep each object tracked when the detector failed
to detect it. Our tracking module took the latest detected bounding box of a fish and
predicted the next possible position of the bounding box. The module was able to predict
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bounding box positions for a set number of frames. This time window was called timeout
frames. If the detector was able to detect the fish individual during timeout frames, then
CNN detection took over the tracking module (Figure 1). If the detector was not able to
detect the individual before the end of the timeout frames, the individual was no longer
considered on screen. This heuristic was very important because it prevented the creation
of false negatives bounding boxes in the event of a tracking module failure. When the
tracking module was triggered, it maintained the last species attributed to the individual
until the detection was resumed again (see pseudo-code in Appendix A).

Detection confidence threshold: A value that we use in order to decide whether we are
confident to accept the detected bounding box or throw it away. If we obtain a detection
rate that is higher than or equals this threshold, we accept the detection and we take its
bounding box and class. If we obtain a detection rate that is lower than this threshold, we
assume the detection is not acceptable.

Timeout frames: The value of the timeout frames is chosen based on how many frames
the detection model is approximately unable to detect the objects consecutively. The lower
the timeout frames, the better, as it may result in more false positives that can decrease
the performance of the tracking algorithm. A good value choice may lead to a significant
decrease in false negatives at the cost of a slight increase in false positives.

We used the OpenCV legacy tracker [30] algorithm for our tracking module as it
provided a more accurate tracking compared to other statistical methods such as Mean
Shift [31]. This algorithm took a bounding box region and tried to predict the next possible
position for that bounding box based on its color distribution. It also remembered the color
distribution for every frame so the object was still trackable.

Given that the tracking system is activated only upon the initial detection’s availability,
it is possible that in some cases, there may be fish present in the initial frames that go
undetected by the detector. Consequently, we may experience a loss of information right at
the beginning of the video. To address this issue, we implemented a tracking process on the
same videos but in reverse order, moving from the end of the video to the beginning. This
approach enables the tracking module to follow and recover fish data that might have been
missed during the normal forward tracking process (from the start to the end of the video).

3.6. Matching Metric

We employed Intersection over Union (IoU) (Equation (1)) as our matching metric
for bounding boxes. This choice enabled us to automatically link bounding boxes that
are in close proximity, ensuring that they correspond to the same object throughout the
tracking procedure.

Intersection(boxA,boxB)/Union(boxA,boxB) (1)

boxA and boxB refer to the area of bounding boxes in question. The IoU value is
always between 0 and 1, with 0 being the IoU of two bounding boxes with no pixel in
common and 1 being two perfectly aligned bounding boxes. The use of IoU allowed us to
be sure when comparing two bounding boxes that they are similar in size and position.

3.7. Post-Processing

During the initial two stages of our pipeline (i.e., detection and tracking), we assigned
a unique identifier and species label to each individual. The tracking module inherits the
class assigned to the detected bounding box by the CNN as long as the time frame lasts.
Consequently, upon the completion of the video processing, we obtain a comprehensive
list encompassing all tracked objects in each frame. For each individual at any given
time, this list included its respective IDs, bounding box coordinates, associated class, and
bounding box type (obtained from either the model’s detection or the tracking module).
Nevertheless, it is crucial to acknowledge that this list may contain multiple IDs with
approximate bounding box distances and sizes, potentially impacting the tracking score. To
address this matter, we perform a post-processing step to eliminate potentially erroneous
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IDs from the list. If two bounding boxes exhibit a significant overlap exceeding a selected
IoU threshold, they are highly likely to correspond to the same object. This is independent
of whether both bounding boxes are from the detector and/or tracker. In such instances,
we retained the object associated with the detection bounding box type. Additionally, to
refine the class information of each object, we employed a frequency analysis to determine
the most representative class. The class that appears most frequently for one individual
was selected as the most representative one. Subsequently, any objects with minority
classes were reclassified to align with the most representative class. By conducting these
post-processing steps, we ensured the accuracy and consistency of the tracked objects’
identities, bounding box coordinates, and class information throughout the analysis.

3.8. Evaluation

To evaluate the accuracy of our algorithm, we calculated F1-Scores for each species.
Calculating the F1-Score was performed through the following formula:

F1Score =
2 × Precision × Recall

Precision + Recall

Precision and recall were represented with the following formulas:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
Detection accuracy was calculated with the following formula:

Det Acc =
TP

TP + FP + FN

True positives (TP): Number of bounding boxes that are correctly detecting the objects;
False positives (FP): Number of bounding boxes that are incorrectly detecting the objects;
False negatives (FN): Number of bounding boxes that are incorrectly not detecting the objects.
It is important to note that true negatives are not important for evaluation because of

the following:
The detection model produces a lot of bounding boxes where most of them would be

considered true negatives;
Calculating the F1-Score does not require their number;
The F1-Score value varies from 0 to 1, with 1 being the perfect F1-score.
All calculations were conducted on a machine with the following configuration:
CPU: Intel Core-i7 8750H;
GPU: Nvidia GeForce GTX 1060;
RAM: 16 GB DDR4 2667 Mhz.

4. Results

On average, the recall improved significantly with the tracking in two directions
(Table 3). In the following results, except for on Table 3, we will consider only the tracking
in two directions and simply call it “module”.

On average, the F1-Score increased by about 7% going from CNN to CNN + Module
in both directions, ranging from a 6.3% increase on Etelis coruscans species to 38.7% on
Aprion virescens species (Table 4).

This improvement mostly came from recall which increased by about 21.6% on average,
with a standard deviation of 0.172, as well as a 11.3% increase on Pristipomoides filamentosus
species being the lowest increase and a 55.9% increase on Aprion virescens species being the
highest increase (Table 4). However, the decrease in precision for most species affected the
F1-Score improvement as well, with Etelis coruscans exhibiting a decrease of 8.7%, whereas
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Pristipomoides filamentosus only showed a decrease of 4.9%. Aprion virescens had the highest
decrease by 12.2%, but it did not affect its F1-Score much (Table 4).

Table 3. Average results obtained from tracking using CNN + Module (“Module” below) and
CNN + Module in two directions (“Module 2D” below).

Name
Precision Recall F1-Score

Module Module 2D Module Module 2D Module Module 2D

Pristipomoides flavipinnis 0.95 0.934 0.838 0.868 0.889 0.897

Pristipomoides filamentosus 0.966 0.944 0.883 0.889 0.921 0.915

Aprion virescens 0.904 0.86 0.474 0.502 0.612 0.624

Etelis coruscans 0.956 0.913 0.775 0.785 0.84 0.831

Pristipomoides argyrogrammicus 0.935 0.921 0.94 0.951 0.937 0.934

Aphareus rutilans 0.911 0.88 0.774 0.816 0.834 0.843

Average 0.937 0.934 0.781 0.868 0.844 0.846

Table 4. Average of results obtained from tracking using CNN only and CNN + Module in two directions.

Name
Precision Recall F1-Score

CNN CNN + Module CNN CNN + Module CNN CNN + Module

Pristipomoides flavipinnis 1 0.934 0.678 0.868 0.806 0.897

Pristipomoides filamentosus 0.993 0.944 0.799 0.889 0.876 0.915

Aprion virescens 0.98 0.86 0.322 0.502 0.45 0.624

Etelis coruscans 1 0.913 0.69 0.785 0.782 0.831

Pristipomoides argyrogrammicus 1 0.921 0.929 0.951 0.963 0.934

Aphareus rutilans 0.96 0.88 0.668 0.816 0.782 0.843

Total 0.989 0.909 0.681 0.802 0.791 0.846

Pristipomoides argyrogrammicus is an outlier as it is the only species showing a decrease
of about 3% in the F1-Score. This is likely due to the false positives that the tracker added
with very few false negative corrections. This was demonstrated by the fact that recall did
increase by around 2.3%, while precision heavily decreased by 7.9% (Tables 4 and 5).

Table 5. Standard deviation obtained from tracking using CNN only and CNN + Module in two directions.

Name
Precision Recall F1-Score

CNN CNN + Module CNN CNN + Module CNN CNN + Module

Pristipomoides flavipinnis 0 0.083 0.08 0.08 0.056 0.061

Pristipomoides filamentosus 0.015 0.071 0.195 0.124 0.134 0.1

Aprion virescens 0.034 0.028 0.24 0.153 0.251 0.118

Etelis coruscans 0 0.012 0.329 0.234 0.265 0.153

Pristipomoides argyrogrammicus 0 0.102 0.065 0.044 0.035 0.067

Aphareus rutilans 0.049 0.036 0.126 0.135 0.083 0.082

Total 0.016 0.055 0.172 0.128 0.163 0.11

On classes that represented an important part of the sampling, such as Pristipomoides
filamentosus (Table 1), the impact of our module was less, with the F1-Score increasing from
0.876 to 0.915.
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On the other hand, species with very low numbers of samples have seen significant
increases in F1-Scores (Figure 4), as seen with Aprion virescens (F1-Score increased from 0.45
to 0.624) and Pristipomoides flavipinnis (F1-Score increased from 0.806 to 0.897).
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On average, the processing time increased by 10.9% (Tables 6 and 7).

Table 6. Average processing times while using CNN only, CNN + Tracker, and CNN + Tracker on
reversed videos.

Video Class
Average Time (Seconds)

CNN Only CNN + Tracker CNN + Tracker Reversed

Pristipomoides flavipinnis 714 731 807

Aphareus rutilans 728 759 827

Etelis coruscans 725 744 784

Pristipomoides filamentosus 734 770 813

Aprion virescens 744 754 823

Pristipomoides argyrogrammicus 723 740 782

Table 7. Standard deviation for processing times while using CNN only, CNN + Tracker, and
CNN + Tracker on reversed videos.

Video Class
Average Time (Seconds)

CNN Only CNN + Tracker CNN + Tracker Reversed

Pristipomoides flavipinnis 25.07 58.91 49.3

Aphareus rutilans 5.29 32.9 18.8

Etelis coruscans 2.97 30.03 6.29

Pristipomoides filamentosus 9.16 3.14 31.84

Aprion virescens 3.05 16.12 10.29

Pristipomoides argyrogrammicus 12.75 6.22 16.1
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Detection accuracy also increased from CNN Only to CNN + Tracker in two directions
from 62.3% to 73.3%.

5. Discussion

From the above results, we noticed an increase in the F1-Score by adding the module.
This was the result of the bounding boxes produced by the module, allowing for a decrease
in false negatives (non-detected objects). We also noticed a decrease in precision as the
tracking module also propagated classification errors from the CNN. This study also
assessed the impact on such algorithms for scarce data. With classes composed of numerous
samples such as Pristipomoides filamentosus, the impact of the module was not significant.
On the other hand, species with limited samples have seen significant increases in F1-Scores,
as seen with Aprion virescens and Pristipomoides flavipinnis.

These outcomes were expected since we anticipated that the model would generate a
higher number of detections for species with abundant samples. This essentially implies
that the likelihood of the model overlooking these species on the screen is quite low, and
therefore, the tracker would remain inactive for extended durations. In contrast, for species
with limited sample data, we expected the opposite behavior, with the tracker being active
for more extended periods. This would enable the correction of numerous false negatives
as a consequence (Figures 5 and 6). As marine ecosystems are composed of more rare
than common species, the use of those algorithms could help to overcome the data scarcity
and the data imbalance between species. Furthermore, as those species have an important
impact on the ecosystem [32,33], missing them during fish community census would greatly
change the assessment of such communities.
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On the other hand, if the model detects the objects as early as possible, then the
module will give more bounding boxes as false positives, hence the decrease in the F1-Score
(Figure 7).
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6. Conclusions

In this paper, we showed the possibilities of multiple object tracking [16,34,35] to
improve fish classification and counting. As the state-of-the-art methods only use the
image aspect [25], tracking could be the needed tool to leverage the temporal aspect of the
videos. Tracking by detection with a deep learning model proved to be more efficient than
any other classic way that involved prediction or statistics [10]. However, a well-trained
model can likely miss an object and fail to detect it for a couple of frames if the conditions
are changing constantly, such as lighting, turbidity, reflection, etc. For videos recorded
underwater, such condition changes are happening frequently, making it difficult to detect
the same fish consistently. Adding a tracking module could solve the issue for a handful of
frames before the model is able to detect the fish once again. Our goal is to connect previous
and future detections of the same fish in case there are periods without detections. This
approach enables the continuous tracking of fish under the same ID, as demonstrated by
our filtering method. Maintaining the same ID could also enhance classification accuracy
by allowing us to correct misclassifications based on the predominant classes assigned
to the same detected fish. We anticipated that the model would accurately classify the
fish most of the time, with only occasional instances of misclassification occurring within
minority classes. However, these instances are expected to be rare compared to the majority
classifications. In short, it also gives access to the interaction between frames and thus
compensates for a large, acknowledged deficiency, especially in marine data composed of
many rare species [36].

Moreover, the coupling of tracking and CNNs with a light architecture make it applica-
ble in real-time applications. Of course, the two-direction tracking (backward and forward
tracking) is not applicable for real-time applications, but can be used for long campaigns at
sea or for long video dataset analyses. One of the limitations of such a method could occur
in highly turbid waters, as with all vision-based methods. Overall, our paper shows that
coupling the detection model with a tracking module can improve the detection accuracy
of fish in an underwater environment.
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Appendix A

Pseudo-code:
Here is the procedure for the new method:
Initialize a variable called “begin” as True.
Iterate over each frame of the video and perform Object Detection.
If there are no detections and “begin” is True, go to step 2.
If there are no detections and “begin” is False, go to step 7.
If there are detections and “begin” is True, set the detected bounding boxes as reference

boxes with new IDs (1 to n where n is the number of objects), then set “begin” as False and
go back to step 2.

For each new bounding box,
If it matches a reference box above a specified IoU threshold, replace the reference box

with the new box.
If there is no match, add the new box as a reference box with a new ID n + 1.
For each unmatched reference box,
Apply a tracking module to estimate the new box’s position based on previous

tracked boxes.
Add the resulting box with the same ID.
Go back to step 2 and repeat step 7 for the currently unmatched objects for a specified

timeout frames or until the object is detected again.
Thresholds:
Detection Threshold: 0.5.
Timeout frames: 20.
IoU Threshold: 0.35.
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