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Abstract

Two large-scale mass mortality events (MMEs) of unprecedented extent and severity affecting rocky benthic communities
occurred during the summers of 1999 and 2003 along the coasts of the NW Mediterranean Sea. These mortality outbreaks
were associated with positive thermal anomalies. In this study, we performed an analysis of inter-regional and inter-annual
differences in temperature (T) conditions associated with MMEs of the red gorgonian Paramuricea clavata by analyzing high
resolution T time series (hourly records for 3 to 8 years) from four regions of the NW Mediterranean with differing
hydrological conditions and biological impacts. High resolution records allowed a detailed analysis using classical and new
descriptors to characterize T anomalies. We were able to determine that the MMEs were triggered by two main types of
positive thermal anomalies, with the first type being characterized by short periods (2 to 5 days) with high Mean T reaching
more than 27uC in some regions and being associated with high intra-day and intra-period variability, while the second type
of anomaly presented long duration (near one month) at warm T (24uC) with low intra-period variability. Inter-regional
patterns arose; some regions displayed both types of anomalies, while others exhibited only one type. The results showed
that T conditions should be considered as the main factor that explains the observed inter-regional and inter-annual
differences in mortality impacts. In explaining these differences, the late timing of T anomalies, in addition to their
magnitude was found to be determinant. Finally, by combining thermotolerance experimental data with the maximal T
stress conditions observed in the four regions, we were able to determine the differential risk of mass mortality across
regions. We conclude that expanding high resolution T series is important for the development of sound management and
conservation plans to protect Mediterranean marine biodiversity in the face of climate change.
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Introduction

Coastal marine ecosystems harbor high biological diversity and

are among the most productive systems in the world [1,2]. These

ecosystems are subjected to high levels of anthropogenic pressure,

which could have serious implications for the well-being of

societies dependent on these ecosystems for goods and services

[3].

Overexploitation has been recognized as the major threat to

marine ecosystems causing the decline of a number of target

species and changes in the structure of food webs [4,5]. However,

pollution, invasive species, alteration and loss of habitats and,

more recently, global climate change have also been reported to

have significant effects in marine ecosystems [6,7,8,9,10].

The analysis of climate change impacts presents a unique

challenge for conservation biology because they affect large

spatial scales and because they are not easily alleviated by local

management actions [11]. Likewise, these impacts affect most

levels of biological organization: from population and life-

history changes to shifts in the species composition and in the

structure and function of ecosystems [10,12]. Therefore,

research efforts focused on providing meaningful data for the

development of management plans are urgently needed to

enhance the resilience of ecosystems facing current environ-

mental changes [8,13].

In the NW Mediterranean (NWM) Sea, recent studies have

demonstrated a clear warming trend during the last century and

the enhancement of stratification conditions during summer

periods in the last 30 years [14,15,16,17]. In this region, warming

has been found to be associated with shifts in species distributions

[18,19] and mortality events observed during the last 30 years

[20,21]. In particular, two recent large-scale (.1000 km of

coastline) mass mortality events (MME) of approximately 30

macro-benthic species including sponges, cnidarians, bivalves,
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ascidians and bryozoans, occurred during the summers of 1999

and 2003 along the coasts of Spain, France and Italy. In 2006 and

2008, mortality events of a minor extent and severity were also

documented in the NWM region [22,23,24]. All these events were

associated with positive thermal anomalies [20,21,24,25].

An analysis of the biological impacts of mentioned MMEs has

revealed differential responses among species and their popula-

tions at all spatial scales considered [21]. At the local level, colonies

can show contrasting responses, ranging from severe to a complete

absence of injuries. Within regions, populations can display low to

high mortality, and there is a clear decrease of impact with depth

[26]. As an example, different red coral (Corallium rubrum)

populations from the same region presented from 5% to 80% of

affected colonies [27]. This magnitude of differences has also been

observed at the inter-regional level [21]. Finally, the same regions

affected by MMEs in different years exhibited differential impacts,

both in magnitude and the depth range affected [20,21,25,26].

In this study, we present an analysis of inter-regional and annual

differences in T conditions associated with MMEs by analyzing

high resolution T time series from four regions of the NW

Mediterranean Sea with differing hydrological conditions [22] and

biological responses [21]. The characterization of the thermal

conditions of different regions and years that displayed mass

mortality events and the analysis of corresponding impacts in the

red gorgonian Paramuricea clavata populations, allowed for the first

time the study of the relation of regional temperature conditions

with observed impacts at the population level. High resolution T

records allowed a detailed analysis using classical and new

descriptors. Moreover, the results allowed the discussion of the

potential role of temperature conditions and biological factors (e.g.

acclimatization, local adaptation) that may underlie the differential

impacts of the MMEs.

Materials and Methods

2.1 Study area
The study was conducted in four locations of the NW

Mediterranean basin (Fig. 1a), which were the following, from

west to east: Parc Natural del Montgrı́, Illes Medes i Baix Ter

(L’Estartit, Spain); Riou (Marseille, France); Parc National de

Port-Cros (France); and Reserve Naturelle de Scandola (Corsica,

France) (Fig. 1b). These regions shared the common feature of

NW Mediterranean waters of being characterized by a marked

seasonality. From late autumn to winter (December–March), the

seawater T slowly declines, reaching a minimum in March of

approximately 13uC before increasing slightly until the formation

of the thermocline [28]. Although they present similarity in their

annual T cycles, during summer, the four regions present very

distinct hydrographic conditions [22]. Riou exhibits the coldest

conditions from depths of 5 to 40 m, while Scandola is the

warmest site in its subsurface waters, and Medes and Port-Cros

show intermediate conditions. From depths of 15 to 35 m, the

warmest T occurs at Medes and Scandola, with Port-Cros being in

an intermediate position [22]. With respect to the variability of the

Figure 1. The study area. Northwestern Mediterranean Sea showing the limits of the study area (a) and detail of the NW Mediterranean with the
four study regions (b).
doi:10.1371/journal.pone.0023814.g001
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summer thermal regime, inter-regional differences are also

observed. Riou is the most variable site from depths of 5 to

40 m because of the occurrence of upwelling, while Medes exhibits

the highest variability at 40 m because of the recurrent down-

welling. Finally, Port-Cros and Scandola display the maximum

variability at 25–30 m because of oscillations of the thermocline

that settles around these depths [22].

2.2 Temperature measurement strategy
In each region, T records were registered by in situ Stowaway

Tidbits autonomous sensors set up in sites exposed to dominant

winds and currents.

The recorded period was from 1999 to 2006. Records began in

June 1999 at Riou and Port-Cros, in July 2002 at Medes and in

April 2004 at Scandola. Since 2004, measurements have been

standardized at all regions to collect hourly records. Previously, T

measurements had been recorded every 2 hours, and these time

series were interpolated using an exact interpolation technique to

obtain a set of synchronous hourly data. T data were not available

for all years within each region; the available periods of T

measurements at each depth are shown in Table 1. These

temperature series were previously used to characterize temper-

ature regimes in the four studied regions ([22]).

2.3 Biological data collection
Biological surveys were conducted in the four study regions to

investigate relationships between temperature conditions and

population responses. For this purpose, we chose populations of

the red gorgonian Paramuricea clavata as model species because the

largest dataset was available for this species, and it was one of the

most affected during the MMEs [20,21,25]. Furthermore P. clavata

is considered one of the key species of Mediterranean coralligen-

ous assemblages ([29],[30]). Since other macrobenthic species

affected by the MMEs showed similar inter-regional and inter-

annual pattern of mortality to P. clavata, the patterns obtained for

this species may be considered representative of the MMEs

impacts for other species as well ([20],[21], authors unpublished

data). For all these reasons we contend that the use of P. clavata

provide an excellent model for the analysis of the relationships

between temperature conditions during temperature anomalies

and biological impacts.

During the surveys, the percentage of recent tissue necrosis (i.e.,

denuded axis or recent epibiosis) was quantified in at least 100

colonies present at each site and depth surveyed.

We considered a colony to be affected by mortality when it

showed recent tissue necrosis over 10% of its surface. Finally, for

each survey, the percentage of affected colonies was calculated as

an indicator of the mortality impact (see [21] for further

information). Surveys were conducted on an annual basis at 2–7

sites within each study area. In cases where a MME was observed,

the number of sites was increased when possible to better quantify

the mass mortality impacts. More than 20.000 colonies were

analyzed within the four study regions. We calculated the

percentage of affected colonies within each region at every year

that presented mass mortality events and inside each region we

averaged the values of the years that not displayed mortality

outbreaks. Percentages were calculated separately for 10 and 25 m

depth ranges. In Port-Cros and Scandola, the surveys only

concerned the 25 m depth because at 10 m, P. clavata populations

are absent or show low abundance [26,31].

Kruskal-Wallis analysis was used to test for differences of

mortality rates between all regions, years and depths. Multiple

comparisons were studied through Mann-Whitney tests to

determine specific differences between pairs of data. Nonpara-

metric tests were selected because of the absence of normality and

homoscedasticity in the dependent variable. The Kruskal-Wallis

and Mann-Whitney tests were computed using PAST software

(version 1.82b, [32]).

2.4 Characterization of temperature anomalies related to
mass mortality events (MME)

To characterize the temperature conditions of years associated

with mortality events in each region, we combined classical and

new descriptors to retain information on the magnitude, variability

and duration of T anomalies, as well as the timing of the anomalies

during the summer period (see below).

In the analysis, the period between 1st July and 30 September

was arbitrarily considered as the summer period. Likewise, the

depths considered were 10 and 25 m (12 and 24 m at Riou and

Port-Cros in the 1999–2003 period, hereafter referred to as 10 and

25 m, respectively), which correspond to the suprathermoclinal

and intermediate thermoclinal levels, respectively [22]. We

selected this period and these depths because the MMEs displayed

the most severe impacts under these conditions [20,21,23,25].

Finally, we distinguished two types of years: those associated

with mortality events in at least some of the studied regions

(hereafter YMMEs), which included 1999, 2003 and 2006; and

those presenting no mortality event signals (hereafter YNMMEs),

which included 2000, 2001, 2002, 2004 and 2005. For all of the

analyzed statistics, for each location and depth, each YMME was

analyzed separately, while YNMMEs were studied together,

averaging statistical values. Representation and analysis of the

data were performed using SigmaPlot (version 10.0) and PAST

(version 1.82b, [32]) software, respectively.

2.4.1 Mean T, maximum T and coefficient of variation of

the summer period. The Mean T, maximum T (Max T) and

coefficient of variation (CV) were calculated to search for

differences between YMMEs and YNMMEs and within

YMMEs. The CV (summer standard deviation6100/summer

Mean T) was chosen as the measure of variability because it is the

Table 1. Availability of temperature data.

Geographic region 10 m 25 m

Parc Natural del Montgrı́, Illes Medes i Baix Ter (L’Estartit, Spain) 2003–2006* 2003–2006

Riou (Marseilles, France) 1999–2006 1999–2006

Parc National de Port-Cros (France) 1999, 2001–2006 1999–2000, 2002–2006

Reserve Naturelle de Scandola (Corsica, France) 2004–2006 2004–2006

Available temperature data for the four study regions in the northwestern Mediterranean Sea at 10 and 25 m depths (*: temperature at 15 m depths was analyzed
instead of temperature at 10 m). The selected depths include the depth range in which the most severe impacts of MMEs were observed.
doi:10.1371/journal.pone.0023814.t001
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percentage of the degree of variability and can be interpreted

independently from the mean.

2.4.2 Mean and CV of time intervals with the highest

Mean T. Consecutive episodes of 2, 5, 10, 15, 30 and 40 days

(taking 24 consecutive hours as a day, 48 consecutive hours for two

days, and so on) with the highest Mean T were retained. For each

year, region and depth, there was a unique corresponding

consecutive period of a specific length with the highest Mean T.

Thus, the value of this Mean T and the corresponding value of the

CV of each length period were retained with the aim of capturing

the T magnitude and associated variability of the hottest periods of

short, intermediate and long duration.

2.4.3 Timing of periods with the highest Mean T. The

timing of the above-mentioned 15- and 40-day periods was

analyzed. Timing refers to the point in time in the summer when

these periods occurred. For the 15-day episodes, summer was

divided into 6 two-week summer periods: 1st–15 July, 16–31 July,

1st–15 August, 16–31 August, 1st–15 September and 16–30

September. Then, the 15-day episodes with highest Mean T

were associated with the two-week period in which most of the

episode occurred. For the 40-day episodes, the summer period was

divided into months: July, August and September. Again, the 40-

day episodes with highest Mean T were associated with the month

in which most of the episode occurred. By analyzing the timing of

the temperature anomalies, we intended to explore the response of

affected species to similar temperature stresses occurring at

different times during the summer.

2.5 Ordination of YMMEs and YNMMEs through T
statistics

The analyzed statistics (except those on temperature anomalies

timing) were ordered through Principal Component Analysis

(PCA) with the aim of synthesizing the information provided by

the different T indicators. Two analyses were performed, one for

the 10 m depth and another for the 25 m depth. In addition to the

analyzed statistics described above, three further variables were

considered to perform the PCA. We included, in one side, the total

duration (as the proportion of summer time) inside the [24–25] uC
T class and the longest consecutive duration inside this class.

These statistics were considered since it was documented that

during 1999 summer, long duration near 24uC occurred at Riou

and at Port-Cros ([22,31]). In the other side we included the

average CV of the 5 hottest summer days. It was calculated

averaging the CV value corresponding to the 5 summer days with

the highest Mean T. This indicator was included with the aim of

considering variability of the thermal regime at shorter time scales

(e.g. inside days). Overall, a total of 15 variables were available to

perform the analyses, but because of the very high correlation

between some of them (Pearson correlation coefficient .0.8),

redundant variables were removed to perform PCAs. Finally, a

total of six and eight variables were retained to perform the 10 and

25 m depth PCA, respectively. For the 10 m depth PCA the

retained variables were the Mean T of the 5 and the 40

consecutive days with highest mean T (Mean_T_5 and

Mean_T_40 respectively), the CV of the 5 and the 40 consecutive

days with highest mean T (CV_5 and CV_40 respectively), the

average CV of the 5 hottest summer days (Mean_CV_5) and the

total duration inside the [24–25] uC T class (Dur_24). For the

25 m depth PCA all the variables retained for the 10 m depth

PCA, the CV of the 15 consecutive days with highest mean T

(CV_15) and the longest consecutive duration inside de [24–25]

uC T class (Max_cons_dur_24) were analyzed.

As for the previously calculated statistics, YNMMEs were

considered together, while YMMEs were studied separately.

2.6 Confronting thermotolerance experiment results and
field T conditions

The available information from the experimental results on the

thermotolerance of NWM rocky benthic species (Table 2) was

contrasted with the most severe field T conditions observed in the

four studied regions. An inverse second-order regression

(f = y0+(a/x)+(b/x2) was fitted to the Mean T of increasing time

intervals (from 2 to 40 days) with the highest Mean T with the aim

of obtaining a domain of possible conditions in each region given

the available datasets and comparing them with the upper

thermotolerance limits from experimental data. Given that points

located in domains below the regression curves indicate species at

risk under actual conditions, we suggest that differences with

respect to the distribution of experimental data above and below

the regression curve could provide clues related to the differential

risk of mortality among regions.

Results

3.1 Biological data
Clear differences were found in the mortality rates associated

with different years, regions and depths, and these differences were

significant (Kruskal-Wallis p-value,0.05). The highest mortality

rates were found at Riou in 1999 at 10 and 25 m depths, at Riou

in 2003 at the 10 m depth and at Port-Cros in 1999 at the 25 m

depth, which all presented between 23 and 46% affected colonies

(Fig. 2). Multi-comparison analyses did not indicate significant

differences among these observations (p-value.0.05). These

comparisons also showed that the cases with high mortality rates

presented significant differences compared with all remaining

cases, which experienced low to zero mortality rates (p-

value,0.05). However, there was an exception for Riou in 2006

at the 10 m depth, which did not present differences with Port-

Cros in 1999 at the 25 m depth. At this time and depth, Riou

presented nearly 10% affected colonies, which was a value that

was significantly higher than those of observations associated with

low mortality rates (p-value,0.05, Fig. 2).

3.2 Characterization of the summer thermal regime of
YMMEs

3.2.1 Mean T, maximum T and coefficient of variation of

the summer period. At 10 m depths, the highest summer

Mean T was observed in 1999 at Riou and Port-Cros and in 2003

at Medes (Table 3). For this year at these regions, the highest

Mean T values were more than 1uC warmer than those in all

remaining years. In particular, this value for Riou in 1999 was

almost 2.5uC warmer than for YNMMEs. Finally, Scandola did

not present important differences between 2006 (the only YMME

Table 2. Availability of experimental data.

Species Tested T (6C) References

Cladocora caespitosa 24, 26, [56]

Corallium rubrum 24, 25, 27 [38,39]

Eunicella singularis 24 [57]

Oculina patagonica 24, 26, [56]

Paramuricea clavata 23, 24, 25, 25, 27 [16,37,39], Crisci et al.
unpublished data

Data from experimental work on T effects on mortality (necrosis) of the NWM
rocky benthic species used to produce Figure 7.
doi:10.1371/journal.pone.0023814.t002
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with T data available) and YNMMEs. The Max T was reached in

2003 at Medes, Riou and Port-Cros and in 2006 at Scandola. In

this last region and year, the highest Max T of all regions and

years was observed, reaching almost 28uC (Table 3). Additionally,

either 2003 or 2006 was the year that presented the highest CV in

all regions. The high values of the CV in Riou are remarkable in

both YMMEs and YNMMEs in comparison with the other

regions (Table 3).

At the 25 m depth, as at the 10 m depth, the highest Mean T in

Riou and Port-Cros were found in 1999 (1 to 2uC higher than

other years). No remarkable differences were found among years

for the other regions. However, in relation with the Max T, clear

differences were found between Medes in 2003 and 2006

compared with YNMMEs (up to 2uC warmer) and Port-Cros in

1999 compared with all other years (1.3uC warmer). In contrast, in

Scandola in 2006, the Max T was 1uC colder than in YNMMEs,

indicating enhanced stratification, with warm T limited to shallow

depths at this location. In Medes, 2003 and 2006 were more

variable than YNMMEs, while 1999 and 2003 presented higher

CVs than 2006 and YNMMEs in Port-Cros (Table 3).

3.2.2 Mean T and CV of consecutive time intervals with

the highest Mean T. In general, at the 10 m depth, YMMEs

presented a higher Mean T than YNMMEs, regardless of the time

interval considered (Figs. 3a–d). However, inter-annual and inter-

regional differences were observed. Medes in 2003 and 2006

(Fig. 3a) and Riou and Port-Cros in 1999 (Figs. 3b and 3c)

presented remarkable constancy throughout all time periods

considered compared with YNMMEs, reaching a Mean T near

24uC in the longest periods and a T near 25uC in the shorter

periods considered. On the other hand, clear differences with

YNMMEs were also found in the Mean T for short periods at

Medes and Riou in 2003 and 2006 and at Scandola in 2006,

where the Mean T values recorded were approximately 2–3uC
higher than the values found in YNMMEs (Figs. 3a, 3b and 3d).

Changes in the CV for the different time intervals were also

observed during YMMEs at 10 m depth (Figs. 3e–h). In Riou and

Port-Cros in 1999, the constancy in the Mean T over the different

time intervals was reflected in a drastic decrease in the CVs

compared with other years (10 and 5.5%, respectively, for the

longest episodes) (Figs. 3f and 3g). For the other investigated years,

Riou and Port-Cros showed CV values similar to those for

YNMMEs, except in Port-Cros in 2003, where the CV for short

periods was greater than for YNMMEs. In Medes and Scandola,

YMMEs were characterized by an increase of the CV, especially

when long periods of time were considered (Figs. 3e and 3h).

At the 25 m depth, the Mean T of YMMEs versus YNMMEs did

not differ as strongly, and it was warmer for all time periods examined

only in Medes in 2006 and Riou and Port-Cros in 1999 (Figs. 4a–c).

Medes in 2003 presented a higher T than YNMMEs, but only for

short-length (#5 days) episodes (Fig. 4a). All other years and regions

did not present remarkable differences with YNMMEs (Figs. 4a–d).

The most important differences compared with YNMMEs (2 to 4uC)

were observed in Port-Cros in 1999, which presented a notable

constancy in exhibiting a relatively high T throughout all time periods

considered, reaching Mean T from 23.5uC to 24.5uC for the longest

and the shortest periods, respectively (Fig. 4c). A similar pattern,

though mainly concerning intermediate and long episodes, was

observed in Riou in 1999 (Fig. 4b).

Because of the relative constancy in the 1999 Riou and Port-

Cros thermal conditions, the CV was lower than that in all

remaining years during intermediate and long episodes in Riou

(Fig. 4f) and for long episodes in Port-Cros (Fig. 4g). The

remaining years and regions did not differ significantly from

YNMMEs (Figs. 4e–h).

3.2.3 Timing of consecutive time intervals with the

highest Mean T. At the 10 m depth, the 15-day episodes

with the highest Mean T were relatively well segregated according

to years (Fig. 5a). During 2006, these episodes occurred between

the beginning and the middle of summer (16–31 July in Riou and

Port-Cros and 1st to 15 August in Medes and Scandola). In 2003,

they occurred mainly in the middle of the summer period (1st to 15

August in Riou and 16 to 31 August in Medes and Port-Cros), and

in 1999, they occurred late in the summer period, between 1st and

15 September (Fig. 5a). For YNMMEs, the warmest 15-day

consecutive episodes occurred in August, though there was a great

deal of variability depending on region (Fig. 5a).

Figure 2. Mortality of Paramuricea clavata. Percentage of affected colonies with $10% of the colony surface showing recent necrosis (denuded
axis or recent epibiosis) for Paramuricea clavata populations in the four study regions of the northwestern Mediterranean sea at 10 and 25 m depths
during 1999, 2003, 2006 and YNMMEs. The cases with the highest rates of necrosis are those above the grey dashed line. Within this group of data
there were no statistical differences in mortality rates (p-value.0.05), while % of affected colonies showed statistical differences with the remaining
years, regions and depths (p-value,0.5). There was an exception for Port-Cros in 1999 at the 25 m depth, which did not present differences with Riou
in 2006 at the 10 m depth.
doi:10.1371/journal.pone.0023814.g002
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When 40-day consecutive episodes were considered, 1999, 2003

and 2006 were again well segregated. These episodes occurred in

July during 2006, in August during 2003 and in September during

1999. During YNMMEs, they were mainly distributed in the

middle of the summer, although great variability was observed

within some regions (Fig. 5b).

At 25 m, both 15- and 40-day episodes occurred first in Medes

2006 (between 1st and 15 August and in July, respectively), while

for all other YMMEs, episodes of both lengths occurred during

September (Figs. 5c and 5d). YNMMEs presented intermediate

and long hottest episodes, mostly at the end of the summer and

always earlier than for YMMEs, although variability within some

regions was observed (Figs. 5c and 5d).

3.3 Ordination of YMMEs and YNMMEs through T
statistics

Considering the PCA for the 10 m depth, the first two axes

accounted for 77% of the variance of the data. The first axis,

which retained 42% of the variance, was useful for discriminating

two main types of T anomalies. Riou and Port-Cros in 2003 and

Scandola and Riou in 2006 were positively associated with this

axis (Fig. 6a). Projection of the original T variables illustrates the

summer thermal characteristics of these regions and years, which

were associated with high T during short periods of time (five days)

and with large hourly variability during the hottest summer days.

High variability within short, intermediate and long hottest

episodes was also a feature of these years. Negatively associations

with the first axis were found for Riou and Port-Cros in 1999 and,

with lower associated scores, Scandola in YNMMEs and Medes in

2003 and 2006. With the exception of Scandola in YNMMEs,

these years represent a second type of thermal anomaly. This type

of anomaly was characterized by long total and consecutive

durations during warm T as well as by low variability at all time

scales considered (Fig. 6a). The position of Scandola YNMMEs

could be explained because the subsurface waters of this region are

the hottest among the four regions (Table 3).

The second axis accounted for the characteristics of YNMMEs

(with the exception of Scandola YMMEs), which were mainly low

Mean T of short and large consecutive episodes with the highest

Mean T (Fig. 6a).

At the 25 m depth, the first two axes accounted for 71% of the

variance of the data (Fig. 6b). The first axis (51% of variability)

distinguished the years that presented anomalous thermal regimes

from those that did not. These years were 1999 for Port-Cros and

Riou and 2006 for Medes and were characterized by a relatively

long duration within warm T and relatively high T in short and

long intervals with the highest Mean T. The second axis explained

low data variability and did not clearly segregate YMMEs from

YNMMEs. It was associated with variability related to different

length episodes and separated regions inside YMMEs and

YNMMEs (Fig. 6b).

3.4 Confronting thermotolerance experiment results and
field T conditions

The distribution of the experimental thermotolerance data

points around the field T data curves provided clues related to the

degree of vulnerability of the different species under recent T

conditions in the 4 regions (Fig. 7). The experimental results

indicated that short to moderate exposure (1 to 14 days) to 25uC
and short exposure to 26 and 27uC (1 to 3 days) could lead to

mortality (with the exception of the symbiotic species C. caespitosa

and O. patagonica, which seem to be more resistant to these T

conditions). These temperature conditions were attenuated in

Medes and Port-Cros regarding exposure to 25uC, and there was

very low or nonexistent exposure to 26 and 27uC at these sites.

Conversely, these conditions were more frequent in Riou and

Scandola for YMMEs, reaching longer durations at 25 and 26uC
and, in the case of Scandola, also at 27uC (Fig. 7). Therefore,

Medes and Port-Cros appear to represent the less risky of the

investigated regions, while in contrast, Riou and Scandola appear

to be the most risky regions in terms of higher chances of

experiencing mortality.

Table 3. Classical T descriptors.

Region Year

Mean summer T

(6C)

Max. summer T

(6C) Summer CV (%)

Mean summer T

(6C)

Max. summer T

(6C) Summer CV (%)

10 m depth 25 m depth

Medes 2003 22.3 25.5 8.4 18.3 24.5 15.2

2006 21.6 25.0 10.1 19.6 24.9 14.3

YNMME 21.260.7 23.461.1 4.661.4 19.560.3 22.960.9 9.963.3

Riou 1999 21.4 25.0 15.1 19.4 24.1 17.4

2003 20.3 27.6 17.7 17.5 24.2 13.4

2006 20.2 26.8 16.2 18.3 23.6 15.0

YNMME 19.060.3 24.760.9 17.561.2 17.560.3 23.861.3 15.962.4

Port-Cros 1999 22.8 25.5 8.3 20.3 25.1 15.0

2003 21.7 27.2 12.8 18.1 23.0 13.6

2006 22.0 26.5 8.8 18.9 23.1 9.3

YNMME 21.460.9 24.960.8 8.961.6 18.460.6 23.860.4 12.161.1

Scandola 2006 23.0 27.9 7.0 19.7 23.8 9.3

YNMME 23.360.4 25.760.5 4.861.3 19.960.7 24.860.5 12.060.3

Mean T, maximum T (Max T) and coefficient of variation (CV) for the summer period of the four study regions for 1999, 2003, 2006 and YNMMEs (mean 6 SD) at 10 and
25 m depths.
doi:10.1371/journal.pone.0023814.t003
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Figure 3. Mean T and CV of consecutive episodes with the highest mean T (10 m depth). Mean temperature (uC) and coefficient of
variation (%) of consecutive episodes of 2, 5, 10, 15, 30 and 40 days with the highest mean temperature. Data are presented for the four study
locations at 10 m depths.
doi:10.1371/journal.pone.0023814.g003
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Figure 4. Mean T and CV of consecutive episodes with the highest mean T (25 m depth). Mean temperature (uC) and coefficient of
variation (%) of consecutive episodes of 2, 5, 10, 15, 30 and 40 days with the highest mean temperature. Data are presented for the four study
locations at 25 m depth.
doi:10.1371/journal.pone.0023814.g004
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Discussion

In this study, we addressed for the first time the relationship of

inter-regional and inter-annual differences in temperature condi-

tions with the observed impacts in the macrobenthic populations

of the NWM Sea during mass mortality outbreaks.

We were able to recognize two types of thermal anomalies that

were likely to trigger an MME. The first type was characterized by

short episodes (2–5 days of duration) with high Mean T, which

were near 27uC in some regions, and high intra-day and intra-

period (2–5 days) variability. The second type of anomaly

presented long periods (30–40 days) with warm Mean T of

approximately 24uC associated with low intra-period variability.

We found inter-regional and inter-annual differences in the

occurrence and characteristics of the recorded anomalies. Riou

and Port-Cros showed both types of anomalies: long term in 1999

and short term in 2003 and 2006. Furthermore, Medes displayed

only long-term anomalies in both years in which anomalies were

analyzed (2003 and 2006). Finally, in Scandola, a short-term

anomaly was observed in the only year with anomalous T

conditions (2006) for which data were available. It is worth noting

that both in 2003 and in 2006, the two types of anomalies

occurred simultaneously among regions, indicating that two of the

largest heat-waves to ever peak over southern Europe [33,34]

resulted in differential anomalous warming conditions in the water

column. These differences could be attributed to the distinct

summer hydrological conditions found in the four study areas [22].

In Medes, there are recurrent downwellings (.40 m) during

summer [22], which carries increased T further down in the water

column, resulting in warm conditions over longer periods, but

never reaching the elevated temperatures found in other study

areas. In Riou and Port-Cros, the hydrological conditions can

experience abrupt changes under the influence of Mistral (NWN)

winds [35]. The lower frequency and shorter duration of these

winds prevent the upwelling of deep, cold waters and the

subsequent breakage of the thermocline, thus allowing the T to

increase [22]. Scandola exhibits stable summer stratification

conditions [22], and thus, the high air temperature and calm

Figure 5. Timing of the 15 and 40 consecutive days with the highest mean T. Timing of consecutive episodes of 15 (a, c) and 40 days (b, d)
with the highest mean T for 10 and 25 m depths. The average 6 SD is presented for YNMMEs. Cases were ordered in the Y axis to facilitate data
reading, but their position in this axis does not provide any information. M: Medes, R: Riou: PC: Port-Cros and S: Scandola.
doi:10.1371/journal.pone.0023814.g005
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Figure 6. Principal Component Analysis representation. Representation of the first two axes of the Principal Component Analysis using T data
from 10 (a) and 25 m depths (b). Two first axes were retained at both depths, accounting for 77 and 71% of data variability. The original T variables
used to perform the analyses are represented in grey. Scandola in 2004 at the 10 m depth was not considered among the Scandola YNMMEs in the
PCA because this location and year presented the particularity of reaching high temperatures (but not as high as for YMMEs at this location) with no
mortality, so it affected the data ordination when considering all locations together. M: Medes, R: Riou: PC: Port-Cros and S: Scandola.
doi:10.1371/journal.pone.0023814.g006
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weather conditions recorded during the 2006 heat wave resulted in

a significant T increase at the suprathermoclinal level. The

occurrence of the long- and short-term anomalies recorded can

likely be mainly attributed to the timing of calm conditions in the

early-middle for 2003 and 2006, and late summer for 1999. The

observed differences in the magnitude of both types of T

anomalies were able to explain the differences in mortality rates

observed in the field. Short periods of high T and long periods of

warm T were associated with high mortality rates, being the

attenuation of these characteristics (short periods of moderate T or

shorter periods of warm T) linked to a significant decrease of

mortality rates. Finally, years without thermal anomalies presented

negligible mortality rates. Despite these relationships, it is

important to precise that within the same region populations

experiencing the same thermal regime presented different

mortality impacts during MME ([21],[27]), indicating, thus, that

other factors than T may be involved in modulating the mortality

impacts (see below).

The temperature conditions associated with T anomalies may

be related to different biological mechanisms resulting in the death

(total or partial) of organisms. In relation to long-term anomalies,

the highest mortality rates were observed when long periods of

warm Ts occurred at the end of the summer. Mediterranean

suspension feeder species exhibit energetic constrains during

summer [36], since these organisms have to cope with high

respiration demands because of warm T during a period of food

scarcity [16]. When these conditions are prolonged, as in the case

of the years with anomalies, the organisms can suffer physiological

stress that can ultimately lead to partial or total death of some

specimens [16]. In previous studies, experimental data demon-

strated that long duration exposure to warm T (,23uC for .40

days), similar to the conditions observed during long-term

anomalies, could cause the appearance of the firsts signs of

necrosis [16]. In the same experiment, when the colonies were fed,

the time of exposure to warm T before observing necrosis almost

doubled, clearly indicating that feeding helps to cope with

physiological stress [16]. Therefore, the physiological status of

organisms is important in modulating their response to thermal

stress. This factor may be behind the observed differential

mortality observed during long-term anomalies in Riou and

Port-Cros in 1999 and Medes (2003 and 2006).

The high T observed during short-term anomalies reached

lethal levels for the benthic species of the study regions, as

demonstrated through thermotolerance experiments with different

Mediterranean gorgonian species ([37,38,39], Crisci et al.,

unpublished data). Additionally, the high intra-day and intra-

period variability that characterized this type of anomaly could be

an additional stress factor on the organisms, as found in some

tropical coral species [40,41]. Nevertheless, when this type of

anomaly occurred at the beginning of summer, such as those that

took place in 2006, they resulted in less severe impacts on these

populations, probably because the species were less affected by

energetic constraints during this period [16].

Finally, for both types of T anomalies, the induction of mortality

being provoked by thermo-dependent pathogens cannot be

discarded, considering that experimental and field data demon-

strated that Ts$22uC promote pathogen virulence and/or

increase host susceptibility [23,37].

Overall, the results of this study indicated that inter-regional

differences in mortality rates should be mainly attributed to

differences in the T conditions recorded in each region and year

with a T anomaly. However, because the populations inhabiting

the studied regions were subjected to different magnitudes and

timing of T anomalies, we could not determine the potential role

of biological factors, such as acclimatization [42], local adaptation

[43,44] or even contemporary evolution [45], previously high-

lighted for other marine species [46,47,48]. Bearing in mind that

most of the species affected by the MME inhabit different thermal

regimes within the NW Mediterranean basin [22,28] and appear

to be characterized by significant genetic differentiation, even at

reduced spatial scales of several meters [49,50], it seems likely that

selective processes could play a role in determining their response

to T anomalies. The available experimental data suggest an inter-

depth differential response to the same experimental T ([38,50]).

To further explore the role of selective processes in these

phenomena, regional-scale thermotolerance experiments should

be conducted.

The combination of field T data on the most extreme observed

Ts of each studied region with available thermotolerance data on

NW Mediterranean anthozoan species allowed us to assess the risk

of suffering MMEs in the different study regions (Fig. 7). In

general, the T conditions observed in Medes, which exhibits an

absence of extreme T (short-term anomaly) and attenuated

characteristics of long-term anomalies, do not reach values causing

severe damages to these organisms. Therefore, this region could be

associated with a lower risk of mortality outbreaks compared with

the other regions under present T conditions. In contrast, Riou

and Scandola appeared to be the regions with the highest risk, as

in both cases, the anomalous T conditions reached values beyond

the tolerance of the species addressed in this study. The case of

Riou is interesting because it is located in one of the coldest areas

of the NW Mediterranean [51]. The fact that both types of

anomalies could occur in this area, combined with the shallow

distribution of species affected by MMEs [20,21] leads to an

unfavorable scenario for Riou populations in the future. Scandola

presented the most extreme T of short and intermediate-length

periods, which makes it difficult for species affected by MMEs in

Figure 7. Field T versus experimental thermotolerance data.
Inverse second order regression (f = y0+(a/x)+(b/x‘2) fitted to field T
data (highest mean T of different length episodes) of the four study
regions at 10 m depth (complete and dashed lines) and experimental
results (day of 1st signs of necrosis) from different rocky benthic species
(grey and black symbols) obtained from the bibliography and the
authors’ unpublished data (see Table 2). For E. singularis and O.
patagonica at 24uC and for O. patagonica at 26uC, the number of days
until the 1st signs of necrosis actually indicates the number of
experimental days since no necrosis was observed until the last day.
The aim of the figure is to represent a composite function over which,
under experimental conditions, the species seems to tolerate field T
regimes and under which species are affected by tissue necrosis.
doi:10.1371/journal.pone.0023814.g007
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shallow depth ranges to survive in this region. In fact, the absence

of P. clavata populations at the 10 m depth in this area could

indirectly suggest that T could be modulating this species’ depth

distribution, although effects of other environmental factors

cannot be discarded (light, water motion, food availability)

[52,53]. Finally, Port-Cros occupied an intermediate position in

terms of the risk of presenting MMEs, mainly because of the

absence of high T episodes. In accordance with these results, the

number of species affected and the incidence of mortality during

MMEs showed the lowest values in Medes, followed by Port-Cros

and, finally, by Riou and Scandola [20,21,25].

In this study, we demonstrated the utility of acquiring and

analyzing high resolution T series, which allowed us to determine

the main T conditions responsible for the differential mortality

impacts observed in the NWM basin and to assess the risk of

MMEs in the studied regions. The acquisition of new high

resolution T time series in different regions of the Mediterranean

(e.g., /T-MEDNet, http://t-mednet.org) will allow expanding the

analysis to better characterize and understand current shifts in

environmental conditions at larger spatial scales. Additionally,

under the present warming scenario for the Mediterranean area

[54], these data will be key components in the development of

MME risk maps at the scale of the NW Mediterranean. This

information is urgently needed to develop sound management and

conservation strategies to face the impacts of climate change on

the rich marine biodiversity in the Mediterranean region [55].
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Geosciences 339: 57–64.

15. Bensoussan N, Romano JC, Harmelin JG, Crisci C, Pascual J, et al. (2009)

Warming trends, regional fingerprints and future trajectories of NW Mediter-

ranean coastal waters. In: UNEP RAC/SPA (eds) (2009) Proceedings of the 1st

Mediterranean symposium on the conservation of the coralligenous and other

calcareous bio-concretions, Tabarka, Tunisia. pp 167–168.

16. Coma R, Ribes M, Serrano E, Jimenez E, Salat J, et al. (2009) Global warming-

enhanced stratification and mass mortality events in the Mediterranean.

Proceedings of the National Academy of Sciences 106: 6176–6181.
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(1994) Are the Mediterranéan waters becoming warmer? Information from

biological indicators. Mar Pollut Bull 28: 523–526.

19. Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterra-

nean Sea. Hydrobiologia 580: 7–21.
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